Subido por De Santos De luna Christian Eduardo

RELACION MATE DISCRETAS

Anuncio
Relaciones
Rincón de solución de
¿Una carcasa verde? ¡Por fin un color con el que me
puedo relacionar!
equivalencia
Nota
Autoevaluación del capítulo
Ejercicios para computadora
Las relaciones generalizan el concepto de funciones. La presencia del par ordenado (a, b)
en una relación se interpreta como que existe una relación de a a b. El modelo de base de
datos relacional que ayuda a los usuarios a tener acceso a la información de una base de
datos (una colección de registros manejados por una computadora) se basa en el concepto
de relación.
1.1 ➜ Relaciones
WWW
Se puede pensar en una relación de un conjunto a otro como en una tabla que lista los elementos del primer conjunto que se relacionan con los elementos del segundo conjunto. La
tabla 3.1.1 muestra qué estudiantes están inscritos en cuáles cursos. Por ejemplo, Guillermo toma Computación y Arte, y María toma Matemáticas. En la terminología de las relaciones, se dice que Guillermo está relacionado con Computación y Arte, y que María está
relacionada con Matemáticas.
Por supuesto, la tabla 3.1.1 en realidad es sólo un conjunto de pares ordenados. De
manera abstracta, se define una relación como un conjunto de pares ordenados. En este
contexto, se considera que el primer elemento del par ordenado está relacionado con el
segundo elemento del par ordenado.
TABLA 3.1.1 ■ Relación de estudiantes con cursos
116
Estudiante
Curso
Guillermo
María
Guillermo
Beatriz
Beatriz
David
Computación
Matemáticas
Arte
Historia
Computación
Matemáticas
† Esta sección se puede omitir sin pérdida de continuidad.
Definición 3.1.1
▼
3.1 ◆ Relaciones
117
Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X × Y. Si (x, y) ∈ R, se escribe x R y, y se dice que x está relacionada con y.
Si X =
Y, R se llama relación (binaria) sobre X.
El conjunto
{x ∈ X | (x, y) ∈ R para alguna y ∈ Y}
se llama dominio de R. El conjunto
{y ∈ Y | (x, y) ∈ R para alguna x ∈ X}
▼
se llama rango de R.
Una función (vea la sección 2.2) es un tipo especial de relación. Una función f de X
a Y es una relación de X a Y que tiene las propiedades:
Ejemplo 3.1.2
▼
a) El dominio de f es igual X.
b) Para cada x ∈ X, existe exactamente una y ∈ Y tal que (x, y) ∈ f.
Si
X = {Guillermo, María, Beatriz, David}
y
Y = {Computación, Matemáticas, Arte, Historia},
la relación R de la tabla 3.1.1 se puede escribir
R = {(Guillermo, Computación), (María, Matemáticas),
(Guillermo, Arte), (Beatriz, Historia),
(Beatriz, Computación), (David, Matemáticas)}.
▼
Como (Beatriz, Historia) ∈ R, se puede escribir Beatriz R Historia. El dominio (primera columna) de R es el conjunto X y el rango (segunda columna) de R es el conjunto Y.
Ejemplo 3.1.3
▼
El ejemplo 3.1.2 muestra que es posible establecer una relación con sólo especificar
qué pares ordenados pertenecen a la relación. El siguiente ejemplo indica que algunas veces es posible definir una relación dando la regla para pertenecer a la relación.
Sea
X = {2, 3, 4} y Y = {3, 4, 5, 6, 7}.
Si se define una relación R de X a Y por
(x, y) ∈ R si x divide a y,
se obtiene
R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}
Si se rescribe R como tabla, se obtiene
X
Y
2
2
3
3
4
4
6
3
6
4
▼
El dominio de R es el conjunto {2, 3, 4} y el rango de R es el conjunto {3, 4, 6}.
Capítulo 3 ◆ Relaciones
Ejemplo 3.1.4
▼
118
Sea R la relación sobre X = {1, 2, 3, 4} definida por (x, y) ∈ R si x ≤ y, x, y ∈ X. Entonces
R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}.
3
▼
1
2
El dominio y rango de R son ambos iguales a X.
4
Una manera informativa de visualizar una relación en un conjunto es dibujar su digráfica. (Las digráficas se estudiarán con más detalle en el capítulo 8. Por ahora, se mencionan las digráficas sólo en lo que se refiere a las relaciones). Para dibujar la digráfica de
una relación en un conjunto X, primero dibujamos puntos o vértices para representar los
elementos de X. En la figura 3.1.1 se dibujaron cuatro vértices para representar los elementos del conjunto X del ejemplo 3.1.4. Después, si el elemento (x, y) está en la relación, se
dibuja una flecha (llamada arista dirigida) de x a y. En la figura 3.1.1, se dibujaron aristas
dirigidas para representar los miembros de la relación R del ejemplo 3.1.4. Observe que un
elemento de la forma (x, x) en una relación corresponde a una arista dirigida de x a x. Tales aristas se llaman lazos. Existe un lazo en todos los vértices de la figura 3.1.1.
Figura 3.1.1 Digráfica de la
Ejemplo 3.1.5
▼
relación del ejemplo 3.1.4.
La relación R sobre X = {a, b, c, d} dada por la digráfica de la figura 3.1.2 es
R = {(a, a), (b, c), (c, b), (d, d)}
a
b
c
Figura 3.1.2 Digráfica de la relación
del ejemplo 3.1.5.
▼
A continuación se definirán varias propiedades de las relaciones.
▼
Ejemplo 3.1.7
▼
La relación R sobre X = {1, 2, 3, 4} definida por (x, y) ∈R si x ≤ y, x, y ∈ X, es reflexiva
porque cada elemento x ∈ X, (x, x) ∈ R; en particular, (1, 1), (2, 2), (3, 3) y (4, 4) están en
R. La digráfica de una relación reflexiva tiene un lazo en cada vértice. Observe que la digráfica de esta relación (figura 3.1.1) tiene un lazo en cada vértice.
Ejemplo 3.1.8
La relación
▼
Una relación R en un conjunto X se llama reflexiva si (x, x) ∈ R para toda x ∈ X.
▼
Definición 3.1.6
▼
R = {(a, a), (b, c), (c, b), (d, d)}
Definición 3.1.9
▼
▼
sobre X = {a, b, c, d} no es reflexiva. Por ejemplo, b X,
∈ pero (b, b) Ø R. El hecho de que
esta relación no sea reflexiva también se observa en su digráfica (figura 3.1.2); el vér- tice
b no tiene lazo.
▼
Una relación R sobre un conjunto X se llama simétrica si para toda x, y ∈ X, si (x, y) ∈ R,
entonces (y, x) ∈ R.
Ejemplo 3.1.10
▼
3.1 ◆ Relaciones
119
La relación
R = {(a, a), (b, c), (c, b), (d, d)}
Ejemplo 3.1.11
▼
▼
sobre X = {a, b, c, d} es simétrica porque para toda x, y, si (x, y) ∈R, entonces (y, x)
∈ R. Por ejemplo, (b, c) está en R y (c, b) también está en R. La digráfica de una relación
simétrica tiene la propiedad de que siempre que existe una arista dirigida de v a w, también
existe una arista dirigida de w a v. Note que la digráfica de la relación (figura 3.1.2) tiene la
propiedad de que para toda arista dirigida de v a w, también existe la arista dirigida de w a
v.
▼
La relación R sobre X ={1, 2, 3, 4} definida por (x, y) R∈si x y, ≤x, y X, es
∈ no simé- trica.
Por ejemplo, (2, 3) R, pero∈ (3, 2) Ø R. La digráfica de esta relación (figura 3.1.1) tiene una
arista dirigida de 2 a 3, pero no de 3 a 2.
▼
Ejemplo 3.1.13
▼
La relación R sobre X = {1, 2, 3, 4} definida por (x, y) ∈ R si x ≤ y, x, y ∈ X, es antisimétrica porque para toda x, y, si (x, y)∈ R y x y, entonces (y, x) Ø R. Por ejemplo, (1, 2)
∈ R, pero (2, 1) Ø R. La digráfica de una relación antisimétrica tiene la propiedad de que
entre cualesquiera dos vértices existe a lo sumo una arista dirigida. Observe que la digráfica de esta relación (figura 3.1.1) tiene a lo sumo una arista dirigida entre cada par de
vértices.
Ejemplo 3.1.14
La relación
▼
Una relación R en un conjunto X se llama antisimétrica si para toda x, y ∈X, si (x, y) ∈R
y x y, entonces (y, x) Ø R.
▼
Definición 3.1.12
▼
R = {(a, a), (b, c), (c, b), (d, d)}
Ejemplo 3.1.15
▼
▼
sobre X = {a, b, c, d} no es antisimétrica porque (b, c) y (c, b) están ambos en R. Observe
que en la digráfica de esta relación (figura 3.1.2) hay dos aristas dirigidas entre b y c.
Si la relación no tiene miembros de la forma (x, y), x
si (x, y) ∈ R y x
y, entonces
y, entonces (y, x) Ø R
es vagamente cierto para toda x, y ∈ X [porque (x, y) ∈ R y x
y es falsa para toda x,
y ∈X]. Por lo tanto, si una relación R no tiene miembros de la forma (x, y), x y, enton- ces
R es antisimétrica. Por ejemplo,
a
b
R = {(a, a), (b, b), (c, c)}
c
sobre X ={a, b, c} es antisimétrica. La digráfica de R mostrada en la figura 3.1.3 tiene a lo
sumo una arista dirigida entre cada par de vértices. Note que R también es reflexiva y simétrica. Este ejemplo muestra que “antisimétrica” no es lo mismo que “no simétrica” porque esta relación, de hecho, es simétrica y antisimétrica.
Figura 3.1.3 Digráfica de la
relación del ejemplo 3.1.15.
▼
▼
La relación R sobre X =
{1, 2, 3, 4} definida por (x, y) R ∈
si x y, x,≤y X, es ∈
transitiva porque
para todo x, y, z, si (x, y) y (y, z) R, entonces
(x,
z)
R.
Para
verificar
de
manera
formal que
∈
∈
esta relación satisface la definición 3.1.16, se pueden listar todos los pares de la
▼
Una relación R en un conjunto X se llama transitiva si para toda x, y, z ∈ X, si (x, y) y
(y, z) ∈ R, entonces (x, z) ∈ R.
▼
Definición 3.1.16
Ejemplo 3.1.17
Capítulo 3 ◆ Relaciones
forma (x, y) y (y, z) en R y comprobar que en cada caso (x, z) ∈ R.
Pares de la forma
Pares de la forma
(x , y)
( y, z)
(x , z)
(x , y)
( y, z)
(x , z)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 2)
(1, 2)
(1, 2)
(1, 3)
(1, 3)
(1, 4)
(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)
(2, 4)
(3, 3)
(3, 4)
(4, 4)
(1, 1)
(1, 2)
(1, 3)
(1, 4)
(1, 2)
(1, 3)
(1, 4)
(1, 3)
(1, 4)
(1, 4)
(2, 2)
(2, 2)
(2, 2)
(2, 3)
(2, 3)
(2, 4)
(3, 3)
(3, 3)
(3, 4)
(4, 4)
(2, 2)
(2, 3)
(2, 4)
(3, 3)
(3, 4)
(4, 4)
(3, 3)
(3, 4)
(4, 4)
(4, 4)
(2, 2)
(2,3)
(2, 4)
(2, 3)
(2, 4)
(2, 4)
(3, 3)
(3, 4)
(3, 4)
(4, 4)
En realidad, algunos elementos de la tabla anterior eran innecesarios. Si x = y o
y = z, no se necesita una verificación explícita de que la condición
si (x, y) y (y, z) ∈ R, entonces (x, z) ∈ R
se satisface, ya que será verdadera de modo automático. Suponga, por ejemplo, que x = y,
y (x, y) y (y, z) están en R. Como x = y, (x, z) = (y, z) está en R y la condición se cumple.
Al eliminar los casos x y=y y z sólo
= los siguientes deben comprobarse de manera ex- plícita
para verificar que la relación es transitiva:
Pares de la forma
(x , y)
( y, z)
(x , z)
(1, 2)
(1, 2)
(1, 3)
(2, 3)
(2, 3)
(2, 4)
(3, 4)
(3, 4)
(1, 3)
(1, 4)
(1, 4)
(2, 4)
Ejemplo 3.1.18
▼
▼
La digráfica de una relación transitiva tiene la propiedad de que siempre que haya
aristas dirigidas de x a y y de y a z, también habrá una arista dirigida de x a z. Observe que
la digráfica de esta relación (figura 3.1.1) tiene esta propiedad.
La relación
R = {(a, a), (b, c), (c, b), (d, d)}
▼
sobre X ={a, b, c, d} no es transitiva. Por ejemplo, (b, c) y (c, b) están en R, pero (b, b) no
está en R. Observe que en la digráfica de esta relación (figura 3.1.2) hay aristas dirigi- das
de b a c y de c a b, pero no hay una arista dirigida de b a b.
Las relaciones resultan útiles para ordenar los elementos de un conjunto. Por ejemplo, la relación R definida en el conjunto de enteros por
(x, y) ∈ R
si x ≤ y
ordena los enteros. Advierta que la relación R es reflexiva, antisimétrica y transitiva. Este
tipo de relación se llama orden parcial.
Definición 3.1.19
▼
120
▼
Una relación R en un conjunto X se llama orden parcial si R es reflexiva, antisimétrica y
transitiva.
Ejemplo 3.1.20
▼
3.1 ◆ Relaciones
121
Como la relación R definida en los enteros positivos por
(x, y) ∈ R
si x divide a y
▼
es reflexiva, antisimétrica y transitiva, R es un orden parcial.
Si R es un orden parcial en un conjunto X, la notación x ? y se usa algunas veces
Ejemplo 3.1.21
▼
para indicar que (x, y) ∈ R. Esta notación sugiere que estamos interpretando la relación como una ordenación de los elementos de X.
Suponga que R es una relación de orden parcial en un conjunto X. Si x, y ∈ X y ya
sea x ? y o y ? x , , se dice que x y y son comparables. Si x, y ∈ X y x /? y y y /? x ,
se dice que x y y son incomparables. Si todo par de elementos de X es comparable, se llama a R de orden total. La relación menor o igual que en los enteros positivos es de orden
total, puesto que si x y y son enteros, x y ≤
o bien y x. La≤razón para el término “orden parcial”
es que, en general, algunos elementos de X pueden ser incomparables. La relación “divide”
en los enteros positivos (vea el ejemplo 3.1.20) tiene elementos comparables e incomparables. Por ejemplo, 2 y 3 son incomparables (porque 2 no divide a 3 y 3 no divide
a 2), pero 3 y 6 son comparables (ya que 3 divide a 6).
Una aplicación de orden parcial es la programación de tareas.
Programación de tareas
Considere un conjunto T de tareas que deben realizarse para tomar fotos de interiores con
flash con una cámara específica.
1. Retire la tapa del lente.
2. Enfoque la cámara.
3. Quite el seguro.
4. Encienda la unidad de flash.
5. Oprima el botón de disparo.
Algunas tareas deben realizarse antes que otras. Por ejemplo, la tarea 1 debe efectuarse antes que la tarea 2. Por otro lado, otras tareas se pueden realizar en cualquier orden, como
por ejemplo, las tareas número 2 y 3.
La relación R definida en T por
iRj
si i = j o la tarea i debe hacerse antes que la j
ordena las tareas. Se tiene
R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 5), (2, 5), (3, 5), (4, 5)}.
Como R es reflexiva, antisimétrica y transitiva, es una de orden parcial. Una solución al
problema de programar tareas con el fin de tomar una foto es una ordenación total de las
tareas congruente con un orden parcial. De manera más precisa, se requiere un orden total
de las tareas
t1, t2, t3, t4, t5
tal que si ti R tj, entonces i = j o ti precede a tj en la lista. Entre las soluciones se tiene
1, 2, 3, 4, 5
y
▼
3, 4, 1, 2, 5.
Dada una relación R de X a Y, es posible definir una relación de Y a X invirtiendo el
orden de cada par ordenado en R. La relación inversa generaliza la función inversa. La definición formal es la siguiente.
Definición 3.1.22
▼
Capítulo 3 ◆ Relaciones
Sea R una relación de X a Y. La inversa de R, denotada por R−1, es la relación de Y a X definida por
▼
Ejemplo 3.1.23
▼
R −1 = {( y, x ) | (x , y) ∈ R}.
Si se define una relación R de X = {2, 3, 4} a Y = {3, 4, 5, 6, 7} por
(x, y) ∈ R
si x divide a y,
se obtiene
R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}.
El inverso de esta relación es
R−1 = {(4, 2), (6, 2), (3, 3), (6, 3), (4, 4)}.
▼
En palabras, esta relación se describe como “es divisible entre”.
Definición 3.1.24
▼
Si se tiene una relación R1 de X a Y y una relación R2 de Y a Z, se puede formar la
composición de las relaciones aplicando primero la relación R1 y después la relación R2. La
composición de las relaciones generaliza la composición de funciones. La definición formal es la siguiente.
Sea R1 una relación de X a Y y R2 una relación de Y a Z. La composición de R1 y R2, denotada por R2 ◦ R1, es la relación de X a Z definida por
Ejemplo 3.1.25
y ( y, z) ∈ R2
para alguna y ∈ Y}.
▼
R2 ◦ R1 = {(x , z) | (x , y) ∈ R1
▼
122
La composición de las relaciones
R1 = {(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)}
y
R2 = {(2, u), (4, s), (4, t ), (6, t ), (8, u)}
es
R2 ◦ R1 = {(1, u), (1, t ), (2, s), (2, t ), (3, s), (3, t ), (3, u)}.
▼
Por ejemplo, (1, u) ∈ R2 ◦ R1 porque (1, 2) ∈ R1 y (2, u) ∈ R2.
Sugerencias para resolver problemas
Una relación R en un conjunto X es reflexiva si (x, x) ∈ R para toda x ∈ X. En palabras, una
relación es reflexiva si cada elemento en su dominio está relacionado consigo mismo. Para
verificar si una relación es reflexiva, sólo se comprueba si (x, x) está presente en R para toda x. Dado un diagrama de flechas, la relación es reflexiva si tiene un lazo en cada vértice.
Una relación R en un conjunto X es simétrica si para toda x, y ∈ X, si (x, y) ∈ R, entonces (y, x)∈ R. En palabras, una relación es simétrica si siempre que x está relacionada
con y, ocurre que y está relacionada con x. Para verificar si una relación es simétrica, se ve
si para cada miembro (x, y) en R, (y, x) también está presente. Dado un diagrama de flechas, la relación es simétrica si siempre que haya una arista dirigida de x a y, también hay
una arista dirigida de y a x.
Una relación R en un conjunto X es antisimétrica si para toda x, y ∈ X, si (x, y) ∈
R y x y, entonces (y, x) Ø R. En palabras, una relación es antisimétrica si siempre que x
3.1 ◆ Relaciones
123
está relacionada con y y x y y son diferentes, entonces y no está relacionada con x. Para
comprobar si una relación es antisimétrica, se verifica cada miembro (x, y), x y, y se ve si
(y, x) no está presente. Dado un diagrama de flechas, la relación es antisimétrica si cuan- do
hay una arista dirigida de x a y , x y, no hay una arista dirigida de y a x. Advierta que “no
simétrica” no necesariamente es lo mismo que “antisimétrica”.
Una relación R en un conjunto X es transitiva si para toda x , y, z X,
∈ si (x, y) y (y,
z) R, ∈
entonces (x, z) R. ∈
En palabras, una relación es transitiva si siempre que x está
relacionada con y y y está relacionada con z, entonces x está relacionada con z. Para comprobar si una relación es transitiva, se verifican todos los pares de la forma (x, y), (y, z) con
x y y y z, después se ve si (x, z) también está presente. Dado un diagrama de flechas, las
relación es transitiva si cuando hay aristas dirigidas de x a y y de y a z, también hay una
arista dirigida de x a z.
Un orden parcial está en una relación reflexiva, antisimétrica y transitiva.
La inversa R−1 de la relación R consiste en los elementos (y, x), donde (x, y)
∈ R. En
palabras, x está relacionada con y en R si y sólo si y está relacionada con x en R−1.
Si R1 es una relación de X a Y y R2 es una relación de Y a Z, la composición de
R1 y R2, denotada por R2 ◦ R1, es la relación de X a Z definida por
R2 ◦ R1 = {(x , z) | (x , y) ∈ R1 y ( y, z) ∈ R2 para alguna y ∈ Y}.
Para calcular la composición, se encuentran todos los pares de la forma (x, y) ∈ R1 y (y, z)
∈ R2; después se encuentran (x, z) en R2 ◦ R1.
Sección de ejercicios de repaso
1. ¿Qué es una relación binaria de X a Y?
2. ¿Qué es el dominio de una relación binaria?
3. ¿Qué es el rango de una relación binaria?
4. ¿Qué es la digráfica de una relación binaria?
7. Defina relación antisimétrica. Dé un ejemplo de una relación antisimétrica. Dé un ejemplo de una relación que no sea antisimétrica.
8. Defina relación transitiva. Dé un ejemplo de una relación transitiva. Dé un ejemplo de una relación que no sea transitiva.
9. Defina orden parcial y dé un ejemplo de orden parcial.
5. Defina relación reflexiva. Dé un ejemplo de una relación reflexiva. Dé un ejemplo de una relación que no sea reflexiva.
10. Defina una relación inversa y dé un ejemplo de una relación inversa.
6. Defina relación simétrica. Dé un ejemplo de una relación simétrica. Dé un ejemplo de una relación no simétrica.
11. Defina composición de relaciones y dé un ejemplo de composición de relaciones.
Ejercicios
En los ejercicios 1 al 4, escriba la relación como un conjunto de pares
ordenados.
1.
8840
9921
452
2207
Martillo
Tenazas
Pintura
Alfombra
4.
a
b
a
b
En los ejercicio 5 al 8, escriba la relación como tabla.
5. R = {(a, 6), (b, 2), (a, 1), (c, 1)}
6. R =
{{Rogelio, Música}, (Patricia, Historia), (Benjamín, Matemáticas), (Patricia, Ciencias Políticas)}
7. La relación R en {1, 2, 3, 4} definida por(x , y) ∈ R if x 2 ≥ y
2.
a
b
b
c
3.
8. La relación R del conjunto X de planetas al conjunto Y de enteros
definida por (x, y) R∈si x está en la posición y respecto al sol (el más
cercano al sol está en la posición 1, el segundo más cercano al sol
está en la posición 2, y así sucesivamente).
3
1
4
1
En los ejercicios 9 al 12 dibuje la digráfica de la relación.
Susana
Matemáticas
Ruth
Física
Samuel
Economía
9. La relación del ejercicio 4 en {a, b, c}
10. La relación R = {(1, 2), (2, 1), (3, 3), (1, 1), (2, 2)} sobre X = {1, 2, 3}
124
Capítulo 3 ◆ Relaciones
11. La relación R = {(1, 2), (2, 3), (3, 4), (4, 1)} en {1, 2, 3, 4}
12. La relación del ejercicio 7
29. (x , y) ∈ R si x = y2.
30. (x , y) ∈ R si x > y.
En los ejercicios 13 al 16, escriba la relación como un conjunto de pares ordenados.
31. (x , y) ∈ R si x ≥ y.
32. (x , y) ∈ R si x = y.
13.
33. (x , y) ∈ R si 3 divides x − y.
a
b
34. (x , y) ∈ R si 3 divides x + 2y.
35. Sea X un conjunto no vacío. Defina la relación enP(X), el conjunto
potencia de X, como (A, B)∈ R si A ⊆B. ¿Es ésta una relación reflexiva, simétrica, antisimétrica, transitiva y/o de un orden parcial?
36. Sea X el conjunto de todas las cadenas de 4 bits (por ejemplo, 0011,
0101, 1000). Defina una relación R sobre X como s1 R s2 si
alguna subcadena s de longitud 2 es igual a alguna subcadena s 2
1
de longitud 2. Ejemplo: 0111 R 1010 (porque ambas 0111 y 1010
contienen 01). 1110 R 0001 (porque 1110 y 0001 no tienen una
subcadena común de longitud 2). ¿Es ésta una relación reflexiva,
simétrica, antisimétrica, transitiva y/o de un orden parcial?
d
c
14.
1
37. Suponga que Ri es de orden parcial sobre Xi, i = 1, 2. Demuestre que R es de orden parcial en X1× X2 si se define
2
(x 1 , x 2 ) R (x 1r , x 2r )
si x 1 R1 x 1r y x 2 R2 x 2r .
38. Sean R1 y R2 las relaciones en {1, 2, 3, 4} dadas por
R1 = {(1, 1), (1, 2), (3, 4), (4, 2)}
3
R2 = {(1, 1), (2, 1), (3, 1), (4, 4), (2, 2)}.
Liste los elementos de R1 ◦ R2 y R2 ◦ R1.
4
Proporcione ejemplos de relaciones en {1, 2, 3, 4} que tengan las propiedades especificadas en los ejercicios 39 al 43.
5
39. Reflexiva, simétrica, y no transitiva.
40. Reflexiva, no simétrica, y no transitiva.
15.
1
41. Reflexiva, antisimétrica, y no transitiva.
2
42. No reflexiva, simétrica, no antisimétrica y transitiva.
16.
43. No reflexiva, no simétrica, y transitiva.
a
b
c d
17. Encuentre el dominio y el rango de cada relación en los ejercicios
1 al 16.
Sean R y S relaciones sobre X. Determine si cada afirmación en los
ejercicios 44 al 59 es verdadera o falsa. Si la afirmación es verdadera,
demuéstrelo; de otra manera, dé un contraejemplo.
44. Si R y S son transitivas, entonces R ∪ S es transitiva.
18. Encuentre la inversa (como conjunto de pares ordenados) de cada
relación en los ejercicios 1 al 16.
45. Si R y S son transitivas, entonces R ∩ S es transitiva.
Los ejercicios 19 al 24 se refieren a la relación R en el conjunto {1, 2,
3, 4, 5} definida por la regla (x, y) ∈ R si 3 divide a x − y.
47. Si R es transitiva, entonces R−1 es transitiva.
19. Liste los elementos de R.
21. Encuentre el dominio de R.
−1
23. Encuentre el dominio de R .
46. Si R y S son transitivas, entonces R ◦ S es transitiva.
48. Si R y S son reflexivas, entonces R ∪ S es reflexiva.
20. Liste los elementos de R−1.
49. Si R y S son reflexivas, entonces R ∩ S es reflexiva.
22. Encuentre el rango de R.
50. Si R y S son reflexivas, entonces R ◦ S es reflexiva.
−1
24. Encuentre el rango de R .
25. Repita los ejercicios 19 al 24 para la relación R en el conjunto {1,
2, 3, 4, 5} definida por la regla (x, y) ∈ R si x + y ≤ 6.
51. Si R es reflexiva, entonces R−1 es reflexiva.
52. Si R y S son simétricas, entonces R ∪ S es simétrica.
53. Si R y S son simétricas, entonces R ∩ S es simétrica.
26. Repita los ejercicios 19 al 24 para la relación R en el conjunto {1,
2, 3, 4, 5} definida por la regla (x, y) ∈ R si x = y − 1.
54. Si R y S son simétricas, entonces R ◦ S es simétrica.
27. La relación del ejercicio 25, ¿es reflexiva, simétrica, antisimétrica, transitiva y/o de un orden parcial?
56. Si R y S son antisimétricas, entonces R ∪ S es antisimétrica.
28. ¿La relación del ejercicio 26 es reflexiva, simétrica, antisimétrica,
transitiva y/o de un orden parcial?
58. Si R y S son antisimétricas, entonces R ◦ S es antisimétrica.
En los ejercicios 29 al 34, determine si cada relación definida en el
conjunto de enteros positivos es reflexiva, simétrica, antisimétrica,
transitiva y/o de un orden parcial.
55. Si R es simétrica, entonces R−1 es simétrica.
57. Si R y S son antisimétricas, entonces R ∩ S es antisimétrica.
59. Si R es antisimétrica, entonces R−1 es antisimétrica.
En los ejercicios 60 al 62, determine si cada relación R definida en la
colección de todos los subconjuntos no vacíos de números reales es reflexiva, simétrica, antisimétrica, transitiva y/o de orden parcial.
3.2 ◆ Relaciones de equivalencia
60. (A, B) ∈ R si para toda ‹ > 0, existen a ∈ A y b ∈ B con |a − b|
< ‹.
61. (A, B) ∈ R si para toda a ∈ A y ‹ > 0, existe b ∈ B con |a − b| <
‹.
62. (A, B) ∈ R si para toda a ∈ A, b ∈ B y ‹ > 0, existen ar ∈ A y br ∈
B con |a − br| < ? y |ar − b| < ‹.
125
63. ¿Qué está equivocado en el siguiente argumento, que se supone
demuestra que cualquier relación R sobre X que es simétrica y
transitiva es reflexiva?
Sea x ∈ X. Usando la simetría, se tiene que (x, y) y (y, x) están
ambos en R. Como (x, y), (y, x) ∈ R, por la transitividad se tiene (x, x)
∈ R. Por lo tanto, R es reflexiva.
3.2 ➜ Relaciones de equivalencia
WWW
Suponga que se tiene un conjunto X de 10 pelotas, cada una de las cuales es roja, azul o
verde (vea la figura 3.2.1). Si se dividen las pelotas en los conjuntos R, A y V de acuerdo
con el color, la familia {R, A, V} es una partición de X. (Recuerde que en la sección 2.1 se
definió una partición de un conjunto X como la colección S de subconjuntos no vacíos de
X tales que cada elemento en X pertenece exactamente a un miembro de ).
S
Una partición es útil para definir una relación. SiSes una partición de X, se puede
definir x R y de modo que signifique que para algún conjunto S , tanto
∈ S x como y perte- necen
a S. Para el ejemplo de la figura 3.2.1, la relación obtenida se describe como “es del mismo
color que”. El siguiente teorema muestra que este tipo de relación siempre es refle-xiva,
simétrica y transitiva.
a
a
a
Figura 3.2.1 Conjunto de pelotas de colores.
Teorema 3.2.1
Sea S una partición de un conjunto X. Defina x R y de modo que signifique que para algún conjunto S en S, tanto x como y pertenecen a S. Entonces R es reflexiva, simétrica
y transitiva.
Demostración Sea x ∈ X. Por definición de partición, x pertenece a algún conjunto S
∈ S. Entonces, x R x y R es reflexiva.
Suponga que x R y. Entonces ambas x y y pertenecen a algún conjunto S ∈ S. Como ambos y y x pertenecen a S, y R x y R son simétricas.
Por último, suponga que x R y y y R z. Entonces ambos x y y pertenecen a algún
conjunto S ∈ S y ambos y y z pertenecen a algún conjunto T ∈ S. Como y pertenece
Ejemplo 3.2.2
▼
exactamente a un miembro de S, debemos tener S = T. Por lo tanto, ambas x y z están
en S y x R z. Se ha demostrado que R es transitiva.
Considere la partición
S = {{1, 3, 5}, {2, 6}, {4}}
(6, 2), (6, 6), (4, 4)}.
▼
de X = {1, 2, 3, 4, 5, 6}. La relación R sobre X dada por el teorema 3.2.1 contiene los pares ordenados (1, 1), (1, 3) y (1, 5) porque {1, 3, 5} está en S. La relación completa es
R = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5), (2, 2), (2, 6),
Se tienen y
S R como en el teorema 3.2.1. Si S , los
∈ Smiembros de S se pueden vercomo
equivalentes en el sentido de la relación R, que es la motivación para llamar relacio-nes
equivalentes a las relaciones que son reflexivas, simétricas y transitivas. En el ejem- plo
3.2.1, se tiene la relación “es del mismo color que”; entonces equivalente significa “es del
mismo color que”. Cada conjunto en la partición consiste en todas las pelotas de un co-lor
en particular.
Capítulo 3 ◆ Relaciones
▼
La relación R del ejemplo 3.2.2 es una relación equivalente en {1, 2, 3, 4, 5, 6} por el Teorema 3.2.1. También se puede verificar directamente que R es reflexiva, simétrica y transitiva.
▼
Una relación que es reflexiva, simétrica y transitiva en un conjunto X se llama relación de
equivalencia sobre X.
▼
Definición 3.2.3
Ejemplo 3.2.4
2
1
3
4
5
6
Figura 3.2.2 Digráfica de la relación del ejemplo 3.2.2.
Ejemplo 3.2.5
▼
▼
La digráfica de la relación R del ejemplo 3.2.2 se ilustra en la figura 3.2.2. De nuevo, se ve que R es reflexiva (hay un lazo en cada vértice), simétrica (para toda arista dirigida de v a w, también existe una arista dirigida de w a v), y transitiva (si hay una arista dirigida
de x a y y una arista dirigida de y a z, existe una arista dirigida de x a z).
Considere la relación
R = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),
(5, 1), (5, 3), (5, 5)}
La relación R sobre X = {1, 2, 3, 4} definida por (x, y) ∈
R si x y,
≤ con x y y R,∈no es una
relación de equivalencia porque R no es simétrica. [Por ejemplo, (2, 3) R, pero
∈ (3, 2)Ø R].
La relación R es reflexiva y transitiva.
Ejemplo 3.2.7
La relación
▼
Ejemplo 3.2.6
▼
▼
en {1, 2, 3, 4, 5}. La relación es reflexiva porque (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)
∈ R. La
relación es simétrica porque siempre que (x, y) está en R, (y, x) también está en R. Por último, la relación es transitiva porque siempre que (x, y) y (y, z) están en R, (x, z) también
está en R. Como R es reflexiva, simétrica y transitiva, R es una relación de equivalencia en
{1, 2, 3, 4, 5}.
▼
126
R = {(a, a), (b, c), (c, b), (d, d)}
▼
sobre X {a,
= b, c, d} no es una relación de equivalencia porque R no es reflexiva ni transitiva. [No es reflexiva porque, por ejemplo, (b, b) Ø R. No es transitiva porque, por ejemplo, (b, c) y (c, b) están en R, pero (b, b) no está en R].
Dada una relación de equivalencia en un conjunto X, es posible hacer una partición
de X agrupando miembros relacionados. Puede pensarse que los elementos relacionados
entre sí son equivalentes. El siguiente teorema establece los detalles.
3.2 ◆ Relaciones de equivalencia
Teorema 3.2.8
127
Sea R una relación de equivalencia en un conjunto X. Para cada a ∈ X. sea
(En palabras, [a] es el conjunto de todos los elementos de X que están relacionados con
a). Entonces
S = {[a] |a ∈ X }
es una partición de X.
Demostración Debemos demostrar que todo elemento en X pertenece exactamente a
un miembro de S.
nos un miembro de S. Falta demostrar que todo elemento de X pertenece a exactamente un miembro de S; es decir,
si x
Xyx
[a]
[b], entonces [a] = [b].
▼
Sea R una relación de equivalencia en un conjunto X. Los conjuntos [a] definidos en el teorema 3.2.8 se llaman clases de equivalencia de X dada por la relación R.
Ejemplo 3.2.10
En el ejemplo 3.2.4, se demostró que la relación
▼
Definición 3.2.9
▼
Primero probamos que para toda c, d ∈ R, si c R d, entonces [c] [d]. Suponga
que c R d. Sea x ∈ [c]. Entonces x R c. Como c R d y R es transitiva, x R d. Por lo tanto, x ∈ [d] y [c] ⊆ [d]. El argumento de que [d] ⊆ [c] es el mismo que el que se acaba
de dar, pero con los papeles de c y d intercambiados. Entonces [c] = [d].
Ahora se prueba (3.2.1). Suponga que x ∈ X y x ∈ [a] ∩ [b]. Entonces x R a y x
R = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5), (2, 2), (2, 6),
(6, 2), (6, 6), (4, 4)}.
sobre X = {1, 2, 3, 4, 5, 6} es una relación de equivalencia. La clase de equivalencia [1]
que contiene a 1 consiste en todas las x tales que (x, 1) ∈ R. Por lo tanto,
[1] = {1, 3, 5}.
Las clases de equivalencia restantes se encuentran de manera similar:
▼
Las clases de equivalencia aparecen con bastante claridad en la digráfica de una relación
de equivalencia. Las tres clases de la relación R del ejemplo 3.2.10 aparecen en la digráfica de R (mostrada en la figura 3.2.2) como las tres subgráficas con vértices {1, 3, 5}, {2, 6}
y {4}. Una subgráfica G que representa una clase de equivalencia es la subgráfica más
grande de la digráfica original que tiene la propiedad de que para cualesquiera vértices v y
w en G, hay una arista dirigida de v a w. Por ejemplo, si v, w ∈{1, 3, 5}, se tiene una aris- ta
dirigida de v a w. Más aún, no pueden agregarse vértices adicionales a 1, 3, 5, por lo queel
conjunto de vértices resultante tiene una arista dirigida entre cada par de vértices.
Ejemplo 3.2.12
Existen dos clases de equivalencia para la relación de equivalencia
▼
Ejemplo 3.2.11
▼
[4] = {4}.
▼
[3] = [5] ={1, 3, 5}, [2] = [6] ={2, 6},
R = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),
(5, 1), (5, 3), (5, 5)}
en {1, 2, 3, 4, 5} del ejemplo 3.2.5, a saber,
[2] = [4] = {2, 4}.
▼
[1] = [3] = [5] = {1, 3, 5},
Ejemplo 3.2.13
▼
Capítulo 3 ◆ Relaciones
Es sencillo verificar que la relación
R = {(a, a), (b, b), (c, c)}
sobre X {a,
= b, c} es reflexiva, simétrica y transitiva. Así, R es una relación de equiva- lencia.
Las clases de equivalencia son
Ejemplo 3.2.14
▼
[a] = {a}, [b] = {b}, [c] = {c}
▼
128
Sea X {1,
= 2, . . . , 10}. Definimos x R y para indicar que 3 divide a x y. Es
−sencillo ve-rificar
que la relación R es reflexiva, simétrica y transitiva. Así, R es una relación de equi- valencia
sobre X.
Se determinarán los miembros de las clases de equivalencia. La clase de equivalencia [1] consiste en todas las x con x R 1. Entonces
[1] = {x ∈ X | divide x − 1} = {1, 4, 7, 10}.
De manera similar,
[2] = {2, 5, 8},
[3] = {3, 6, 9}.
Estos tres conjuntos son una partición de X. Observe que
[1] = [4] = [7] = [10], [2] = [5] = [8], [3] = [6] = [9].
▼
Para esta relación, equivalencia es “tiene el mismo residuo al dividir entre 3”.
Esta sección se cierra con la prueba de un resultado especial que se necesitará más
adelante (vea las secciones 6.2 y 6.6). La prueba se ilustra en la figura 3.2.3.
X
X1
(r
(r elements)
elementos)
X2
(r
(r elementos)
elements)
Xk
(r elements)
elementos)
(r
|X| = rk
Figura 3.2.3 Prueba del Teorema 3.2.15.
Teorema 3.2.15
Sea R una relación de equivalencia en un conjunto finito X. Si cada clase de equivalencia tiene r elementos, existen |X|/r clases de equivalencia.
Demostración Sean X1, X2, . . . , Xk las distintas clases de equivalencia. Como estos
conjuntos hacen una partición de X,
|X |= |X1|+ |X2|+ ··· + |X k |= r + r + ··· + r = kr
y se deriva la conclusión.
Sugerencias para resolver problemas
Una relación de equivalencia es una relación reflexiva, simétrica y transitiva. Para probar
que una relación es de equivalencia, es necesario verificar que estas tres propiedades se
cumplen (vea sugerencias para resolver problemas de la sección 3.1).
Una relación de equivalencia en un conjunto X crea una partición de X en subconjuntos (“Crear una partición” significa que cada x en X pertenece a exactamente uno de los
subconjuntos de la partición.) Los subconjuntos que forman la partición se determinan de
la siguiente manera. Elija x1 ∈ X. Encuentre el conjunto, denotado por [x1], de todos los elementos relacionados con x1. Elija otro elemento x2 ∈ X que no esté relacionado con x1. Encuentre el conjunto [x2] de todos los elementos relacionados con x2. Continúe de esta forma
3.2 ◆ Relaciones de equivalencia
129
hasta que todos los elementos de X estén asignados a un conjunto. Los conjuntos [xi] se llaman clases de equivalencia. La partición es
[x1], [x2], . . . .
Los elementos de [xi] son equivalentes en el sentido de que todos están relacionados. Por
ejemplo, la relación R, definida por x R y si x y y son del mismo color, particiona el conjunto en subconjuntos donde cada subconjunto contiene los elementos que son todos del
mismo color. Dentro de un subconjunto, los elementos son equivalentes en el sentido de
que todos son de mismo color.
En la digráfica de una relación equivalente, una clase de equivalencia es la subgráfica más grande de la digráfica original que tiene la propiedad de que para cualesquiera vértices v y w en G, existe una arista dirigida de v a w.
Una partición de un conjunto da lugar a una relación de equivalencia. Si X1, . . . , Xn
es una partición del conjunto X y se define x R y si para alguna i, x y y pertenecen ambos a
Xi, entonces R es una relación de equivalencia sobre X. Las clases de equivalencia resultan ser X1, . . . , Xn. Así, “relación de equivalencia” y “partición de un conjunto” son diferentes puntos de vista de la misma situación. Una relación de equivalencia sobre X da lugar
a una partición de X (a saber, las clases de equivalencia), y una partición de X da lugar a una
relación de equivalencia (a saber, x está relacionada con y si x y y están en el mismo
subconjunto de la partición). Este último hecho resulta útil para resolver ciertos problemas.
Si le piden que encuentre una relación de equivalencia puede, ya sea encontrar directamente la relación de equivalencia, o bien construir una partición y después usar la relación de
equivalencia asociada. De manera similar, si le piden que encuentre una partición, puede
encontrar directamente la partición o construir una relación de equivalencia y después tomar las clases de equivalencia como la partición.
Sección de ejercicios de repaso
1. Defina relación de equivalencia. Dé un ejemplo de una relación de
equivalencia. Dé un ejemplo de una relación que no sea una relación de equivalencia.
2. Defina clase de equivalencia. ¿Cómo se denota una clase de equi-
valencia? Dé un ejemplo de una clase de equivalencia para su relación de equivalencia del ejercicio 1.
3. Explique la relación entre partición de un conjunto y una relación
de equivalencia.
Ejercicios
En los ejercicios 1 al 8, determine si la relación indicada es una relación de equivalencia en {1, 2, 3, 4, 5}. Si la relación es una relación de
equivalencia, liste las clases de equivalencia. (En los ejercicios 5 al 8,
En los ejercicios 15 al 20, liste los miembros de la relación de equivalencia en {1, 2, 3, 4} definida (como en el teorema 3.2.1) por la partición
dada. Además, encuentre las clases de equivalencia [1], [2], [3] y [4].
x, y ∈ {1, 2, 3, 4, 5}.)
15.
{{1, 2}, {3, 4}}
16. {{1}, {2}, {3, 4}}
1. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1)}
17.
{{1}, {2}, {3}, {4}}
18. {{1, 2, 3}, {4}}
2. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1), (3, 4), (4, 3)}
19.
{{1, 2, 3, 4}}
20. {{1}, {2, 4}, {3}}
=
=
13. {(x, y)|x y y tienen los mismos padres}
3. {(1, 1), (2, 2), (3, 3), (4, 4)}
4. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 5), (5, 1), (3, 5), (5, 3),
(1, 3), (3, 1)}
5. {(x, y) | 1 ≤ x ≤ 5 y 1 ≤ y ≤ 5}
6. {(x, y)|4 divide a x − y}
7. {(x, y)|3 divide a x + y}
8. {(x, y)|x divide a 2 − y}
En los ejercicios 9 al 14, determine si la relación indicada es una relación de equivalencia en el conjunto de todas las personas.
9. {(x, y)|x y y son de la misma altura}
10. {(x, y)|x y y en algún momento han vivido en el mismo país}
11. {(x, y)|x y y tienen el mismo nombre }
12. {(x, y)|x es más alto que y}
14. {(x, y)|x y y tienen el mismo color de pelo}
=
En los ejercicios 21 al 23, sea X {1, 2, 3, 4, 5}, Y {3, 4} y C {1,
3}. Defina la relación R en (X), el conjunto de todos los
subconjuntos de X, como
A R B si A ∪ Y = B ∪ Y.
21. Demuestre que R es una relación de equivalencia.
22. Liste los elementos de [C], la clase de equivalencia que contiene a C.
23. ¿Cuántas clases de equivalencia diferentes hay?
24. Sea
X = {San Francisco, Pittsburg, Chicago, San
Diego, Filadelfia, Los Ángeles}.
Defina una relación R sobre X como x R y si x y y están
en el mis-mo estado.
a) Demuestre que R es una relación de equivalencia.
b) Liste las clases de equivalencia de X.
P
130
Capítulo 3 ◆ Relaciones
25. Demuestre que si R es una relación de equivalencia sobre X, entonces
dominio R = rango R = X.
a) Demuestre que R es una relación de equivalencia en S.
b) Si los puntos en la misma clase de equivalencia se engomaran,
¿como describiría la figura que se forma?
37. Sea f una función de X a Y. Defina una relación R sobre X por
26. Si una relación de equivalencia tiene sólo una clase de equivalencia, ¿cómo debe verse la relación?
27. Si R es una relación de equivalencia en un conjunto X y |X| =
|R|, ¿Cómo debe verse la relación?
28. Listando los pares ordenados, dé un ejemplo de una relación de
equivalencia en {1, 2, 3, 4, 5, 6} que tiene exactamente cuatro clases de equivalencia.
29. ¿Cuántas relaciones de equivalencia hay en el conjunto {1, 2, 3}?
30. Sea X = {1,2, . . . , 10}. Defina una relación R sobre X × X como (a, b) R (c, d) si a + d = b + c.
a) Demuestre que R es una relación de equivalencia sobre X × X.
b) Liste un miembro de cada clase de equivalencia en X × X.
31. Sea X = {1,2, . . . , 10}. Defina una relación R sobre X × X como
(a, b) R (c, d) si ad = bc.
a) Demuestre que R es una relación de equivalencia sobre X × X.
x R y si f (x) = f (y).
Demuestre que R es una relación de equivalencia sobre X.
38. Sea f una función característica en X. (La “función característica” se
definió en el ejercicio 62, sección 2.2). Defina la relación R sobre X
por x R y si f (x)=f (y). De acuerdo con el ejercicio anterior, R es una
relación de equivalencia. ¿Cuáles son las clases de equivalencia?
39. Sea f una función de X a Y. Sea
S = { f −1 ({y}) | y ∈ Y }.
[La definición de f−1(B), donde B es un conjunto, precede al ejercicio 57, sección 2.2]. Demuestre queSes una partición de X. Describa una relación de equivalencia que dé lugar a esta partición.
40. Sea R una relación de equivalencia en un conjunto A. Defina una
función f de A al conjunto de clases de equivalencia de A mediante la regla
f (x) =[x].
b) Liste un miembro de cada clase de equivalencia en X × X.
c) Describa la relación R en términos familiares.
32. Sea R una relación reflexiva y transitiva sobre X. Demuestre que
R ∩ R−1 es una relación de equivalencia sobre X.
33. Sean R1 y R2 relaciones de equivalencia sobre X.
a) Demuestre que R1 ∩ R2 es una relación de equivalencia sobre X.
b) Describa las clases de equivalencia de R1 ∩ R2 en términos de las
clases de equivalencia de R1 y las clases de equivalencia de R2.
34. Suponga que S es una colección de subconjuntos de un conjunto
X y X = ∪ S. (No se supone que la familiaS sea disjunta por pares). Defina x R y de manera que para algún conjunto S ∈
, amS bas
x y y están en S. ¿Es R necesariamente reflexiva, simétrica y
transitiva?
35. Sea S un cuadrado unitario que incluye el interior, como se mues-
¿Cuándo se tiene f (x) = f (y)?
41. Sea R una relación de equivalencia en un conjunto A. Suponga que
g es una función de A a un conjunto X que tiene la propiedad de
que si x R y, entonces g(x) = g(y). Demuestre que
h([x]) = g(x)
define una función del conjunto de clases de equivalencia de A a
X. [Lo que debe probarse es que h asigna de manera única un valor a [x]; es decir, si [x] = [y], entonces g(x) = g(y)].
42. Sea X el conjunto de sucesiones con dominio finito. Defina una relación R sobre X como s R t si |dominio s| = |dominio t| y, si
el dominio de s es {m, m + 1, . . . , m + k} y el dominio de t es
{n, n + 1, . . . , n + k}, s m+i = tn+i para i = 0, . . . , k.
a) Demuestre que R es una relación de equivalencia.
tra en la figura que sigue.
y
b) Explique en palabras qué significa que dos sucesiones en X
sean equivalentes bajo la relación R.
c) Como una sucesión es una función, una sucesión es un conjunto de pares ordenados. Dos sucesiones son iguales si los dos
conjuntos de pares ordenados son iguales. Compare las diferencias entre las dos sucesiones equivalentes en X y las dos sucesiones iguales en X.
(0, 1)
Sea R una relación en un conjunto X. Defina
x
(0, 0)
(1, 0)
Defina la relación R en S por (x, y) R (xr, yr) si (x = xr y y = yr) o
(y = yr y x = 0 y xr = 1) o (y = yr y x = 1 y xr = 0).
a) Demuestre que R es una relación de equivalencia en S.
b) Si los puntos en la misma clase de equivalencia se engomaran,
¿cómo describiría la figura que se forma?
36. Sea S un cuadrado unitario que incluye el interior (como en el ejercicio 35). Defina una relación Rr en S por (x, y) Rr (xr, yr) si (x = xr
y y = yr) o (y = yr y x = 0 y xr = 1) o (y = yr y x = 1 y xr = 0) o
(x = xr y y = 0 y yr = 1) o (x = xr y y = 1 y yr = 0). Sea
R = Rr ∪ {((0, 0), (1, 1)), ((0, 1), (1, 0)),
((1, 0), (0, 1)), ((1, 1), (0, 0))}.
ρ( R) = R ∪ {(x , x ) | x ∈ X }
σ ( R) = R ∪ R−1
Rn = R ◦ R ◦ R ◦ · · · ◦ R
(nR’s)
τ ( R) = ∪ {R | n = 1, 2, . . .}.
n
La relación τ(R) se llama cerradura transitiva de R.
43. Para las relaciones R1 y R2 del ejercicio 38, sección 3.1, encuentre
ρ( Ri ), σ ( Ri ), τ ( Ri ), y τ (σ (ρ( Ri ))) para i = 1, 2.
44. Demuestre que ρ (R) es reflexiva.
45. Demuestre que σ(R) es simétrica.
46. Demuestre que τ(R) es transitiva.
★47. Demuestre que τ (σ (ρ( R))) es una relación de equivalencia que
contiene a R.
Rincón de solución de problemas: Relaciones de equivalencia
★ 48. Demuestre que τ (σ (ρ( R))) es la relación de equivalencia más
pequeña sobre X que contiene a R; es decir, demuestre que si Rr es
una relación de equivalencia sobre X y Rr ⊇ R, entonces Rr ⊇
τ (σ (ρ( R))).
★ 49. Demuestre que R es transitiva si y sólo si τ(R) = R.
En los ejercicios 50 al 56, si la afirmación es verdadera para todas las
relaciones R1 y R2 en un conjunto arbitrario X, demuéstrelo; de otra
manera dé un contraejemplo.
55.
σ (ρ( R1)) = ρ(σ ( R1))
56.
ρ(τ ( R1)) = τ (ρ( R1))
131
Si X y Y son conjuntos, se define X como equivalente a Y si existe una
función uno a uno, sobre de X a Y.
57. Demuestre que la equivalencia de conjuntos es una relación de
equivalencia.
58. Si X y Y son conjuntos finitos y X es equivalente a Y, ¿qué indica
acerca de X y Y?
50.
51.
52.
53.
54.
ρ( R1 ∪ R2) = ρ( R1) ∪ ρ( R2)
σ ( R1 ∩ R2) = σ ( R1) ∩ σ ( R2)τ ( R1 ∪ R2) = τ ( R1) ∪ τ ( R2) τ ( R1 ∩ R2) = τ ( R1) ∩ τ ( R2) σ (τ ( R1)) = τ (σ ( R1))
59. Demuestre que los conjuntos {1,2, . . .} y {2,4, . . .} son equivalentes.
★60. Demuestre que para cualquier conjunto X, X no es equivalente a
P(X), el conjunto potencia de X.
Descargar