C H A P T E R 1 1 Vectors and the Geometry of Space Section 11.1 Vectors in the Plane................................................................................2 Section 11.2 Space Coordinates and Vectors in Space ............................................13 Section 11.3 The Dot Product of Two Vectors.........................................................22 Section 11.4 The Cross Product of Two Vectors in Space ......................................30 Section 11.5 Lines and Planes in Space ....................................................................37 Section 11.6 Surfaces in Space..................................................................................50 Section 11.7 Cylindrical and Spherical Coordinates ................................................57 Review Exercises ..........................................................................................................68 Problem Solving ...........................................................................................................76 © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 1 Vectors and the Geometry of Space Section 11.1 Vectors in the Plane 5 1, 4 2 1. (a) v 4, 2 (b) 6 0, 2 3 6, 5 v 9 3, 5 10 6, 5 u v 7. u y 5 4 11 4 , 4 1 8. u 3 15, 3 (4, 2) 2 v 25 0, 10 13 u v 15, 3 v 1 x 1 2 3 4 5 5 2, 5 0 9. (b) v 3 3, 2 4 2. (a) v (b) 0, 6 y (c) v 3i 5 j (a), (d) y x −3 −2 −1 1 −1 (5, 5) 4 −2 3 v −3 v 2 −4 1 −5 (2, 0) x −1 (0, − 6) −6 1 2 3 4 5 −1 4 2, 3 3 3. (a) v (3, 5) 5 3 2 3, 5 (b) 6, 0 10. (b) v (c) v y 3 4, 6 6 i 12 j (a), (d) 4 1, 12 y (−1, 12) 2 (−6, 0) −8 −6 v v −4 8 6 4 2 x −2 −2 (3, 6) x −4 −8 − 6 − 4 −2 2 −4 −6 1 2, 3 1 4. (a) v (b) (4, −6) 3, 2 11. (b) v y (c) v 3 6 8, 1 3 2 2, 4 2i 4 j (a), (d) (− 3, 2) 6 8 10 y 6 v 4 1 (8, 3) 2 v x −3 −2 x −1 −4 −2 2 4 8 (6, − 1) 2 5. u 5 3, 6 2 2, 4 v 3 1, 8 4 2, 4 u v 6. u 1 4 , 8 0 5, 8 v 7 2, 7 1 5, 8 u v (−2, −4) −6 © 2010 Brooks/Cole, Cengage Learning Section 11.1 12. (b) v (c) v 5 0, 1 4 5, 3 17. (a) 2 v Vectors in the Plane 2 3, 5 5i 3j 3 6, 10 y y (a) and (d). (6, 10) 10 8 (− 5, 3) v 4 6 (3, 5) 2 4 v 2v 2 x −6 −4 −2 x 2 (− 5, −1) −2 −2 2 4 6 8 10 −2 (0, − 4) (b) 3v 13. (b) v (c) v 9, 15 y 6 6, 6 2 0, 4 3 −15 −12 −9 −6 −3 y (0, 4) −9 −15 v (c) 2 (6, 2) 7v 2 4 21 , 35 2 2 y x 2 6 ( 212, 352 ( 18 3 7, 1 1 15 10, 0 12 (3, 5) 9 10i 7 v 2 6 v 3 y (a) and (d). 6 −12 (−9, − 15) 4 3 −3v −6 (6, 6) 6 (c) v v x (a) and (d). 14. (b) v (3, 5) 6 4j x −3 −3 3 3 6 9 12 15 18 2 1 (−10, 0) v (d) x −8 −6 −4 −2 2 4 6 8 y (−3, −1) (7, −1) −2 4 3 (c) v 1 2 32 , 3 i (3, 5) 5 −3 15. (b) v 2, 10 3 2v 3 2 v 3 2 1, 53 4 3 (2, 103 ( v 1 x 5 j 3 −1 1 2 3 4 5 −1 y (a) and (d) ( 12 , 3( 3 (− 1, 53( 2 v ( 32 , 43( x −2 16. (b) v (c) v −1 1 2 0.84 0.12, 1.25 0.60 0.72, 0.65 0.72i 0.65 j (a) and (d). y (0.12, 0.60) (0.84, 1.25) 1.25 1.00 0.75 (0.72, 0.65) 0.50 0.25 v x 0.25 0.50 0.75 1.00 1.25 © 2010 Brooks/Cole, Cengage Learning Chapter 11 4 Vectors and the Geometry of Space 4 2, 3 18. (a) 4 v 8, 12 y 21. y u (− 8, 12) 12 10 u−v 8 −v 6 4v x 4 (− 2, 3) v x −8 − 6 − 4 −2 2 4 6 y 22. (b) 12 v 1, 23 u + 2v y (−2, 3) 2v 3 2 u v x x − 12 v −3 −2 −1 3 (1, − 32( −2 2u 3 23. (a) −3 2 3 (b) v u (c) 0 v 0, 0 2, 5 4, 9 (c) 2u 5 v y 8, 6 3 4, 9 2, 14 2 4, 9 5 2, 5 18, 7 (−2, 3) 3 2u 3 24. (a) 2 3 3, 8 2, 16 3 2 v (b) v u 1 0v x −3 −2 −1 1 8, 25 3, 8 (c) 2u 5 v 11, 33 2 3, 8 5 8, 25 34, 109 −1 2i j 3 2 25. v (d) 6u 12, 18 3i 3j 2 3, 32 y y 1 (− 2, 3) v −6 x −2 2 6 10 x 14 −6 2 −1 − 6v 3 u 3 u 2 −10 −2 −14 (12, −18) −18 19. −3 y 2i j i 2 j 26. v 3i j 3, 1 y −u 2 w x v 1 x 1 2 3 u 20. Twice as long as given vector u. −1 y u 2u x © 2010 Brooks/Cole, Cengage Learning Section 11.1 2i j 2 i 2 j 27. v 4i 3 j 4, 3 y 38. v u 2w 5 5, 15 25 225 v 4 Vectors in the Plane 250 5, 15 v v 5 10 5 10 10 3 10 , unit vector 10 10 u + 2w 2 39. v x 4 u 6 3 5 , 2 2 −2 2 § 3· §5· ¨ ¸ ¨ ¸ 2 © ¹ © 2¹ v 5u 3w 28. v 5 2, 1 3 1, 2 7, 11 u x −4 −2 4 6 8 10 v v 5u −3w 34 2 § 3· § 5· ¨ ¸, ¨ ¸ © 2¹ © 2¹ 34 2 y 2 2 3 , 34 3 34 5 34 , unit vector 34 34 v −6 5 34 −8 −10 −12 29. u1 4 1 u1 3 3 u2 5 Q 3, 5 u2 2 30. u1 5 u2 3 Q 31. 4 u1 9 9 u2 6 9, 6 3 2 7 0 v 33. v 42 32 34. v 122 5 35. v 6 2 5 36. v 37. v 2 v 6.2 u 2 2 32 (b) v 1 4 5 (c) u v (e) 3 12 v u v v 3, 12 153 153 17 4 17 , 17 17 1 1 1, 1 2 1 1 1, 2 5 1 u v u v u v u v 3 12 , 153 153 01 v v v v 109 31 2 17 2 , unit vector 50 50 0, 1 u u u u 13 5 2 1, 2 2 (f ) 2 1, 1 , v 50 5 2 11 3, 12 2 2 u (d) 61 3.4 6.2, 3.4 v v u v 5 2 (a) 3 32. 10 6.2, 3.4 41. u Terminal point 0 72 v 40. v 0, 1 1 unit vector © 2010 Brooks/Cole, Cengage Learning 6 Chapter 11 42. u Vectors and the Geometry of Space 3, 3 0, 1 , v 2, 4 , v 44. u 5, 5 (a) u 01 1 (a) u 4 16 (b) v 99 3 2 (b) v 25 25 (c) u v (c) u v 3, 2 u v 9 4 u u (d) u u 1 1 v v (e) 1 3, 2 13 (b) (c) 1 ,v 2 1 4 u u u u 1 1 v v 2 1 1, 2 5 1 1 7, 1 5 2 u v u v 1 2, 1 v v (f ) 5, 4 5 4 41 | 6.403 v u+v 3 v 2 u v 7, 5 u v 1 74 | 8.602 u 1 −1 x 2 3 4 5 6 7 u v d u v 85 2 74 d 46. u 5 1 2, 3 13 y 13 | 3.606 1, 2 3 u u+v 5 | 2.236 u v 2, 0 2 1 x −3 − 2 −1 1 2 3 −1 −2 v −3 u v 1 41 3, 2 u v 2 u+ v d u v u v u v u v u v 7 6 1 v v y 5 | 2.236 v (e) 5 2 5, 5 5 2 u v u v v 13 49 9 4 u u 1 2, 4 2 5 u 5 2 7 3, 2 u v u u u 49 v 45. 2, 3 1 u v (d) (f ) 1 u 49 1 v v u v u v 1, (e) 1 u v u v (f ) (a) 3, 3 3 2 v v 43. u (d) 0, 1 5 2 7, 1 u v 13 2 5 2 7 3, 2 85 1 2 d 47. u u 1 0, 3 3 § u · 6¨¨ ¸¸ © u ¹ v 13 6 0, 1 5 0, 1 0, 6 0, 6 © 2010 Brooks/Cole, Cengage Learning Section 11.1 1 1, 1 2 u u 48. § u · 4¨¨ ¸¸ © u ¹ v 49. 58. § u · 5¨ ¨ u ¸¸ © ¹ v 7 5¬ªcos 0.5 º¼ i 5ª¬sin 0.5 º¼ j u 5 cos 0.5 i 5 sin 0.5 j 5 cos 0.5 i 5 sin 0.5 j v 2 2 1, 1 u v 10 cos 0.5 i 10 cos 0.5, 0 2 2, 2 2 1 1, 2 5 u u Vectors in the Plane 59. Answers will vary. Sample answer: A scalar is a real number such as 2. A vector is represented by a directed line segment. A vector has both magnitude and direction. 1 2 , 5 5 5, 2 5 S 3, 1 has direction For example 1 2 5 , 5 5 6 and a magnitude of 2. 5, 2 5 60. See page 766: (ku1, ku2) u u 50. § u · 2¨¨ ¸¸ © u ¹ v 1 (u1 + v1, u2 + v2) 3, 3 2 3 (u1, u2) 3, 3 3 v1 52. v 5ª¬ cos 120q i sin 120q jº¼ 5 5 3 j i 2 2 54. v 3i v2 ku1 (b) Scalar. The price is a number. 62. (a) Scalar. The temperature is a number. 5 5 3 , 2 2 u1 u1 61. (a) Vector. The velocity has both magnitude and direction. 3, 0 (b) Vector. The weight has magnitude and direction. For Exercises 63–68, au bw a i 2j b i j 2 ª¬ cos 150q i sin 150q jº¼ 3i j 63. v 4 ª¬ cos 3.5q i sin 3.5q jº¼ | 3.9925i 0.2442 j 2i j. So, a b 2, 2a b simultaneously, you have a 64. v 3 j. So, a b v u v 56. u v u v 57. u v u v cos 0q i sin 0q j i 3 2 3 2 i j 2 2 3 cos 45q i 3 sin 45q j §2 3 2· 3 2 j ¨¨ ¸¸i 2 2 © ¹ 4 cos 0q i 4 sin 0q j 2 cos 30q i 2 sin 30q j 5i 3j 5, 23 2 3 2 , 2 2 4i 65. v 3j 3 2 cos 4 i 2 sin 4 j 3i 3 j. So, a b i j. So, a b 3. Solving 1. 0. Solving 1, b 2. 3, 2a b 2, b 1, 2a b simultaneously, you have a 68. v 1. Solving 1. 1, b 3, 2a b simultaneously, you have a 67. v i 3i. So, a b simultaneously, you have a 66. v 1, b 0, 2a b simultaneously, you have a u a b i 2a b j. 3, 1 3.9925, 0.2442 55. u2 u v 1, (u1, u2) u2 (v1, v2) 3ª¬ cos 0q i sin 0q jº¼ ku2 u 1 3 51. v 53. v ku u+v i 7 j. So, a b simultaneously, you have a 3. Solving 1. 1. Solving 2, b 3 1. 3 1, 2a b 2, b 7. Solving 3. cos 2 i sin 2 j 2 cos 4 cos 2 i 2 sin 4 sin 2 j 2 cos 4 cos 2, 2 sin 4 sin 2 © 2010 Brooks/Cole, Cengage Learning 8 Chapter 11 69. f x Vectors and the Geometry of Space x2 , f c x 2 x, f c 3 y 6 10 (a) m 6. Let w 1 r 1, 6 . 37 w 37, then r w 1, 6 , w 8 (a) (b) 6 4 (b) m 70. f x (a) m (b) m x 2 5, f c x 2 x, f c 1 1 . Let w 2 1 6, 1 . 37 r 2 (3, 9) x −2 2 4 2 1, 2 , w 2. Let w w w 37, then r 6, 1 , w 16 . Let w 8 10 y w w 5, then r (a) 1 1, 2 . 5 r w w 5, then r 2, 1 , w 6 3 (1, 4) 2 1 2, 1 . 5 r (b) 4 1 x −3 −1 1 2 3 −1 71. f x x3 , f c x 3x 2 3 at x 1. 1, 3 , w (a) m 3. Let w (b) m 1 . Let w 3 y 10, then 3, 1 , w w w 10, then r w w 1 1, 3 . 10 2 (1, 1) 1 1 3, 1 . 10 r (a) (b) x 1 72. f x (a) m x3 , f c x 3x 2 12. Let w 2. 12 at x 1, 12 , w 2 y 145, then w w x 1 1, 12 . 145 r −6 −4 −2 2 4 (a) −4 (b) m 1 . Let w 12 12, 1 , w 145, then w w r 1 12, 1 . 145 −6 (b) − 10 73. f x fc x 25 x 2 y x 25 x 2 3 at x 4 (a) 3. 4 (b) (3, 4) 3 (a) m 3 . Let w 4 4, 3 , w 1 r 4, 3 . 5 w 5, then w 2 1 x (b) m 74. f x fc x 4 . Let w 3 3, 4 , w 5, then w w r 1 3, 4 . 5 −1 1 2 3 4 5 tan x sec 2 x y 2 at x S 2.0 (a) 1.5 4 1.0 (a) m (b) m 2. Let w 1 . Let w 2 1, 2 , w 2, 1 , w 5, then w w 5, then r w w 1 1, 2 . 5 r 1 2, 1 . 5 (b) 0.5 −π 2 −π 4 π 4 π 2 x −1.0 © 2010 Brooks/Cole, Cengage Learning Section 11.1 75. uv (c) uv u 2 2 i j 2 2 6 2 2 , 2 2 (6, 5) 5 4 v 3 u v 3i 3 3 j v u v u 6, 5 y 2 2 3i 2 j u 76. 1 x −1 3 2 3 i 3 3 2 j (d) 3 2 3, 3 3 2 1 2 3 4 5 6 6 2 52 v 61 F1 2, T F1 33q 77. (a)–(c) Programs will vary. F2 3, T F2 125q (d) Magnitude | 63.5 F3 2.5, T F3 R F1 F2 F3 | 1.33 79. Direction | 8.26q TR 80. F1 2, T F1 10q F2 4, T F2 140q F3 3, T F3 200q 110q T F1 F2 F3 | 132.5q F1 F2 F3 | 4.09 R TR 81. 9 6i 5 j (b) v 2j v 9 3, 1 4 78. (a) v 2 2 i j 2 2 u Vectors in the Plane T F1 F2 F3 | 163.0q F1 F2 500 cos 30qi 500 sin 30q j 200 cos 45q i 200 sin 45q j F1 F2 tan T 250 3 100 2 2 2 250 100 2 250 3 100 2 i 250 100 2 j | 584.6 lb 250 100 2 T | 10.7q 250 3 100 2 82. (a) 180 cos 30qi sin 30q j 275i | 430.88i 90 j § 90 · Direction: D | arctan ¨ ¸ | 0.206 | 11.8q © 430.88 ¹ 430.882 902 | 440.18 newtons Magnitude: (b) M D (c) (d) 275 180 cos T 2 180 sin T 2 ª 180 sin T º arctan « » 275 180 cos T ¬ ¼ T 0q 30q 60q 90q 120q 150q 180q M 455 440.2 396.9 328.7 241.9 149.3 95 D 0q 11.8q 23.1q 33.2q 40.1q 37.1q 0 500 50 M 0 α 180 0 0 180 0 (e) M decreases because the forces change from acting in the same direction to acting in the opposite direction as T increases from 0q to 180q. © 2010 Brooks/Cole, Cengage Learning 10 Chapter 11 Vectors and the Geometry of Space 83. F1 F2 F3 75 cos 30qi 75 sin 30q j 100 cos 45qi 100 sin 45q j 125 cos 120qi 125 sin 120q j 3 50 2 75 2 125 2 i 75 2 50 2 125 2 3 j F1 F2 F3 | 228.5 lb R TR T F1 F2 F3 | 71.3q ¬ª400 cos 30q i sin 30q j ¼º ¬ª280 cos 45q i sin 45q j ¼º ¬ª350 cos 135q i sin 135q j ¼º 84. F1 F2 F3 ª200 3 140 2 175 2 º i ª200 140 2 175 2 º j ¬ ¼ ¬ ¼ 200 3 35 2 R 2 200 315 2 2 | 385.2483 newtons § 200 315 2 · arctan ¨¨ ¸¸ | 0.6908 | 39.6q © 200 3 35 2 ¹ TR 85. (a) The forces act along the same direction. T (b) The forces cancel out each other. T q. 180q. (c) No, the magnitude of the resultant can not be greater than the sum. 10 cos T sin T 20, 0 , F2 86. F1 20 10 cos T , 10 sin T F1 F2 (a) 400 400 cos T 100 cos 2T 100 sin 2 T 500 400 cos T (b) 40 2 0 0 (c) The range is 10 d F1 F2 d 30. The maximum is 30, which occur at T The minimum is 10 at T 0 and T 2S . S. (d) The minimum of the resultant is 10. 87. 4, 1 , 6, 5 , 10, 3 y y 8 8 6 6 4 (8, 4) 4 (1, 2) (3, 1) u 1u 3 (1, 2) 2 4 6 −4 −2 −2 8 4 −4 7 1, 5 2 4 6 (8, 4) (1, 2) (10, 3) 2 (3, 1) 2 6 (8, 4) x x −4 88. 8 (6, 5) 2 2 (− 4, −1) y 8 x −2 −2 (3, 1) 4 6 8 10 −4 6, 3 2, 1 P1 1, 2 2, 1 P2 1, 2 2 2, 1 3, 3 5, 4 © 2010 Brooks/Cole, Cengage Learning Section 11.1 JJJG CB JJJG CA 89. u v u cos 30qi sin 30q j 91. Horizontal component Vertical component 50° u C v sin T 92. To lift the weight vertically, the sum of the vertical components of u and v must be 100 and the sum of the horizontal components must be 0. x 30° Vertical components: u sin 30q v sin 130q 3000 Horizontal components: u cos 30q v cos 130q 0 u u cos 60qi sin 60q j v v cos 110qi sin 110q j So, u sin 60q v sin 110q 100, or § 3· u ¨¨ ¸¸ v sin 110q © 2 ¹ Solving this system, you obtain u | 1958.1 pounds 100. And u cos 60q v cos 110q v | 2638.2 pounds §1· u ¨ ¸ v cos 110q © 2¹ § 24 · arctan ¨ ¸ | 0.8761 or 50.2q © 20 ¹ 90. T1 v cos T 1200 sin 6q | 125.43 ft sec 130° 30° B v 11 1200 cos 6q | 1193.43 ft sec v cos 130qi sin 130q j y A Vectors in the Plane 0. Multiplying the last equation by T2 § 24 · arctan ¨ ¸ S | 1.9656 or 112.6q © 10 ¹ u u cos T 1 i sin T 1 j v v cos T 2 i sin T 2 j Vertical components: u sin T1 v sin T 2 Horizontal components: u cos T1 v cos T 2 0 or 3 and adding to the first equation gives u sin 110q 3 cos 110q 100 v | 65.27 lb. §1· Then, u ¨ ¸ 65.27 cos 110q © 2¹ 5000 0 u | 44.65 lb. (a) The tension in each rope: u 44.65 lb, v 65.27 lb Solving this system, you obtain u | 2169.4 and v | 3611.2. 0 gives (b) Vertical components: u sin 60q | 38.67 lb, y v sin 110q | 61.33 lb θ2 A B 20° u v C x θ1 v 30° u 100 lb 93. u v 900 cos 148q i sin 148q j 100 cos 45q i sin 45q j u v 900 cos 148q 100 cos 45q i 900 sin 148q 100 sin 45q j | 692.53i 547.64 j § 547.64 · ¸ | 38.34q; 38.34q North of West © 692.53 ¹ T | arctan ¨ u v | 692.53 2 547.64 2 | 882.9 km h © 2010 Brooks/Cole, Cengage Learning 12 Chapter 11 94. Vectors and the Geometry of Space u 400i plane v 50 cos 135qi sin 135q j u v 25 2i 25 2 j wind 400 25 2 i 25 2 j | 364.64i 35.36 j 35.36 T | 5.54q 364.64 tan T Direction North of East: | N 84.46q E Speed: | 336.35 mi h 95. True 102. Let the triangle have vertices at 0, 0 , a, 0 , and 96. True b, c . Let u be the vector joining 0, 0 and b, c , as 97. True indicated in the figure. Then v, the vector joining the midpoints, is 98. False v a c §a b a· ¸i j ¨ 2¹ 2 © 2 b c i + j 2 2 1 1 bi cj u. 2 2 0 b 99. False ai b j 2 a 100. True 101. u cos 2 T sin 2 T 1, v sin 2 T cos 2 T 1 y (b, c) ( a +2 b , 2c ( u v x (0, 0) ( 2a , 0( (a, 0) 103. Let u and v be the vectors that determine the parallelogram, as indicated in the figure. The two diagonals are u v and v u. So, r x u v ,s 4 v u . But, r s u xu v y v u So, x y x 1 and x y x y u x y v. 0. Solving you have 1. 2 y s u r v u v v u 104. w u ª¬ v cos T v i v sin T v jº¼ v ª¬ u cos Tu i u sin Tu jº¼ v ª¬ cos Tu cos T v i sin Tu sin T v jº¼ u ª §T Tv · § Tu T v · § Tu T v · § Tu T v · º v «cos¨ u ¸ cos¨ ¸i sin ¨ ¸ cos¨ ¸j 2 ¹ 2 ¹ 2 ¹ 2 ¹ ¼» © © © ¬ © 2 u tan T w §T sin ¨ u © §T cos¨ u © Tv · § Tu ¸ cos¨ 2 ¹ © Tv · § Tu ¸ cos¨ 2 ¹ © Tv · ¸ 2 ¹ Tv · ¸ 2 ¹ So, T w Tu T v 2 and w bisects the angle between u and v. §T Tv · tan ¨ u ¸ 2 ¹ © 105. The set is a circle of radius 5, centered at the origin. u x, y x2 y 2 5 x2 y2 25 © 2010 Brooks/Cole, Cengage Learning Section 11.2 v0t cos D and y 106. Let x 1 2 gt . 2 v0t sin D x tan D g 2 x sec 2 D 2v02 x tan D gx 2 1 tan 2 D 2v02 13 y § · 1 § · x x v0 sin D ¨ ¸ g¨ ¸ D D cos 2 cos v v © 0 ¹ © 0 ¹ x y v0 cos D t Space Coordinates and Vectors in Space 2 (x, y) α x v02 gx 2 gx 2 v2 2 2 tan 2 D x tan D 0 2g 2v0 2v0 2g § v2 · v02 gx 2 gx 2 ª v4 º 2 2 «tan 2 D 2 tan D ¨ 0 ¸ 20 2 » 2g 2v0 2v0 ¬ © gx ¹ g x ¼ gx 2 § v2 · v02 gx 2 2 2 ¨ tan D 0 ¸ 2g 2v0 2v0 © gx ¹ v02 gx 2 2 , then D can be chosen to hit the point x, y . To hit 0, y : Let D 2g 2v0 If y d 90q. Then 2 · v2 v02 v2 § g 0 ¨ t 1¸ , and you need y d 0 . 2g 2g 2 g © v0 ¹ 1 2 gt 2 v0t y 2 The set H is given by 0 d x, 0 y and y d Note: The parabola y v02 gx 2 2 2g 2v0 v02 gx 2 2 is called the “parabola of safety.” 2g 2v0 Section 11.2 Space Coordinates and Vectors in Space z 5. 1. A 2, 3, 4 3 2 1 B 1, 2, 2 (5, − 2, 2) − 3 2. A 2, 3, 1 4 B 3, 1, 4 1 1 2 3 2 3 −2 −3 y x (5, − 2, −2) 3. z (2, 1, 3) 6. 6 5 4 3 z 8 6 (4, 0, 5) (−1, 2, 1) 2 1 4 3 2 2 3 4 6 y −2 x x 6 −4 y (0, 4, − 5) −6 z 4. 8 7. x 3, y 4, z 8. x 7, y 2, z 5: 3, 4, 5 (3, −2, 5) 6 4 1: 2 7, 2, 1 6 x 6 ( 32 , 4, −2( y 9. y 10. x z 0, y 0, x 3, z 12: 12, 0, 0 2: 0, 3, 2 © 2010 Brooks/Cole, Cengage Learning 14 Chapter 11 Vectors and the Geometry of Space 11. The z-coordinate is 0. 30. A 3, 4, 1 , B 0, 6, 2 , C 3, 5, 6 12. The x-coordinate is 0. AB 9 41 13. The point is 6 units above the xy-plane. AC 0 1 25 26 14. The point is 2 units in front of the xz-plane. BC 9 1 16 26 15. The point is on the plane parallel to the yz -plane that passes through x 3. 16. The point is on the plane parallel to the xy-plane that passes through z 5 2. Because AC 14 BC , the triangle is isosceles. 31. A 1, 0, 2 , B 1, 5, 2 , C 3, 1, 1 AB 0 25 16 17. The point is to the left of the xz-plane. AC 419 18. The point is in front of the yz-plane. BC 4 36 1 19. The point is on or between the planes y y 3. 20. The point is in front of the plane x 3 and Because AB 41 14 41 BC , the triangle is isosceles. 32. A 4, 1, 1 , B 2, 0, 4 , C 3, 5, 1 4. 21. The point x, y, z is 3 units below the xy-plane, and below either quadrant I or III. 22. The point x, y, z is 4 units above the xy-plane, and AB 419 AC 1 36 0 37 BC 1 25 9 35 14 Neither above either quadrant II or IV. 23. The point could be above the xy-plane and so above quadrants II or IV, or below the xy-plane, and so below quadrants I or III. 33. The z-coordinate is changed by 5 units: 24. The point could be above the xy-plane, and so above quadrants I and III, or below the xy-plane, and so below quadrants II or IV. 34. The y-coordinate is changed by 3 units: 4 0 25. d 2 16 4 49 2 2 26. d 2 6 1 2 42 2 2 5 3 96 2 2 25 0 36 28. d 70 § 5 2 9 3 7 3 · , , 35. ¨ ¸ 2 2 2 ¹ © 2 2 2 § 4 8 0 8 6 20 · 36. ¨ , , ¸ 2 2 © 2 ¹ 2 4 6 2 2 4 2 5 2 AC 62 42 12 BC 4 2 BC 2 245 2 49 196 2 z 5 2 z 1 2 4 Radius: 5 2 2 x 4 49 15 y 2 38. Center: 4, 1, 1 2 62 22 62 32 2 x 0 63 6, 4, 7 Radius: 2 2 29. A 0, 0, 4 , B 2, 6, 7 , C 6, 4, 8 2 §3 · ¨ , 3, 5¸ ©2 ¹ 37. Center: 0, 2, 5 61 4 49 9 AB 3, 7, 1 , 0, 9, 2 , 3, 8, 6 69 16 64 16 27. d 2 20 0, 0, 9 , 2, 6, 12 , 6, 4, 3 7 196 2 245 AB AC 2 2, 0, 0 0, 6, 0 2 39. Center: 14 Radius: 7 5 x 1 y 1 2 2 25 1, 3, 0 10 y 3 2 z 0 2 10 2 Right triangle © 2010 Brooks/Cole, Cengage Learning Section 11.2 Space Coordinates and Vectors in Space 15 40. Center: 3, 2, 4 3 r tangent to yz -plane 2 x 3 y 2 2 z 4 2 9 x2 y2 z 2 2x 6 y 8z 1 41. 0 x 2 x 1 y 6 y 9 z 8 z 16 2 2 1 1 9 16 2 x 1 2 2 y 3 z 4 2 25 Center: 1, 3, 4 Radius: 5 x 2 y 2 z 2 9 x 2 y 10 z 19 42. 81 · § 2 2 2 ¨ x 9 x ¸ y 2 y 1 z 10 z 25 4¹ © 2 9· 2 § ¨x ¸ y 1 z 5 2 © ¹ 2 0 19 81 1 25 4 109 4 § 9 · Center: ¨ , 1, 5 ¸ © 2 ¹ 109 2 Radius: 9 x 2 9 y 2 9 z 2 6 x 18 y 1 43. x y z 2 x 2 2x 3 2 x 1, 3 Center: 1 3 1 9 2 2 2x 3 2y y 2y 1 z 2 y 1 2 z 0 0 1 9 0 2 19 2 1 9 1 1 1, 0 Radius: 1 44. 4 x 2 4 y 2 4 z 2 24 x 4 y 8 z 23 x 6x 9 y y 2 x 3 2 y 1 2 2 1 4 2 z 1 0 z 2z 1 2 2 23 4 9 1 4 1 16 Center: 3, 12 , 1 Radius: 4 45. x 2 y 2 z 2 d 36 Solid sphere of radius 6 centered at origin. 46. x 2 y 2 z 2 ! 4 Set of all points in space outside the ball of radius 2 centered at the origin. © 2010 Brooks/Cole, Cengage Learning 16 Chapter 11 Vectors and the Geometry of Space x 2 y 2 z 2 4 x 6 y 8 z 13 47. x 2 4 x 4 y 2 6 y 9 z 2 8 z 16 4 9 16 13 x2 2 y 3 2 z 4 2 16 Interior of sphere of radius 4 centered at 2, 3, 4 . x 2 y 2 z 2 ! 4 x 6 y 8 z 13 48. x 2 4 x 4 y 2 6 y 9 z 2 8 z 16 ! 13 4 9 16 x 2 2 y 3 2 z 4 2 ! 16 Set of all points in space outside the ball of radius 4 centered at 2, 3, 4 . 2 4, 4 2, 3 1 49. (a) v 2, 2, 2 53. 1, 1, 6 2i 2 j 2k (b) v 4 3, 1 2, 6 0 1 1 36 z (c) Unit vector: 5 4 1, 1, 6 −3 2 54. 1 1 1 2 2 3 3 1 4, 7 5 , 3 2 6 38 5, 12, 5 4 0, 0 5, 3 1 25 144 25 5, 12, 5 194 55. z 5 5 12 , , 194 194 194 194 4, 5, 2 4i 5 j 2h (c) 5, 12, 5 y 4 Unit vector: (b) v 1 1 , , 38 38 38 x 50. (a) v 38 〈− 2, 2, 2〉 3 −2 1, 1, 6 5 4 , 3 3, 0 1 1, 0, 1 1, 0, 1 11 2 8 6 〈4, − 5, 2 〉 1, 0, 1 Unit vector: 4 2 2 4 6 2 4 6 x 56. 2 1, 4 2 , 2 4 y 0 3, 3 3, 3 0 51. (a) v 3, 0, 3 3i 3k (b) v 1, 6, 6 Unit vector: 1, 6, 6 73 1 , 73 73 6 6 , 73 73 〈−3, 0, 3〉 5 3 1 , 3 2, 4 3 57. (b) v 4 3 1 (a), (d) 1 1 2 2 3 3 z 5 y 4 4, 1, 1 4i j k (c) v −3 2 −2 1, 6, 6 1 36 36 z (c) 1 1 , 0, 2 2 2 4 x (3, 3, 4) (−1, 2, 3) 3 (0, 0, 0) 2 2 2, 3 3, 4 0 52. (a) v (b) v 4 z 4 −2 (4, 1, 1) 2 4k (c) 0, 0, 4 v 2 4 y x 〈 0, 0, 4 〉 3 2 1 3 x 2 1 1 2 3 y © 2010 Brooks/Cole, Cengage Learning Section 11.2 4 2, 3 1 , 7 2 58. (b) v 6, 4, 9 Space Coordinates and Vectors in Space 62. (a) v 2, 2, 1 6i 4 j 9k (c) v z 4 z (a), (d) 17 3 (− 4, 3, 7) 12 (− 6, 4, 9) 2 9 1 6 3 3 9 9 x (2, −1, − 2) z 59. q1 , q2 , q3 0, 6, 2 8 3, 5, 6 6 4 〉4, − 4, 2〉 3, 1, 8 Q y 4, 4, 2 (b) 2 v y 〉− 2, 2, −1〉 3 x 2 6 60. q1 , q2 , q3 0, 2, 1, 23 , 12 5 2 (c) 1, 43 , 3 Q 6 x 1, 1, 1v 2 y 1 2 z 61. (a) 2 v 2, 4, 4 2 z 1 〉1, −1, 12 〉 5 4 3 〈2, 4, 4〉 2 x y −2 1 1 2 (d) 2 3 y 4 5v 2 5, 5, 5 2 z x (b) v 8 1, 2, 2 〈5, −5, 25 〈 6 4 z 2 3 −3 2 −3 −2 〈− 1, −2, −2〉 1 2 2 3 63. z u v 64. z u v 2w y 1, 2, 3 2, 2, 1 −3 1, 2, 3 2, 2, 1 8, 0, 8 (c) 3v 2 3 , 3, 3 2 65. z z 6, 12, 6 −3 2 −2 66. z 〈 32 , 3, 3〉 −2 5u 3v 12 w 5, 10, 15 6, 6, 3 2, 0, 2 1 2 y 3 3, 4, 20 −2 x 7, 0, 4 2u 4 v w 2, 4, 6 8, 8, 4 4, 0, 4 3 −3 1, 0, 4 y 3 −2 x 6 x −2 −3 (d) 0 v 67. 2z 3u 0, 0, 0 z 3 2 −3 −3 −2 1 −2 〈0, 0, 0〉 1 2 1 −1 3 2 3 2 z1 3 4 z1 7 2 2 z2 6 0 z2 3 2 z3 9 4 z3 z y 2 z1 , z2 , z3 3 1, 2, 3 4, 0, 4 5 2 7 , 3, 5 2 2 −2 x −3 © 2010 Brooks/Cole, Cengage Learning Chapter 11 18 Vectors and the Geometry of Space 68. 2u v w 3z 2 1, 2, 3 2, 2, 1 4, 0, 4 3 z1 , z2 , z3 0, 6, 9 3 z1 , 3z2 , 3 z3 0 3 z1 0 z1 0, 0, 0 0 6 3 z2 0 z2 2 9 3 z3 0 z3 3 0, 2, 3 z 69. (a) and (b) are parallel because 6, 4, 10 2 3, 2, 5 and 2, 43 , 10 3 2 3 77. A 2, 9, 1 , B 3, 11, 4 , C 0, 10, 2 , D 1, 12, 5 JJJK AB 1, 2, 3 JJJK CD 1, 2, 3 JJJK 2, 1, 1 AC JJJK BD 2, 1, 1 JJJK JJJK JJJK JJJK CD and AC BD, the given points Because AB form the vertices of a parallelogram. 3, 2, 5 . 70. (b) and (d) are parallel because i 3i 4 71. z 4j 3 32 k j 98 k 2 12 i 3 1i 2 2 2j 3 2j 3 34 k and 43 k . 3i 4 j 2k (a) is parallel because 6i 8 j 4k 72. z 0, 0, 0 2 z. 7, 8, 3 (b) is parallel because z z 14, 16, 6 . 73. P 0, 2, 5 , Q 3, 4, 4 , R 2, 2, 1 JJJK PQ 3, 6, 9 JJJK PR 2, 4, 6 3 2, 4, 6 3, 6, 9 2 JJJK JJJK So, PQ and PR are parallel, the points are collinear. 74. P 4, 2, 7 , Q 2, 0, 3 , R 7, 3, 9 JJJK PQ 6, 2, 4 JJJK PR 3, 1, 2 3, 1, 2 12 6, 2, 4 JJJK JJJK So, PQ and PR are parallel. The points are collinear. 75. P 1, 2, 4 , Q 2, 5, 0 , R 0, 1, 5 JJJK PQ 1, 3, 4 JJJK 1, 1, 1 PR JJJK JJJK Because PQ and PR are not parallel, the points are not collinear. 76. P 0, 0, 0 , Q 1, 3, 2 , R 2, 6, 4 JJJK PQ 1, 3, 2 JJJK PR 2, 6, 4 JJJK JJJK Because PQ and PR are not parallel, the points are not collinear. 78. A 1, 1, 3 B 9, 1, 2 , C 11, 2, 9 , D 3, 4, 4 JJJK 8, 2, 5 AB JJJK 8, 2, 5 DC JJJK 2, 3, 7 AD JJJK 2, 3, 7 BC JJJK JJJK JJJK JJJK Because AB DC and AD BC , the given points form the vertices of a parallelogram. 79. v v 80. v v 81. v v 82. v v 83. v v 84. v v 0, 0, 0 0 1, 0, 3 109 3j 5k 10 0, 3, 5 0 9 25 34 2i 5 j k 2, 5, 1 4 25 1 30 i 2 j 3k 1, 2, 3 1 49 14 4i 3j 7k 4, 3, 7 16 9 49 74 © 2010 Brooks/Cole, Cengage Learning Section 11.2 2, 1, 2 85. v (a) v v (b) v v 1 2, 1, 2 3 v v c r 87 u u 10 10 u u 3 38 1 3, 2, 5 38 v (b) v 1 1, 0, 0 8 3 2 1 1 , 2 2 1 1 1 , , 3 3 3 3 2, 2, 1 2 3 3 2 2 1 , , 2 3 3 3 7 97. v 2 ¬ªcos r30q j sin r30q k º¼ 4, 6, 2 7 1, 1, 1 2 14 21 7 , , 14 14 14 2 14 3j r k 3, r1 0, z 2 −2 〈0, 1 −2 4, 7.5, 2 y −1 x −2 〈0, 3, − 1〉 5 cos 45qi sin 45qk 98. v 5 2 i k or 2 5 cos 135qi sin 135qk v 90. The terminal points of the vectors tu, u tv and su tv are collinear. 3, 1〉 −1 1 2 u v | 8.732 v | 9.019 3 3 3 , , 3 3 3 96. v u u 10 10 , 2 2 3 3 u 2 u 1 1, 0, 0 8 u | 5.099 0, 95. v 89. (a)–(d) Programs will vary. (e) u v 4 1, 1, 1 3 3 8 v v c 2 4c 2 9 c 2 0, 3, 3 10 0, 94. v 7 4 16 1 6, 0, 8 10 8, 0, 0 v 2 14c 2 93. v 4c 2 4 c 2 c 2 c i 2 j 3k 1 3, 2, 5 38 v v (b) r 73 10 9 4 25 v 49 c 14c 19 7 2 cu 92. 3, 2, 5 87. v (a) 2 9c 1 6, 0, 8 10 v v (b) 88. v 36 0 64 v (a) 9c 6, 0, 8 86. v (a) 3 1 2, 1, 2 3 v v c 2i 2 j k cv 91. 41 4 v Space Coordinates and Vectors in Space 5 2 i k 2 z 5 2 (i + k) 2 su + tv 8 6 5 2 (− i + k) 2 4 2 u + tv su 6 x u 6 y tv v 99. v 3, 6, 3 2v 3 2, 4, 2 4, 3, 0 2, 4, 2 2, 1, 2 © 2010 Brooks/Cole, Cengage Learning Chapter 11 20 Vectors and the Geometry of Space 5, 6, 3 v 100. 10 , 3 2v 3 1, 2, 5 10 , 3 4, 2 108. r r0 x 1 2 y 1 2 z 1 2 x 1 2 y 1 2 z 1 2 4, 2 13 , 6, 3 3 2 4 This is a sphere of radius 2 and center 1, 1, 1 . z 101. (a) 1 v 1 1 u The tension vector T in each wire is y x au bv (b) w ai a b j bk 0, a b a 0, b 0 (c) ai a b j bk a 1, a b w u v 2, b (d) ai a b j bk 1, a b 2, b T 8 h T 1 182 h 2 8 i 2 j 3k L2 182 8L 3 L2 182 Not possible 8. 8 0, 18, h and h So, T i 2j k 24 3 c 0, 18, h where ch T 0 So, a and b are both zero. a L2 182 . 109. (a) The height of the right triangle is h JJJK The vector PQ is given by JJJK PQ 0, 18, h . 182 L2 182 , L ! 18. Q (0, 0, h) 102. A sphere of radius 4 centered at x1 , y1 , z1 . v x x2 y y1 , z z1 x x1 x x1 2 2 y y1 y y1 2 L 2 z z1 2 z z1 2 4 (0, 18, 0) 16 (b) 103. x0 is directed distance to yz-plane. y0 is directed distance to xz-plane. P 18 (0, 0, 0) L 20 25 30 35 40 45 50 T 18.4 11.5 10 9.3 9.0 8.7 8.6 z0 is directed distance to xy-plane. (c) 104. d x x0 105. x2 x1 2 2 y2 y1 y y0 2 2 z2 z1 z z0 2 30 L = 18 2 r2 T=8 0 106. Two nonzero vectors u and v are parallel if u some scalar c. 107. 100 0 cv for x 18 is a vertical asymptote and y horizontal asymptote. B (d) C lim L o18 lim L of A JJJK JJJK JJJK AB BC AC JJJK JJJK JJJK So, AB BC CA 8L L2 182 8L L2 182 (e) From the table, T JJJK JJJK AC CA 0 8 is a f lim L of 8 1 18 L 10 implies L 2 8 30 inches. a will be a vertical 110. As in Exercise 109(c), x f. asymptote. So, lim T r0 o a © 2010 Brooks/Cole, Cengage Learning Section 11.2 JJJK 113. AB JJJK AC JJJK AD 111. Let D be the angle between v and the coordinate axes. cos D i cos D j cos D k v 3 cos D v 1 3 cos D 1 3 3 F 3 1, 1, 1 3 F1 F2 F3 C3 45, 65, 115 0, 0, 500 60C2 45C3 0 65C3 0 C2 C3 Solving this system yields C1 0.6 ( 3 , 3 3 , 3 3 3 ( C3 0.2 500 104 , C 2 69 28 , 23 and 112 . So: 69 F1 | 202.919 N y 0.4 0.2 C2 60, 0, 115 45, 65, 115 , F3 115 C1 21 C1 0, 70, 115 60, 0, 115 , F2 70C1 z 0.4 0, 70, 115 , F1 So: 3 i jk 3 v Space Coordinates and Vectors in Space F2 | 157.909 N 0.4 0.6 F3 | 226.521N x 550 112. 302,500 c2 c 75i 50 j 100k 18,125c 2 16.689655 c | 4.085 F | 4.085 75i 50 j 100k | 306i 204 j 409k 114. Let A lie on the y-axis and the wall on the x-axis. Then A JJJK JJJK AB 8, 10, 6 , AC 10, 10, 6 . 0, 10, 0 , B 10, 0, 6 and 8, 0, 6 , C 10 2, AC 2 59 JJJK JJJK AB AC Thus, F1 420 JJJJK , F2 650 JJJJJK AB AC AB F F1 F2 | 237.6, 297.0, 178.2 423.1, 423.1, 253.9 | 185.5, 720.1, 432.1 F | 860.0 lb 115. d AP 2d BP x2 y 1 2 z 1 2 x2 y2 z 2 2 y 2z 2 0 6 16 1 9 9 9 44 9 2 x 1 2 y 2 2 z2 4 x2 y 2 z 2 2 x 4 y 5 3 x 2 3 y 2 3 z 2 8 x 18 y 2 z 18 16 · 2 1· § 2 8 § 2 2 ¨x x ¸ y 6y 9 ¨z z ¸ 3 9¹ 3 9¹ © © 2 4· § ¨x ¸ y 3 3¹ © 2 1· § ¨z ¸ 3¹ © 2 1· 2 11 §4 Sphere; center: ¨ , 3, ¸, radius: 3¹ 3 ©3 © 2010 Brooks/Cole, Cengage Learning 22 Chapter 11 Vectors and the Geometry of Space Section 11.3 The Dot Product of Two Vectors 1. u 1, 5 3, 4 , v (a) u v 3 1 4 5 (b) u u 33 44 2 (c) u (d) uv v 32 42 2. u 17 25 25 17 1, 5 (e) u 2 v 17, 85 2uv 2 17 4 2 10 3 22 (b) u u 4 4 10 10 116 2 u (d) uv v 42 102 44, 66 2uv 3. u = 6, 4 , v 2 22 26 (b) u u 6 6 4 4 52 2 (d) uv v 2uv 4, 8 , v (a) u v (b) u u 2 (c) u (d) uv v 78, 52 2 26 9. 12 4 4 8 8 4 2 82 80 10. 84, 60 2uv 2 12 (b) u u 2 2 3 3 4 4 29 u (d) uv v (e) u 2v 2 3 2 0, 6, 5 2uv 4 2uv (b) u u 2 2 1 1 1 1 (c) u 2 22 1 (d) uv v v 22 4 2 12 1 6 6 i k 2uv 2i j 2k , v 2 i 3 j 2k (a) u v 2 1 1 3 2 2 5 (b) u u 2 2 1 1 2 2 9 22 12 2 2 (c) u (d) uv v uv u v 12. u cos T 9 5 i 3 j 2k 2uv 8 5 cos 5i 15 j 10k 2 5 10 S 20 3 cos T 40 25 cos 5S 6 500 3 2, 2 1, 1 , v cos T 2 cos T uv u v 29 0, 12, 10 i k 2 1 1 0 1 1 T 2 2 (a) u v 11. u 2 (c) i 2i j k , v uv 0, 6, 5 2 uv v 24 2 0 3 6 4 5 2 (d) 80 (a) u v 2 u uv 12 7, 5 2, 3, 4 , v 1 (c) (e) u 2 v 52 7, 5 4 7 8 5 (e) u 2v 5. u 52 26 3, 2 (e) u 2 v 4. u 2 62 4 1 2 8. u 3, 2 6 3 4 2 u (b) u u (e) u 2 v 44 (a) u v (c) 1 (e) u 2 v 116 22 2, 3 (e) u 2 v (a) u v 7. u (a) u v (c) i 34 2, 3 4, 10 , v i, v 6. u uv u v 0 2 8 0 S 2 2, 1 3, 1 , v uv u v T 5 10 5 1 2 S 4 © 2010 Brooks/Cole, Cengage Learning Section 11.3 3i j, v 13. u uv u v cos T 14. 2i 4 j 20. u 2 10 20 1 5 2 T 1 · § arccos¨ ¸ | 98.1q © 5 2¹ u §S · §S · cos¨ ¸i sin ¨ ¸ j 6 © ¹ ©6¹ v cos T 2 i 2 ª 2 arccos « 1 ¬ 4 T 1, 1, 1 , v 15. u cos T uv u v T arccos T = v 2i 3 j 0 19. u 4, 0 , v Neither j 6k , v i 2j k 2i 3j k , v 2i j k 2, 3, 1 , v 1, 1, 1 cos T , sin T , 1 , sin T , cos T , 0 2, 1, 0 and 0, 0, 0 : 1, 2, 0 2, 1, 0 8 5 13 28. Consider the vector 3, 0, 0 joining 0, 0, 0 and 3, 0, 0 , and the vector 1, 2, 3 joining 0, 0, 0 and 1, 2, 3 : 3, 0, 0 1, 2, 3 9 2 21 1, 1 4 z 0 not orthogonal 3 0 The triangle has an obtuse angle, so it is an obtuse triangle. i 2j k 9 14 6 0 The triangle has a right angle, so it is a right triangle. 8 13 65 u z cv not parallel uv parallel perpendicular to the vector 2, 1, 0 joining 2 § 3 21 · arccos¨¨ ¸¸ | 10.9q © 14 ¹ T 2i 4 j 27. The vector 1, 2, 0 joining 1, 2, 0 and 0, 0, 0 is uv u v cos T 16 v u z cv not parallel uv 0 orthogonal S 2i 3 j k , v 18. u 13 i 2 j , v u z cv not parallel uv 8 z 0 not orthogonal Neither 26. u § 8 13 · arccos¨¨ ¸¸ | 116.3q © 65 ¹ T 32 u z cv not parallel uv 0 orthogonal 2 | 61.9q 3 uv u v cos T u 25. u 2 3 3 2 2 3 0 u v 1, 2 u z cv not parallel uv 0 orthogonal 3i 4 j, v = 2 j 3k 17. u 22. u 24. u 105q 2 3 6 uv u v cos T º 3» ¼ 3 2, 1, 1 3i 2 j k , v 16. u 2 j 2 23. u 2 1 4 4, 3 , v u z cv not parallel uv 0 orthogonal 3 1 i j 2 2 3§ 2 · 1§ 2 · ¨¨ ¸ ¨ ¸ 2 © 2 ¸¹ 2 ¨© 2 ¸¹ 16 3 , 2 2, 18 , v 23 u z cv not parallel uv 0 orthogonal 21. u § 3S · § 3S · cos¨ ¸i sin ¨ ¸ j © 4 ¹ © 4 ¹ uv u v The Dot Product of Two Vectors 3 21 14 29. A 2, 0, 1 , B 0, 1, 2 , C 12 , 32 , 0 JJJK JJJK AB 2, 1, 1 BA 2, 1, 1 JJJK JJJK 5 3 5 AC 2 , 2 , 1 CA , 23 , 1 2 JJJK JJJK 1, 1, 2 BC 12 , 12 , 2 CB 2 2 JJJK JJJK 3 AB AC 5 2 1 ! 0 JJJK JJJK BA BC 1 12 2 ! 0 JJJK JJJK 5 CA CB 43 2 ! 0 4 The triangle has three acute angles, so it is an acute triangle. © 2010 Brooks/Cole, Cengage Learning 24 Chapter 11 Vectors and the Geometry of Space 30. A 2, 7, 3 , B 1, 5, 8 , C 4, 6, 1 JJJK JJJK AB 3, 12, 5 BA 3, 12, 5 JJJK JJJK 2, 13, 4 AC 2, 13, 4 CA JJJK JJJK 5, 1, 9 BC 5, 1, 9 CB JJJK JJJK AB AC 6 156 20 ! 0 JJJK JJJK BA BC 15 12 45 ! 0 JJJK JJJK CA CB 10 13 36 ! 0 32. u i 2 j 2k , u cos D 1 3 cos E 2 3 cos J 2 3 cos E cos J 34. u cos D cos E cos J cos D cos E cos J 36. u cos D cos E cos J 0, 6, 4 , u cos D 0 cos E 3 13 2 13 4 9 4 9 1 52 cos 2 D cos 2 E cos 2 J 25 9 1 35 35 35 1 2 13 0 9 4 13 13 1 a 2 b2 c2 a, b, c , u a a 2 b2 c2 b a 2 b2 c2 c a 2 b2 c2 cos 2 D cos 2 E cos 2 J 35. u 33. u cos J 1 9 35 cos 2 D cos 2 E cos 2 J 3 cos 2 D cos 2 E cos 2 J u 5 35 3 35 1 35 cos D The triangle has three acute angles, so it is an acute triangle. 31. u 5, 3, 1 3, 2, 2 u a2 b2 c2 2 2 2 2 2 2 a b c a b c a b2 c2 2 1 17 3 D | 0.7560 or 43.3q 17 2 E | 1.0644 or 61.0q 17 2 y | 2.0772 or 119.0q 17 4, 3, 5 u 50 5 2 4 D | 2.1721 or 124.4q 5 2 3 E | 1.1326 or 64.9q 5 2 S 5 1 J | or 45q 4 5 2 2 © 2010 Brooks/Cole, Cengage Learning Section 11.3 1, 5, 2 37. u u 30 1 D | 1.7544 or 100.5q 30 5 E | 0.4205 or 24.1q 30 2 J | 1.1970 or 68.6q 30 cos D cos E cos J 2, 6, 1 38. u u 41 2 D | 1.8885 or 108.2q 41 6 E | 0.3567 or 20.4q 41 1 J | 1.4140 or 81.0q 41 cos D cos E cos J 50 | 4.3193 F1 39. F1: C1 80 | 5.4183 F2 F2 : C2 JJJK 41. OA | 4.3193 10, 5, 3 5.4183 12, 7, 5 0 0 D 90q 0 102 102 10 cos J 2 0 102 102 1 45q E J 2 2 cos E 42. F1 C1 0, 10, 10 . 200 F1 C110 2 C1 F1 0, 100 2, 100 2 F2 C2 4, 6, 10 F3 C3 4, 6, 10 F 0, 0, w F F1 F2 F3 4C2 4C3 10 2 and 0 0 C2 100 2 6C2 6C3 W 25 0, 10, 10 cos D F1 F2 F The Dot Product of Two Vectors C3 0 C2 10C2 10C3 100 2 25 2 N 3 C3 800 2 3 108.2126, 59.5246, 14.1336 F | 124.310 lb cos D | 108.2126 D | 29.48q F cos E | 59.5246 E | 61.39q F cos J | 14.1336 J | 96.53q F 43. u 6, 7 , v (a) w1 40. F1: C1 F2 : C2 100 | 6.3246 F2 F §u v· v ¨¨ 2 ¸ ¸ © v ¹ projvu 61 7 4 1, 4 12 42 34 1, 4 2, 8 17 (b) w 2 300 | 13.0931 F1 1, 4 44. u u w1 9, 7 , v (a) w1 projvu 1 32 30 1, 3 10 230.239, 36.062, 65.4655 cos E | 36.062 E | 98.57q F cos J | 65.4655 J | 74.31q F §u v· v ¨¨ v 2 ¸¸ © ¹ 91 7 3 | 13.0931 20, 10, 5 6.3246 5, 15, 0 230.239 cos D | D | 162.02q F (b) w 2 4, 1 1, 3 F1 F2 F | 242.067 lb 6, 7 2, 8 u w1 9, 7 1, 3 3, 9 3, 9 6, 2 © 2010 Brooks/Cole, Cengage Learning 26 Chapter 11 45. u 2i 3 j (a) w1 Vectors and the Geometry of Space 2, 3 , v 5i j §u v· v ¨¨ 2 ¸ ¸ © v ¹ 2 5 31 projvu 52 1 13 5, 1 26 (b) w 2 u w1 2, 3 5, 1 50. u v i 4k 3i 2k (a) w1 2i 3j (a) w1 2, 3 , v 5 1 , 2 2 13 4 2 3, 0, 2 32 22 11 33 22 3, 0, 2 , 0, 13 13 13 1 5 , 2 2 3i 2 j 47. u u w1 (a) w1 51. u v 48. u u w1 2, 1, 1 8 2 2 1 0 1 2, 1, 1 22 1 1 18 2, 1, 1 6, 3, 3 6 (b) w 2 49. u v u w1 2i j 2k 3j 4k (a) w1 projvu 8, 2, 0 6, 3, 3 2, 1, 3 u w1 cos D v1 , cos E v u u v3 . D , E , and J v cv u and v are parallel. §u v· (b) ¨¨ 0 uv 2 ¸ ¸v © v ¹ orthogonal. 57. Yes, uv v v 2 v v 2 §u v· ¨¨ 2 ¸ ¸v © v ¹ 8 6 2, , 25 25 v2 , cos J v v1 , v2 , v3 are 55. See figure 11.29, page 787. 0, 3, 4 33 44 2,1, 2 0, , 25 25 0. The uv . u v are the direction angles. See Figure 11.26. uv 2, 1, 2 2 0 13 2 4 0, 3, 4 32 42 11 33 44 0, 3, 4 0, , 25 25 25 (b) w 2 54. See page 786. Direction cosines of v §u v· 56. (a) ¨ ¨ v 2 ¸¸ v © ¹ §u v· v ¨¨ 2 ¸ ¸ © v ¹ projvu u1v1 u2v2 u3v3 53. (a) and (b) are defined. (c) and (d) are not defined because it is not possible to find the dot product of a scalar and a vector or to add a scalar to a vector. 2, 1, 1 8, 2, 0 , v (a) w1 0, 3, 3 2, 2, 2 u1 , u2 , u3 v1 , v2 , v3 angle T between u and v is given by cos T 2, 3 0 1 3 1 3 1 1, 1, 1 111 6 1, 1, 1 2, 2, 2 3 (b) w 2 20 30 , 0, 13 13 52. The vectors u and v are orthogonal if u v §u v· v ¨¨ 2 ¸ ¸ © v ¹ projvu 33 22 , 0, 13 13 1, 0, 4 1, 1, 1 0, 3, 3 , v u w1 3, 2 2 3 3 2 3, 2 32 22 0 3, 2 0, 0 (b) w 2 §u v· ¨¨ v 2 ¸¸ v © ¹ projvu 5 1 , 2 2 §u v· v ¨¨ 2 ¸ ¸ © v ¹ projvu 3, 0, 2 5, 1 (b) w 2 46. u 1, 0, 4 (c) Obtuse, 2 vu 1 u u v (b) Acute, 0 T S vu u u 2 1 v 58. (a) Orthogonal, T 0 u and v are u u 2 S 2 S 2 T S © 2010 Brooks/Cole, Cengage Learning Section 11.3 1.35, 2.65, 1.85 v uv cos 10qi sin 10q j v 3240 1.35 1450 2.65 2235 1.85 Fv v v 2 w1 $12,351.25 v | 8335.1 cos 10qi sin 10q j w1 | 8335.1 lb 3240, 1450, 2235 1.35, 2.65, 1.85 Increase prices by 4%: 1.04 v 48,000 j 8335.1 cos 10qi sin 10q j New total amount: 1.04 u v 8208.5i 46,552.6 j 1.04 12,351.25 w 2 | 47,270.8 lb JJJK 72. OA 61. (a)–(c) Programs will vary. 10, 5, 20 , v 0, 0, 1 JJJK 20 projv OA 0, 0, 1 0, 0, 20 12 JJJK projv OA 20 u | 9.165 v | 5.745 T 90q 63. Programs will vary. 64. F w1 (b) w 2 $12,845.30 62. Fv v 48,000 sin 10q v This represents the total amount that the restaurant earned on its three products. 60. u 27 48,000 j 71. (a) Gravitational Force F 3240, 1450, 2235 59. u The Dot Product of Two Vectors 73. F 21 63 42 , , 26 26 13 v §1 3 · 85¨¨ i j¸¸ 2 2 © ¹ 10i Fv W 65. Because u and v are parallel, projvu u 66. Because u and v are perpendicular, projvu 74. F 0 v 425 ft-lb 25 cos 20qi sin 20q j 50i Fv W 1250 cos 20q | 1174.6 ft-lb 67. Answers will vary. Sample answer: u 1 3 i j. Want u v 4 2 v 12i 2 j and v 0. 12i 2 j are orthogonal to u. 75. F 1600 cos 25q i sin 25q j v 2000i W Fv | 2,900,184.9 Newton meters (Joules) 68. Answers will vary. Sample answer: u 9i 4 j. Want u v v 4i 9 j and v 4i 9 j JJJK 76. PQ F 69. Answers will vary. Sample answer: u 3, 1, 2 . Want u v v 0, 2, 1 and v 0. 0, 2, 1 are orthogonal to u. 70. Answers will vary. Sample answer: u 4, 3, 6 . Want u v v 0, 6, 3 and v are orthogonal to u. | 2900.2 km-N 0. are orthogonal to u. 0 0, 6, 3 1600 2000 cos 25q W 40i 100 cos 25qi JJJK F PQ 4000 cos 25q | 3625.2 Joules 77. False. 1, 1 , v For example, let u w uw 1, 4 . Then u v 1 4 23 2, 3 and 5 and 5. 78. True w u v wu wv 00 0 so, w and u v are orthogonal. © 2010 Brooks/Cole, Cengage Learning Chapter 11 28 79. Let s Vectors and the Geometry of Space length of a side. v s, s, s v s 3 cos D D x1 3 intersect at 1, 1 , 0, 0 and 1, 1 . (b) y1c cos E E x3 and y2 82. (a) The graphs y1 1 3 s s 3 cos J At 0, 0 , r 1, 0 is tangent to y1 and r 0, 1 is § 1 · arcos¨ ¸ | 54.7q © 3¹ J 1 . 3x 2 3 3 x 2 and y2c tangent to y2 . At 1, 1 , y1c z 3 and y2c 1 . 3 1 1 1, 3 is tangent to y1 , r 3, 1 is tangent 10 10 to y2 . r s v y At 1, 1 , y1c s 3 and y2c s 1 1 1, 3 is tangent to y1 , r 3, 1 is tangent 10 10 to y2 . x 80. 1 . 3 r s, s , s v1 z s 3 v1 y s, s , 0 v2 2 s v2 (1, 1) 1 (s, s, s) T 6 3 arcos −2 (s, s, 0) x 6 | 35.26q 3 x 2 1 −1 (−1, −1) v2 y = x3 (0, 0) y 2 2 2 3 cos T y = x 1/3 2 v1 −1 −2 (c) At 0, 0 , the vectors are perpendicular 90q . x 2 and y2 81. (a) The graphs y1 x1 3 intersect at 0, 0 and 1, 1 . 1 . 3x 2 3 2 x and y2c (b) y1c At 1, 1 , cos T At 0, 0 , r 1, 0 is tangent to y1 and r 0, 1 is tangent to y2 . At 1, 1 , y1c 2 and y2c 1 . 3 (c) At 0, 0 , the vectors are perpendicular 90q . 1 1 1, 2 3, 1 5 10 1 1 45q (b) y1c 2 x and y2c At 1, 0 , y1c 5 50 1 2 tangent to y1 , r (c) At 1, 0 , cos T y = x2 (0, 0) 1 2. r 1 1, 2 is 5 1 1, 2 is tangent to y2 . 5 2 and y2c 2. r 1 1, 2 is 5 1 1, 2 is tangent to y2 . 5 1 1 1, 2 1, 2 5 5 3 . 5 T | 0.9273 or 53.13q (1, 1) y = x 1/3 −1 x2 1 2 x. 2 and y2c At 1, 0 , y1c y 2 1 x 2 and y 2 intersect at 1, 0 and 1, 0 . tangent to y1 , r At 1, 1 , 1 3 . 5 T | 0.9273 or 53.13q 83. (a) The graphs of y1 1 1 1, 2 is tangent to y1 , r 3, 1 is tangent 5 10 to y2 . T 6 10 By symmetry, the angle is the same at 1, 1 . r cos T 1 1 1, 3 3, 1 10 10 1 1 x By symmetry, the angle is the same at 1, 0 . 2 −1 © 2010 Brooks/Cole, Cengage Learning Section 11.3 84. (a) To find the intersection points, rewrite the second equation as y 1 x3. Substituting into the first equation y 1 2 x x6 x x 1, 0 , as indicated in the figure. 86. If u and v are the sides of the parallelogram, then the diagonals are u v and u v, as indicated in the figure. uv 0 2u v 2u v u v u v u v y y = x 3−1 x 1 u v u v u v 2 2 The diagonals are equal in length. 1 −1 29 the parallelogram is a rectangle. 0, 1. There are two points of intersection, 0, 1 and (1, 0) The Dot Product of Two Vectors 2 u+ u − v u (0, −1) x = (y +1) 2 v v −2 z 87. (a) (b) First equation: y 1 2 (0, k, k) x 2 y 1 yc At 1, 0 , yc 1 yc 1 2 y 1 (k, 0, k) 1 . 2 k Second equation: y 1, 0 , yc 3. x 3 1 yc (k, k, 0) x 3x 2 . At y k k k 2 k 2 02 (b) Length of each edge: k 2 k 1 2 1 2, 1 unit tangent vectors to first curve, 5 1 r 1, 3 unit tangent vectors to second curve 10 (c) cos T At 0, 1 , the unit tangent vectors to the first curve JK (d) r1 k, k, 0 k k k , , 2 2 2 k k k , , 2 2 2 JK r2 0, 0, 0 k k k , , 2 2 2 k k k , , 2 2 2 r are r 0, 1 , and the unit tangent vectors to the 2 k k §1· arccos¨ ¸ ©2¹ T second curve are r 1, 0 . (c) At 1, 0 , 1 2, 1 5 cos T T | S 4 1 1, 3 10 5 50 1 . 2 cos T or 45q T At 0, 1 the vectors are perpendicular, T 90q. 88. u 85. In a rhombus, u v . The diagonals are u v and u v. k2 4 2 §k· ¨ ¸ 3 ©2¹ 109.5q cos D , sin D , 0 , v 2 2 60q 1 3 cos E , sin E , 0 The angle between u and v is D E . Assuming that D ! E . Also, u v u v u v u u v v uu vuuv vv u 2 v 2 So, the diagonals are orthogonal. u−v 0 cos D E uv u v cos D cos E sin D sin E 1 1 cos D cos E sin D sin E . u u+v v © 2010 Brooks/Cole, Cengage Learning Chapter 11 30 u v 89. Vectors and the Geometry of Space u v u v 2 u v 91. u v u v 2 u v u u v v u v u u v v = uu vuuv vv uu vuuv vv uv 90. u 2 uv uv v u 2 v 2 2u v v cos T u uv v cos T u v cos T u v because cos T d 1. d u u 2 2u v v 2 d u 2 2 u 2 v v 2 d u v 2 So, u v d u v . 92. Let w1 projvu, as indicated in the figure. Because w1 is a scalar multiple of v, you can write u w1 w 2 cv w 2 . Taking the dot product of both sides with v produces uv cv w 2 v cv v w 2 v c v 2, because w 2 and v are orthogonol. So, u v projvu w1 2 c v c uv and v 2 uv v. v 2 cv u w2 θ v w1 Section 11.4 The Cross Product of Two Vectors in Space 1. j u i i j k 0 1 0 1 0 i k 3. j u k j k 0 1 0 0 0 0 i 1 z z 1 1 k j 1 j 1 i −k x 1 y 1 y x −1 −1 i 2. i u j i j k 1 0 0 i k 4. k u j 0 1 0 0 k k 1 1 1 y −1 −i j j x 1 0 1 1 i i 1 z z 1 j k 0 0 y x −1 © 2010 Brooks/Cole, Cengage Learning Section 11.4 i 5. i u k j k 1 0 0 0 0 1 The Cross Product of Two Vectors in Space 12, 3, 0 , v 11. u j i uuv z −j 1 12 3 0 2 0 5 v uuv i 2 0 5 0 0 54 1 0 v A uuv y −1 1, 1, 2 , v 12. u j k 0 0 1 1 0 0 i j uuv 0, 1, 0 j k 1 1 2 2i k 2, 0, 1 0 1 0 z u uuv 1 2 1 0 2 1 0 u A uuv 1 v uuv k 0 2 1 0 0 1 j 1 0, 0, 54 0 u A uuv x 6. k u i 54k 12 0 3 0 0 54 k i 2, 5, 0 j k u uuv 1 −1 31 i 0 v A uuv 1 y x 2, 3, 1 , v 13. u −1 i i 7. (a) u u v 2 4 0 3 2 5 (b) v u u uu v (c) v u v 0 i 8. (a) u u v uuv j k 20i 10 j 16k 1 1 2 1 u uuv 3 0 5 (c) v u v 9. (a) u u v 1 1 2 1 1 1 0 v A uuv 15i 16 j 9k 10, 0, 6 , v 14. u i uu v 15i 16 j 9k j k 7 3 (b) v u u uu v (c) v u v 0 10 0 6 18i 30 j 30k 18, 30, 30 10 18 0 30 6 30 17i 33j 10k 2 v uuv 5 18 3 30 0 30 5 (b) v u u uu v (c) v u v 0 0 v A uuv 17i 33 j 10k 15. u i j k, v i j 0 u A uuv uuv k 3 2 2 1 j k u uuv i 1 1 5 10. (a) u u v uuv 5, 3, 0 5 3 0 0 i 1, 1, 1 2 1 3 1 1 1 v uuv k i j k 0 u A uuv 2 3 2 (b) v u u j k 2 3 20i 10 j 16k j 1, 2, 1 8i 5 j 17k 1 8i 5 j 17k 2i j k j k 1 1 1 2i 3j k 2, 3, 1 2 1 1 u uuv 1 2 1 3 1 1 0 u A uuv v uuv 2 2 1 3 1 1 0 v A uuv v u u vuu uuv © 2010 Brooks/Cole, Cengage Learning Chapter 11 32 Vectors and the Geometry of Space i 6 j, v 16. u 2i j k i uuv 8, 6, 4 v 10, 12, 2 uuv 60, 24, 156 j k 1 6 2 6i j 13k 0 1 u uuv v uuv u 22. 1 1 6 6 1 uuv uuv 0 u A uuv 2 6 1 1 1 13 1 36 22 0 v A uuv 60, 24, 156 5 2 13 , , 3 22 3 22 3 22 z 17. 6 5 4 3 2 1 4 3 2 23. 3, 2, 5 , v u uu v v u 3.6, 1.4, 1.6 uu v uu v 1 4 6 0.4, 0.8, 0.2 1.8 0.7 , , 4.37 4.37 0.8 4.37 y x 24. 0, 0, u z 18. 6 5 4 3 2 1 uu v v uu v uu v 1 4 3 2 u 4 6 y 3 31 , 0, 2 5 21 ,0 20 0, 1, 0 25. Programs will vary. x 26. 19. 0, 7 ,v 10 uu v 50, 40, 34 z u u v | 72.498 6 5 4 3 2 1 4 3 2 27. v u j v jk 1 u 4 6 i y uu v x j k 0 1 0 0 1 i 1 z 20. 6 5 4 3 2 1 uu v A u i jk v jk uu v 1 1 1 0 1 1 28. v 1 i 1 4 3 2 u 4 6 i y x 21. u uuv uuv uuv 4, 3.5, 7 , v 2.5, 9, 3 2.94 , 11.8961 0.22 , 11.8961 uu v A 73.5, 5.5, 44.75 1.79 11.8961 29. j k j k u 3, 2, 1 v 1, 2, 3 i uu v j uuv 2 k 3 2 1 1 2 A j k 8, 10, 4 3 8, 10, 4 180 6 5 © 2010 Brooks/Cole, Cengage Learning Section 11.4 30. u 2, 1, 0 v 1, 2, 0 j k 2 1 0 1 A 2 uuv 0, 0, 3 3 A A i j k 1 2 3 5 4 JJJK JJJK AB u AD 0 12, 15, 6 144 225 36 32. A 2, 3, 1 , B 6, 5, 1 , C 7, 2, 2 , D 3, 6, 4 JJJK AB 4, 8, 2 JJJK DC 4, 8, 2 JJJK BC 1, 3, 3 JJJK AD 1, 3, 3 JJJK JJJK JJJK JJJK DC and BC AD, the figure ABCD is Because AB a parallelogram. JJJK JJJK AB and AD are adjacent sides JJJK JJJK AB u AD A i j 4 8 2 1 3 JJJK JJJK AB u AD A 1 2 i 1 2 i JJJK JJJK AB u AC A 1 2 0 1 2 k 3 12 5 113, 2, 63 36. A 1, 2, 0 , B 2, 1, 0 , C 0, 0, 0 JJJK JJJK AB 3, 1, 0 , AC 1, 2, 0 i A j k 3 1 0 1 2 JJJK JJJK AB u AC 1 2 5k 0 5 2 37. F 20k JJJK 1 cos 40q j sin 40qk PQ 2 i JJJK PQ u F j k 0 cos 40q 2 sin 40q 2 0 JJJK PQ u F 10 cos 40qi 20 0 10 cos 40q | 7.66 ft-lb z PQ 18, 14, 20 40° F 2 230 y x 38. F 2000 cos 30q j sin 30qk JJJK PQ 0.16k j k 3 2 JJJK JJJK AB u AC j 1 ft 2 324 196 400 3 11 2 13 4 JJJK JJJK 1 16,742 AB u AC 2 3 1 0 6i 2 j 2k 35. A 2, 7, 3 , B 1, 5, 8 , C 4, 6, 1 JJJK JJJK AB 3, 12, 5 , AC 2, 13, 4 k 33. A 0, 0, 0 , B 1, 0, 3 , C 3, 2, 0 JJJK JJJK AB 3, 2, 0 1, 0, 3 , AC JJJK JJJK AB u AC k 2 4 2 JJJK JJJK AB u AC 9 5 j 3 5 4 JJJK JJJK 1 44 AB u AC 2 0 0, 0, 3 i JJJK JJJK AB u AC 31. A 0, 3, 2 , B 1, 5, 5 , C 6, 9, 5 , D 5, 7, 2 JJJK AB 1, 2, 3 JJJK 1, 2, 3 DC JJJK 5, 4, 0 BC JJJK 5, 4, 0 AD JJJK JJJK JJJK JJJK DC and BC AD, the figure ABCD is Because AB a parallelogram. JJJK JJJK AB and AD are adjacent sides JJJK JJJK AB u AD 33 34. A 2, 3, 4 , B 0, 1, 2 , C 1, 2, 0 JJJK JJJK 2, 4, 2 , AC 3, 5, 4 AB i uuv The Cross Product of Two Vectors in Space JJJK PQ u F 6, 9, 2 1000 3j 1000k i j k 0 0 0.16 z 0 1000 3 1000 36 81 4 11 2 PQ 0.16 ft 160 3i JJJK PQ u F 60° F 160 3 ft-lb y x © 2010 Brooks/Cole, Cengage Learning 34 Chapter 11 Vectors and the Geometry of Space 39. (a) Place the wrench in the xy-plane, as indicated in the figure. JJJK The angle from AB to F is 30q 180q T 210q T JJJK 18 inches 1.5 feet OA JJJK OA 3 3 3 i j 4 4 56 ª¬cos 210q T i sin 210q T jº¼ i j y 18 1.5ª¬cos 30q i sin 30q jº¼ F JJJK OA u F 3 3 4 56 cos 210q T in. 30⬚ B A F 30⬚ x O k 100 3 4 56 sin 210q T 0 0 y = 84 sin θ ª42 3 sin 210q T 42 cos 210q T ºk 0 ¬ ¼ ª º ¬42 3 sin 210q cos T cos 210q sin T 42 cos 210q cos T sin 210q sin T ¼k ª § 1 · § ·º 3 3 1 84 sin T k sin T ¸¸ 42¨¨ cos T sin T ¸¸»k «42 3 ¨¨ cos T 2 2 «¬ © 2 ¹ © 2 ¹»¼ 0 JJJK OA u F 84 sin T , 0 d T d 180q JJJK 45q, OA u F (b) When T 84 dT dT 84 cos T 0 when T This is reasonable. When T 40. (a) AC 15 inches BC JJJK AB 12 inches 42 2 | 59.40 90q. 90q, the force is perpendicular to the wrench. 5 feet 4 1 foot F B 5 jk 4 180 cos T j sin T k JJJK AB u F (b) 2 2 84 sin T (c) Let T F 180 12 in. i j k 0 54 1 0 180 cos T 180 sin T 15 in. C A 225 sin T 180 cos T i JJJK AB u F (c) When T (d) If T 225 sin T 180 cos T JJJK 30q, AB u F 225 sin T 180 cos T , T For 0 T 141.34, T c T (e) § 3· §1· 225¨ ¸ 180¨¨ ¸¸ | 268.38 © 2¹ © 2 ¹ 0 for 225 sin T 225 cos T 180 sin T 4 T | 141.34q. 5 JJJK 5 T | 51.34q. AB and F are perpendicular. 4 180 cos T tan T 0 tan T 400 0 180 0 From part (d), the zero is T | 141.34q, when the vectors are parallel. © 2010 Brooks/Cole, Cengage Learning Section 11.4 1 0 0 41. u v u w 0 1 0 1 35 0, 4, 0 48. u 0 0 1 v 3, 0, 0 w 1, 1, 5 0 4 0 1 1 1 42. u v u w The Cross Product of Two Vectors in Space u vuw 1 2 1 0 3 0 0 4 15 60 1 1 5 0 0 1 u vuw V 60 2 0 1 43. u v u w 0 3 0 49. u u v 6 uv 0 0 1 0 u and v are parallel. 0 u and v are orthogonal. So, u or v (or both) is the zero vector. 2 0 0 44. u v u w 1 1 1 50. (a) u v u w 0 vuw u b 0 2 2 1 1 0 45. u v u w 0 1 1 2 (e) u w u v 1 0 1 V u vuw 46. u v u w 1 3 1 0 6 6 u vuw 3, 0, 0 v 0, 5, 1 w 2, 0, 5 51. u u v 72 72 v wuu wuu v h w vuu f u u v w g b c d h and e f g u1 , u2 , u3 v1 , v2 , v3 52. See Theorem 11.8, page 794. 53. The magnitude of the cross product will increase by a factor of 4. 54. From the vectors for two sides of the triangle, and compute their cross product. 0 5 1 x2 x1 , y2 y1 , z2 z1 u x3 x1 , y3 y1 , z3 z1 75 55. False. If the vectors are ordered pairs, then the cross product does not exist. 2 0 5 V ux w v d u2v3 u3v2 i u1v3 u3v1 j u1v2 u2v1 k 3 0 0 u vuw v wuu w vuu 4 0 4 47. u uuv w c 2 So, a V w uuv u vuw 75 56. False. In general, u u v 57. False. Let u Then, u u v 1, 0, 0 , v uuw vuu 1, 0, 0 , w 1, 0, 0 . 0, but v z w. 58. True 59. u u1 , u2 , u3 , v uu v w v1 , v2 , v3 , w w1 , w2 , w3 i j k u1 u2 u3 v1 w1 v2 w2 v3 w3 ª¬u2 v3 w3 u3 v2 w2 º¼ i ª¬u1 v3 w3 u3 v1 w1 º¼ j ª¬u1 v2 w2 u2 v1 w1 º¼ k u2v3 u3v2 i u1v3 u3v1 j u1v2 u2v1 k u2 w3 u3w2 i u1w3 u3w1 j u1w2 u2 w1 k uuv uuw © 2010 Brooks/Cole, Cengage Learning 36 Chapter 11 Vectors and the Geometry of Space u1 , u2 , u3 , v 60. u i cu u v v1 , v2 , v3 , c is a scalar: j k cu1 cu2 cu3 v1 v3 v2 cu2v3 cu3v2 i cu1v3 cu3v1 j cu1v2 cu2v1 k c ª¬ u2v3 u3v2 i u1v3 u3v1 j u1v2 u2v1 k º¼ cuuv 61. u = u1 , u2 , u3 i uuu j k u1 u2 u3 u1 u2 u3 62. u v u w uuv w u2u3 u3u2 i u1u3 u3u1 j u1u2 u2u1 k u1 u2 u3 v1 v2 v3 w1 w2 w3 w uuv w1 w2 w3 u1 u2 u3 v1 v2 v3 0 w1 u2v3 v2u3 w2 u1v3 v1u3 w3 u1v2 v1u2 u1 v2 w3 w2v3 u2 v1w3 w1v3 u3 v1w2 w1v2 uuv 63. u vuw u2v3 u3v2 i u1v3 u3v1 j u1v2 u2v1 k uuv u u2v3 u3v2 u1 u3v1 u1v3 u2 u1v2 u2v1 u3 0 uuv v u2v3 u3v2 v1 u3v1 u1v3 v2 u1v2 u2v1 v3 0 So, u u v A u and u u v A v. 64. If u and v are scalar multiples of each other, u uu v cv u v If u u v u 65. c vu v v sin T 0, then u cv for some scalar c. 0 0. Assume u z 0, v z 0. So, sin T 0, T 0, and u and v are parallel. So, cv for some scalar c. uuv u v sin T If u and v are orthogonal, T 66. u c0 a1 , b1 , c1 , v vuw a2 , b2 , c2 , w i j k a2 b2 c2 a3 b3 c3 i uu vuw uu vuw S 2 and sin T 1. So, u u v u v . a3 , b3 , c3 b2c3 b3c2 i a2c3 a3c2 j a2b3 a3b2 k j k a1 b1 c1 b2c3 b3c2 a3c2 a2c3 a2b3 a3b2 ª¬b1 a2b3 a3b2 c1 a3c2 a2c3 º¼ i ª¬a1 a2b3 ª¬a1 a3c2 a2c3 b1 b2c3 b3c2 º¼k ª¬a2 a1a3 b1b3 c1c3 a3 a1a2 b1b2 c1c2 º¼ i ª¬c2 a1a3 b1b3 c1c3 c3 a1a2 b1b2 c1c2 a3b2 c1 b2c3 b3c2 º¼ j ª¬b2 a1b3 b1b3 c1c3 b3 a1a2 b1b2 c1c2 º¼ j º¼k a1a3 b1b3 c1c3 a2 , b2 , c2 a1a2 b1b2 c1c2 a3 , b3 , c3 uw v uvw © 2010 Brooks/Cole, Cengage Learning Section 11.5 Lines and Planes in Space 37 Section 11.5 Lines and Planes in Space 1 3t , y 1. x 2 t, z (a) 2 5t z x y (b) When t 0, P JJJK PQ 9, 3, 15 1, 2, 2 . When t 10, 1, 17 . 3, Q JJJK The components of the vector and the coefficients of t are proportional because the line is parallel to PQ. (c) y 0 when t 2. So, x 7 and z 12. Point: 7, 0, 12 x 0 when t 13. So, y 7 3 z 0 when t 52 . So, x 15 and y 2 2. x 3t , y 1. 3 and z Point: 0, 73 , 13 12 . 5 Point: 15 , 12 ,0 5 1t 2, z 4. z (a) x 3 2 (a) y 7 8 z 2 7, 23, 0 : Substituting, you have 73 2 2 23 7 8 2 2 0 2 y x Yes, 7, 23, 0 lies on the line. (b) When t Q JJJK PQ 0, P 2, 2, 1 . When t (b) 1, 1, 3 : Substituting, you have 2, 13 2 1 4, 2, 1 . 6, 0, 2 The components of the vector and the coefficients of JJJK t are proportional because the line is parallel to PQ. (c) z 0 when t 1 and y 1. So, x 2. Point: 1, 2, 0 x 0 when t 2 t , y (a) (b) 2 and z y 1 3 4t 3t , z 0, 6, 6 : For x 0 t 2. Then y z 4 2 32 2 t , you have 6 and 6. Yes, 0, 6, 6 lies on the line. 2, 3, 5 : For x t Yes, 1, 1, 3 lies on the line. 5. Point: 0, 0, 0 Direction vector: 3, 1, 5 2 . So, 3 Point: 0, 2, 13 3. x 1 7 3 2 8 1 1 4. Then y not lie on the line. 2 34 2 t , you have 12 z 3. No, 2, 3, 5 does Direction numbers: 3, 1, 5 (a) Parametric: x 3t , y (b) Symmetric: x 3 t, z 5t z 5 y 6. Point: 0, 0, 0 Direction vector: v 5 2, , 1 2 Direction numbers: 4, 5, 2 (a) Parametric: x (b) Symmetric: x 4 4t , y y 5 5t , z 2t z 2 © 2010 Brooks/Cole, Cengage Learning 38 Chapter 11 Vectors and the Geometry of Space 7. Point: 2, 0, 3 13. Points: 7, 2, 6 , 3, 0, 6 Direction vector: 10, 2, 0 2, 4, 2 Direction vector: v Direction numbers: 10, 2, 0 Direction numbers: 2, 4, 2 (a) Parametric: x (b) Symmetric: 2 2t , y x 2 2 3 2t 4t , z 8. Point: 3, 0, 2 Direction vector: v 0, 6, 3 3, y y (b) Symmetric: 2 Direction numbers: 2, 2, 5 3 (a) Parametric: x 9. Point: 1, 0, 1 (b) Symmetric: 3i 2 j k (b) Symmetric: 1 3t , y x 1 3 2t , z 2t , z 25 5t z 25 5 y 2 Direction vector: v 1t k Direction numbers: 0, 0, 1 z 1 1 y 2 Parametric: x 10. Point: 3, 5, 4 2, y 4t 3, z 16. Point: 4, 5, 2 Directions numbers: 3, 2, 1 (a) Parametric: x (b) Symmetric: x 2 2t , y 15. Point: 2, 3, 4 Direction numbers: 3, 2, 1 (a) Parametric: x 6 Direction vector: 10, 10, 25 2t 2t , z z 2, x Direction vector: v 2 2t , z 14. Points: 0, 0, 25 , 10, 10, 0 Direction numbers: 0, 2, 1 (a) Parametric: x 7 10t , y (b) Symmetric: Not possible because the direction number for z is 0. But, you could describe the x 7 y 2 line as ,z 6. 2 10 z 3 2 y 4 (a) Parametric: x Direction vector: v 3 3t , y x 3 3 5 2t , z y 5 2 z 4 j Direction numbers: 0, 1, 0 Parametric: x 4, y 5 t, z 2 17. Point: 2, 3, 4 § 2 2 · 11. Points: 5, 3, 2 , ¨ , , 1¸ © 3 3 ¹ Direction vector: v 3i 2 j k Direction numbers: 3, 2, 1 17 11 i j 3k 3 3 Direction vector: v 4t Parametric: x 2 3t , y 3 2t , z 4t Direction numbers: 17, 11, 9 18. Point 4, 5, 2 (a) Parametric: 5 17t , y x (b) Symmetric: 3 11t , z x 5 17 y 3 11 2 9t z 2 9 12. Points: 0, 4, 3 , 1, 2, 5 (b) Symmetric: x y 4 2 Direction numbers: 1, 2, 1 Parametric: x 4 t , y Direction vector: v Direction numbers: 1, 2, 2 t, y i 2 j k 5 2t , z 2t 19. Point: 5, 3, 4 Direction vector: 1, 2, 2 (a) Parametric: x Direction vector: v 4 2t , z z 3 2 3 2t 2, 1, 3 Direction numbers: 2, 1, 3 Parametric: x 5 2t , y 3 t , z 4 3t 20. Point: 1, 4, 3 Direction vector: v 5i j Direction numbers: 5, 1, 0 Parametric: x 1 5t , y 4 t, z 3 © 2010 Brooks/Cole, Cengage Learning Section 11.5 21. Point: 2, 1, 2 30. L1: v Lines and Planes in Space 2, 1, 2 3, 2, 2 on line Direction vector: 1, 1, 1 L2 : v 4, 2, 4 1, 1, 3 on line Direction numbers: 1, 1, 1 L3: v 1, 12 , 1 2, 1, 3 on line L4 : v 2, 4, 1 3, 1, 2 on line 2 t, y Parametric: x 1 t, z 2t L1 , L2 and L3 have same direction. 22. Point: 6, 0, 8 3, 2, 2 is not on L2 nor L3 Direction vector: 2, 2, 0 1, 1, 3 is not on L3 Direction numbers: 2, 2, 0 6 2t , y Parametric: x 23. Let t v 24. Let t v 3, 1, 2 0: P 1, 2, 0 2t , z 8 other answers possible any nonzero multiple of v is correct 0: P 0, 5, 4 4, 1, 3 other answers possible any nonzero multiple of v is correct 25. Let each quantity equal 0: P 7, 6, 2 v 4, 2, 1 other answers possible any nonzero multiple of v is correct P 3, 0, 3 other answers possible v 5, 8, 6 L2 : v any nonzero multiple of v is correct (i) 4t 2 (iii) t 1 2 s 2, (ii) 3 s 1. u 4i k First line v 2i 2 j k Second line uv u v 81 17 9 6, 4, 8 6, 2, 5 on line From (i) you have s L4 : v 6, 4, 6 not parallel to L1 , L2 , nor L3 L1 and L2 are identical. L1 L2 and is parallel to L3 . 7 3 17 t 1 2 3s 1, (ii) 4t 1 s 1. 2 s 4, and t , and consequently from (ii), and from (iii), t 3. The lines do not intersect. 33. Writing the equations of the lines in parametric form you have x 3t y 2t z 1 t 1 4s y 2 s z 3 3s. 2, 6, 2 3, 0, 1 on line x 2, 1, 3 1, 1, 0 on line For the coordinates to be equal, 3t L3: v 2, 10, 4 1, 3, 1 on line 2t L4 : v 2, 1, 3 5, 1, 8 on line s L2 and L4 are parallel, not identical, because 1, 1, 0 is 7 17 51 32. By equating like variables, you have 6, 2, 5 on line 6, 2, 5 not online 2 s 3, and From (ii), you find that s 0 and consequently, from (iii), t 0. Letting s t 0, you see that equation (i) is satisfied and so the two lines intersect. Substituting zero for s or for t, you obtain the point 2, 3, 1 . 3, 2, 4 6, 4, 8 L2 : v 31. At the point of intersection, the coordinates for one line equal the corresponding coordinates for the other line. So, (i) 3t 1 (iii) 2t 4 L3: v 28. L1: v So, the three lines are parallel, not identical. cos T 26. Let each quantity equal 0: 27. L1: v 39 1 4s and 2 s. Solving this system yields t 11. When 7 17 7 and using these values for s and t, the z coordinates are not equal. The lines do not intersect. not on L4 . 29. L1: v 4, 2, 3 L2 : v 2, 1, 5 L3: v 8, 4, 6 L4 : v 2, 1, 1.5 8, 5, 9 on line 8, 5, 9 on line L1 and L3 are identical. © 2010 Brooks/Cole, Cengage Learning Chapter 11 40 Vectors and the Geometry of Space 34. Writing the equations of the lines in parametric form you have x 2 3t y 2 6t z 3t x 3 2s y 5 s z 2 4s. By equating like variables, you have 2 4 s. 2 3t 3 2s, 2 6t 5 s, 3 t 1, s 1 and the point of intersection is So, t 38. 2 x 3 y 4 z P 0, 0, 1 , Q 2, 0, 0 , R 3, 2, 2 JJJK JJJK (a) PQ 2, 0, 1 , PR 3, 2, 3 JJJK JJJK (b) PQ u PR 3, 6, 1 First line v 2, 1, 4 Second line 2t 3 x 2 s 7 y 5t 2 y s 8 z t 1 z 2s 1 4 966 39. x 2 y 4 z 1 (a) (b) 8 − 4 −8 6 8 y (b) (7, 8, −1) x 5s 12 y 4t 10 y 3s 11 z t z 2s 4 0 0 3, 6, 2 : 2 3 6 3 2 6 0 x = 2t − 1 y = − 4t + 10 z=t 1, 5, 1 : 2 1 5 3 1 6 Point is not in plane Normal vector: n j (3, 2, 2) Normal vector: n 3 k 0, 0, 1 0 x 0 0 y 1 1z 4 y z 4 37. 4 x 3 y 6 z 0 0 6 (a) P 0, 0, 1 , Q 0, 2, 0 , R 3, 4, 1 JJJK JJJK PQ 0, 2, 1 , PR 3, 4, 0 JJJK JJJK (b) PQ u PR 0 42. Point: 0, 1, 4 −3 2 2 0 y 3 3 −2 0, 1, 0 0 x 1 1 y 3 0 z 7 x = − 5s − 12 z y = 3s + 11 z = − 2s − 4 2 6 z 0 41. Point: 1, 3, 7 Point of intersection: 3, 2, 2 x 5, 2, 2 : 5 2 2 4 2 1 Point is in plane 10 2t 1 3 0 2 x 36. x 7, 2, 1 : 7 2 2 4 1 1 40. 2 x y 3 z 6 (a) 10 0 Point is in plane 0 z 4 2, 3, 4 Point is in plane 4 6 2 0 1 variables in the equation. The cross product is parallel to the normal vector. 2 966 483 Point of intersection: 7, 8, 1 2 and s k and R, they are the same to the coefficients of the 4 46 21 35. x Note: t j The components of the cross product are proportional for this choice of P, Q, u uv u v i 3 2 3 5, 4, 2 . cos T 4 i j 3 4 Normal vector: n 2i 3 j k 2 x 3 3 y 2 1z 2 k 0 2 1 43. Point: 3, 2, 2 2x 3y z 4, 3, 6 0 The components of the cross product are proportional to the coefficients of the variables in the equation. The cross product is parallel to the normal vector. 0 10 44. Point: 0, 0, 0 Normal vector: n 3i 2k 3 x 0 0 y 0 2 z 0 0 3 x 2 z 0 © 2010 Brooks/Cole, Cengage Learning Section 11.5 45. Point: 1, 4, 0 2, 1, 2 Normal vector: v 2 x 1 1 y 4 2 z 0 Lines and Planes in Space 50. 1, 2, 3 , Normal vector: v i, 1 x 1 0, x 51. 1, 2, 3 , Normal vector: v k, 1 z 3 0, z 3 52. The plane passes through the three points 0 0, 0, 0 , 0, 1, 0 , 46. Point: 3, 2, 2 3, 0, 1 . The vector from 0, 0, 0 to 0, 1, 0 : u j 4i j 3k 4x 3 y 2 3z 2 0 4 x y 3z 8 The vector from 0, 0, 0 to Normal vector: u u v 3i k 3, 0, 1 : v i j k 0 1 0 47. Let u be the vector from 0, 0, 0 to 2, 0, 3 : u 1 0 2x y 2z 6 Normal vector: v 41 i 3k 3 0 1 2, 0, 3 3z x 0 Let u be the vector from 0, 0, 0 to 3, 1, 5 : v 53. The direction vectors for the lines are u 2i j k , v 3i 4 j k. 3, 1, 5 Normal vectors: u u v i j k 2 0 3 3, 19, 2 Normal vector: u u v 3 1 5 3 x 0 19 y 0 2 z 0 0 3 x 19 y 2 z 0 2, 1, 4 k uu v 3 1 1 0 x y z 5 2 2i j k. Choose any 2i 2 j k i 5, 10, 5 5 1, 2, 1 Normal vector: u u v x 2y z 1 0 x 2 2 z 1 0 0 x 2z 0 2, 2, 1 : v 2i 2k 2i 4 j k k 1 0 1 4i 3 j 4k 1 4 x 1 3 y 2 4 z 3 4x 3 y 4z 3i j 2k Because v and n both lie in the plane P, the normal vector to P is Normal vector: 2 4 i 2k Let n be a vector normal to the plane 2x 3y z 3: n 2i 3 j k Let v be the vector from 1, 2, 3 to j k 55. Let v be the vector from 1, 1, 1 to 49. Let u be the vector from 1, 2, 3 to i j 2 1 1 2 2 1 1x 3 2 y 1 z 2 1, 2, 2 : v 5 i j k point on the line, ª¬ 0, 4, 0 , for exampleº¼ , and let v be the vector from 0, 4, 0 to the given point 2, 2, 1 : 2 1 4 u v 1 x 1 y 5 z 1 v Normal vector: i j 1u 2 2 54. The direction of the line is u Let u be the vector from 3, 1, 2 to 1, 2, 2 : 3, 2, 1 : u k Point of intersection of the lines: 1, 5, 1 1, 2, 3 v j 3 4 1 48. Let u be the vector from 3, 1, 2 to 2, 1, 5 : u i vun i j k 3 1 2 7i j 11k 2 3 1 0 10 7 x 2 1 y 2 11 z 1 0 7 x y 11z 5 © 2010 Brooks/Cole, Cengage Learning 42 Chapter 11 Vectors and the Geometry of Space 56. Let v be the vector from 3, 2, 1 to j 6k 3, 1, 5 : v vun j Because u and v both lie in the plane P, the normal vector to P is: i uuv 7 40i 36 j 6k ª¬ y 2 º¼ ª¬ z 1 º¼ y z 2 20i 18 j 3k 7 j k 0 1 0 20 x 18 y 3z 27 k and let v be the vector from 4, 2, 1 to 3, 5, 7 : v 58. Let u 7 j 7 k 1 7 7 2 20 x 3 18 y 2 3 z 1 j k 1 0 0 k 0 1 6 6 i 7 j 7k 2, 5, 6 : v Let n be the normal to the given plane: n 6i 7 j 2k Because v and n both lie in the plane P, the normal vector to P is: i i and let v be the vector from 1, 2, 1 to 57. Let u 7i 3j 6k Because u and v both lie in the plane P, the normal vector to P is: uuv i j k 0 0 1 3i 7 j 3i 7 j 7 3 6 3x4 7 y 2 0 3x 7 y 59. xy-plane: Let z Then 0 y 26 0. z 4t t 4 x 2 3 4 1 24 7 and −8 6 −6 4 −4 2 10. Intersection: 7, 10, 0 2 xz-plane: Let y Then 0 z 0. 4 Then 0 z z 0 t 1 z 2 3 2 3t , y 32 32 x 52 . 2 31 3 21 Then 2 3t 10 − 1 , 0, − )0, − 12 , − 72 ) ) 3 3 ) 12 and 1 2 1 t , z 3 2t 2 3 32 Intersection: 52 , 52 and 52 , 0 z 5 0, − 3 , 5 3 (5, 0, 5) ( ) 6 4 ( − 52 , − 52 , 0 ) −4 −3 −2 x 5 4 3 −1 2 −1 −2 −3 1 2 y 0. 1 x yz -plane: Let x 13 and 2 3 0. xz-plane: Let y Then t 1 2 72 . Intersection: 0, 12 , 72 1 2 xy -plane: Let z y x y 1 2 60. Parametric equations: x Then 3 2t 2 3 y 10 0. 1 2t t 4 6 8 10 . Intersection: 13 , 0, 10 3 3 2 3 yz -plane: Let x 2 x 2 3t t (−7, 10, 0) 5 and 5. Intersection: 5, 0, 5 0. 0 t 3 2 23 23 y 5 . 3 1 2 3 53 and Intersection: 0, 53 , 5 3 © 2010 Brooks/Cole, Cengage Learning Section 11.5 Lines and Planes in Space 43 61. Let x, y, z be equidistant from 2, 2, 0 and 0, 2, 2 . x 2 2 2 y 2 2 z 0 2 x 0 x2 4x 4 y 2 4 y 4 z 2 y 2 2 z 2 2 x2 y2 4 y 4 z 2 4z 4 4x 8 4z 8 x z 0 Plane 62. Let x, y, z be equidistant from 1, 0, 2 and 2, 0, 1 . x 1 2 y 0 2 z 2 2 2 x2 x2 2 x 1 y 2 z 2 4 z 4 y 0 2 z 1 2 x2 4x 4 y 2 z 2 2 z 1 2 x 4 z 5 4 x 2 z 5 2x 2z 0 x z 0 Plane 63. Let x, y, z be equidistant from 3, 1, 2 and 6, 2, 4 . x3 2 y 1 2 z 2 2 x6 x2 6 x 9 y2 2 y 1 z 2 4z 4 2 y 2 2 2 z 4 x 2 12 x 36 y 2 4 y 4 z 2 8 z 16 6 x 2 y 4 z 14 12 x 4 y 8 z 56 18 x 6 y 4 z 42 0 9 x 3 y 2 z 21 0 Plane 64. Let x, y, z be equidistant from 5, 1, 3 and 2, 1, 6 x 5 2 y 1 2 z 3 2 x 2 x 2 10 x 25 y 2 2 y 1 z 2 6 z 9 n1 n 2 n1 n 2 0. S 2 and the planes are orthogonal. 66. The normal vectors to the planes are n1 3, 1, 4 , n 2 Because n 2 9, 3, 12 . cos T So, T 46 27 § 2 138 · arccos¨¨ ¸¸ | 83.5q. © 207 ¹ cos T 4 138 414 n1 n 2 n1 38 2 n2 14 7 6 42 21 6 . 6 § 6· arccos¨¨ ¸¸ | 65.9q. © 6 ¹ 69. The normal vectors to the planes are n1 n2 67. The normal vectors to the planes are n1 i 3 j 6k , n 2 5i j k , 536 68. The normal vectors to the planes are n1 3i 2 j k , n 2 i 4 j 2k , So, T 3n1 , the planes are parallel, but not equal. n1 n 2 n1 n 2 2 0 Plane 65. The normal vectors to the planes are So, T z 6 0 7 x 2 y 9z 3 1, 4, 7 , cos T 2 4 x 2 y 12 z 41 14 x 4 y 18 z 6 5, 3, 1 , n 2 y 1 x 2 4 x 4 y 2 2 y 1 z 2 12 z 36 10 x 2 y 6 z 35 n1 2 5, 25, 5 . Because n 2 1, 5, 1 and 5n1 , the planes are parallel, but not equal. 2 138 . 207 70. The normal vectors to the planes are n1 cos T So, T 2, 0, 1 , n 2 n1 n 2 n1 n 2 S 2 4, 1, 8 , 0 and the planes are orthogonal. © 2010 Brooks/Cole, Cengage Learning Chapter 11 44 Vectors and the Geometry of Space 71. 4 x 2 y 6 z 12 5 77. x z z 3 6 4 (0, 0, 2) 5 (0, 6, 0) 4 6 (3, 0, 0) x 6 72. 3x 6 y 2 z (5, 0, 0) y 8 78. z 6 z z 3 y 5 x 8 (0, 0, 3) (0, 1, 0) 3 2 2 (2, 0, 0) x y 3 5 73. 2 x y 3 z 4 79. 2 x y z z (0, − 4, 0) ( 6 z 3 0, 0, 4 3 y 5 x (2 6 2 4 2 4 6 y x −4 −1 y −6 (2, 0, 0) 3 x Generated by Maple 74. 2 x y z 80. x 3z 4 3 z 4 z (0, 0, 4) 2 (0, −4, 0) 1 2 −4 3 1 1 2 y y (2, 0, 0) Generated by Mathematica x 75. x z 2 x 1 3 1 81. 5 x 4 y 6 z 8 6 0 z z −2 8 (0, 0, 6) (6, 0, 0) 1 −1 2 y 8 8 x 76. 2 x y y x Generated by Maple 82. 2.1x 4.7 y z 3 8 0 z z 3 8 2 1 (4, 0, 0) (0, 8, 0) 8 x 8 y 1 x 2 y Generated by Mathematica © 2010 Brooks/Cole, Cengage Learning Section 11.5 83. P1: n 15, 6, 24 0, 1, 1 not on plane P2 : n 5, 2, 8 0, 1, 1 on plane P3: n 6, 4, 4 P4 : n 3, 2, 2 i n 2 u n1 3, 5, 2 P3: n 8, 4, 12 P4 : n 4, 2, 6 P2 : n 0 14 2 x 4, 0, 0 not on plane Substituting 2 for x in the second equation, you have 4 y 2 z 2 or z 2 y 1. Letting y 1, a point of intersection is 2, 1, 1 . 3, 2, 5 1, 1, 1 on plane 6, 4, 10 1, 1, 1 not on plane 1 t, z 2, y x 1 2t i j 5k 6i 3 j k , n 2 92. (a) n1 n1 n 2 n1 n 2 cos T 1, 1, 1 on plane 4 46 27 60, 90, 30 or 2, 3, 1 9 on plane 0, 0, 10 P2 : n 6, 9, 3 or 2, 3, 1 P3: n 20, 30, 10 or 2, 3, 1 0, 0, 23 on plane P4 : n 12, 18, 6 or 2, 3, 1 0, 0, 5 6 n1 u n 2 6 3 1 on plane 16, 31, 3 . 1 1 5 Find a point of intersection of the planes. z 6x 3 y z 5 6x 3y 5 5 6 x 6 y 30 z 30 3 y 31z 35 x y 5z P1 , P2 , and P3 are parallel. x c, 0, 0 , 0, c, 0 , and 0, 0, c . y 0, z 1 z is a plane parallel to c x-axis and passing through the points 0, 0, 0 and 0 y 0, 1, c . 4 4, 9, 2 . 9 31t , z 2 3t 1 t, y 2 Substituting t t, z 1 2t · t ¸ 1 2t ¹ 12, t 3 2 3 2 into the parametric equations for the line you have the point of intersection 2, 3, 2 . The line does not lie in the plane. 90. x cz 0 If c 0, z 0 is the yz-plane. If c z 0, x cz cos T 4 16t , y 3 2 §1 · § 3 2¨ t ¸ 2¨ ©2 ¹ © 2 x 0 is xy-plane. If c z 0, cy z 91. (a) n 1 2 x 93. Writing the equation of the line in parametric form and substituting into the equation of the plane you have: c Each plane is parallel to the z-axis. 89. If c 9, z Let y 87. Each plane passes through the points 88. x 2 138 207 T | 1.6845 | 96.52q (b) The direction vector for the line is i j k P4 and is parallel to P2 . 86. P1: n 14 7x P1 and P4 are identical. P1 7 j 2k . 2 1 x 4 y 2z 4, 0, 0 on plane 75, 50, 125 P4 : n 2 6x 4 y 2z 3, 2, 5 P3: n k Find a point of intersection of the planes. P1 and P3 are parallel. 85. P1: n j 1 4 3 2, 1, 3 P2 : n 45 (b) The direction vector for the line is Planes P1 and P2 are parallel. 84. P1: n Lines and Planes in Space 0 is a plane parallel to the y-axis. 3i 2 j k and n 2 n1 n 2 n1 n 2 i 4 j 2k 7 14 T | 1.1503 | 65.91q 21 6 6 94. Writing the equation of the line in parametric form and substituting into the equation of the plane you have: x 1 4t , y 2 1 4t 3 2t Substituting t 2t , z 5, t 3 6t 1 2 12 into the parametric equations for the line you have the point of intersection 1, 1, 0 . The line does not lie in the plane. © 2010 Brooks/Cole, Cengage Learning 46 Chapter 11 Vectors and the Geometry of Space 95. Writing the equation of the line in parametric form and substituting into the equation of the plane you have: x 1 3t , y 1 2t , z 2 1 3t 3 1 2t 3t 10, 1 10, contradiction So, the line does not intersect the plane. 96. Writing the equation of the line in parametric form and substituting into the equation of the plane you have: x 4 2t , y 1 3t , z 5 4 2t 3 1 3t 2 5t 17, t 97. Point: Q 0, 0, 0 Plane: 2 x 3 y z 12 Normal to plane: n 0 2, 3, 1 Point in plane: P 6, 0, 0 JJJK 6, 0, 0 Vector PQ JJJK PQ n 12 D n 14 Normal to plane: n 0 5, 1, 1 2 2 1, 3, 4 and 101. The normal vectors to the planes are n1 n2 1, 3, 4 . Because n1 n 2 , the planes are parallel. Choose a point in each plane. P 10, 0,0 is a point in x 3 y 4 z 10. Q 6, 0, 0 is a point in x 3 y 4 z JJJK PQ n1 JJJK PQ 4, 0, 0 , D n1 6. 4 26 4, 4, 9 . Because n1 3 n 2 , the planes are parallel. Choose a point in each plane. P 5, 0, 3 is a point in 4 x 4 y 9 z 7. Q 0, 0, 2 is a point in 4 x 4 y 9 z JJJK PQ 5, 0, 1 JJJK PQ n1 11 11 113 D 113 n1 113 18. 3, 6, 7 and n2 6, 12, 14 . Because n 2 2n1 , the planes are parallel. Choose a point in each plane. P 0, 1, 1 is a point in 3 x 6 y 7 z 5 2, 1, 1 Point in plane: P 0, 0, 5 JJJK 2, 8, 1 Vector: PQ JJJK PQ n 11 11 6 D 6 n 6 2 26 13 4, 4, 9 and 103. The normal vectors to the planes are n1 99. Point: Q 2, 8, 4 Normal to plane: n 3, 4, 5 Point in plane: P 2, 0, 0 JJJK Vector PQ: 1, 3, 1 JJJK PQ n 20 D n 50 n2 6 14 7 Point in plane: P 0, 9, 0 JJJK Vector PQ 0, 9, 0 JJJK PQ n 9 D n 27 Plane: 2 x y z Normal to plane: n 0 102. The normal vectors to the planes are n1 98. Point: Q 0, 0, 0 Plane: 5 x y z 9 Plane: 3x 4 y 5 z 6 0 Substituting t 0 into the parametric equations for the line you have the point of intersection 4, 1, 2 . The line does not lie in the plane. 100. Point: Q 1, 3, 1 1. § 25 · Q¨ , 0, 0 ¸ is a point in 6 x 12 y 14 z © 6 ¹ JJJK PQ D 25 , 1, 1 6 JJJK PQ n1 27 2 n1 94 27 2 94 25. 27 94 188 © 2010 Brooks/Cole, Cengage Learning Section 11.5 104. The normal vectors to the planes are n1 n2 2, 0, 4 . Because n1 2, 0, 4 and n 2 , the planes are 4. Q 5, 0, 0 is a point in 2 x 4 z JJJK PQ n1 JJJK 3, 0, 0 , D PQ n1 10. 6 20 3 5 5 line. JJJK PQ 3, 2, 3 i JJJK PQ u u j JJJK PQ u u 2, 9, 8 149 17 u on the line let t JJJK PQ 1, 1, 2 107. u 2533 17 u JJJK PQ u u u 206 10 103 5 j k 1, 2, 1 . 3, 6, 3 . 3v1 , the lines are parallel. i j k 2 2 0 5 3 v2 396 54 22 3 110. The direction vector for L1 is v1 6, 9, 12 . The direction vector for L2 is v 2 4, 6, 8 . 3v , 2 2 Because v1 1, 1, 2 is the direction vector for the line. 6, 6, 18 3 6 3 JJJK PQ u v 2 36 36 324 9 36 9 0, 2, 1 1 1 2 515 5 v 2 is the direction vector for L2 . JJJK PQ u v 2 D 66 3 the lines are parallel. 0 in the parametric equations for the line . Let Q 3, 2, 1 to be a point on L1 and P 1, 3, 0 a point JJJK on L2 . PQ 4, 5, 1 . 3, 1, 3 u Q 2, 1, 3 is the given point, and P 1, 2, 0 is on the line i JJJK PQ u u D 14, 1, 3 142 1 9 9 1 0. 2 1 2 JJJK PQ u u 5 u 9 let t JJJK PQ 1 Let Q 2, 3, 4 to be a point on L1 and P 0, 1, 4 a point JJJK on L2 . PQ 2, 0, 0 . Q 1, 2, 4 is the given point, and P 0, 3, 2 is a point D 4 3 Because v 2 2, 1, 2 is the direction vector for the line. i 1 2 0 The direction vector for L2 is v 2 k 3 2 3 JJJK PQ u u j k 109. The direction vector for L1 is v1 4 0 1 106. u i 4, 0, 1 is the direction vector for the line. Q 1, 5, 2 is the given point, and P 2, 3, 1 is on the D 0, 3, 1 is the direction vector for the line. JJJK PQ u u D 105. u 47 Q 4, 1, 5 is the given point, and P 3, 1, 1 is on the line. JJJK PQ 1, 2, 4 parallel. Choose a point in each plane. P 2, 0, 0 is a point in 2 x 4 z 108. u Lines and Planes in Space j k 3 1 3 1 JJJK PQ u u u i JJJK PQ u v 2 1, 9, 4 j k 4 5 1 4 1 2 1 81 16 11 4 v 2 is the direction vector for L2 . 98 6 7 3 7 3 3 D 34, 36, 44 6 8 JJJK PQ u v 2 v2 342 362 442 16 36 64 4388 116 1097 29 31813 29 © 2010 Brooks/Cole, Cengage Learning Chapter 11 48 Vectors and the Geometry of Space 115. (a) The planes are parallel if their normal vectors are parallel: a1 , b1 , c1 t a2 , b2 , c2 , t z 0 111. The parametric equations of a line L parallel to v a, b, c, and passing through the point P x1 , y1 , z1 are x x1 at , y y1 bt , z The symmetric equations are x x1 y y1 z z1 . a b c (b) The planes are perpendicular if their normal vectors are perpendicular: a1 , b1 , c1 a2 , b2 , c2 0 z1 ct. 116. Yes. If v1 and v 2 are the direction vectors for the lines L1 and L2 , then v v1 u v 2 is perpendicular to both L1 and L2 . 112. The equation of the plane containing P x1 , y1 , z1 and a, b, c is having normal vector n a x x1 b y y1 c z z1 0. 117. An equation for the plane is x y z 1 bcx acy abz abc a b c For example, letting y z 0, the x-intercept is You need n and P to find the equation. 113. Simultaneously solve the two linear equations representing the planes and substitute the values back into one of the original equations. Then choose a value for t and form the corresponding parametric equations for the line of intersection. a, 0, 0 . 118. (a) Matches (iii) (b) Matches (i) 114. x a: plane parallel to yz-plane containing a, 0, 0 (c) Matches (iv) y b: plane parallel to xz-plane containing 0, b, 0 (d) Matches (ii) z c: plane parallel to xy-plane containing 0, 0, c 119. Sphere x 3 2 y 2 2 z 5 2 16 120. Parallel planes 4x 3y z 121. 0.92 x 1.03 y z (a) 0.02 z 10 r 4 n 10 r 4 26 0.02 0.92 x 1.03 y Year 1999 2000 2001 2002 2003 2004 2005 x 1.4 1.4 1.4 1.6 1.6 1.7 1.7 y 7.3 7.1 7.0 7.0 6.9 6.9 6.9 z 6.2 6.1 5.9 5.8 5.6 5.5 5.6 Model z 6.25 6.05 5.94 5.76 5.66 5.56 5.56 The approximations are close to the actual values. (b) According to the model, if x and z decrease, then so will y. (Answers will vary.) 122. On one side you have the points 0, 0, 0 , 6, 0, 0 , and 1, 1, 8 . n1 i j k 6 0 0 48 j 6k 1 1 8 On the adjacent side you have the points 0, 0, 0 , 0, 6, 0 , and 1, 1, 8 . n2 i j k 0 6 0 z (− 1, − 1, 8) 48i 6k 6 1 1 8 4 cos T n1 n 2 n1 n 2 36 2340 1 65 2 6 T 1 arccos | 89.1q 65 x (0, 0, 0) 4 (0, 6, 0) 6 y (6, 0, 0) © 2010 Brooks/Cole, Cengage Learning Section 11.5 8 t , z1 6 t ; y1 123. L1: x1 (a) At t 49 3t 2 t , z2 1 t , y2 L2 : x2 Lines and Planes in Space 2t 0, the first insect is at P1 6, 8, 3 and the second insect is at P2 1, 2, 0 . 2 6 1 Distance x1 x2 (b) Distance 82 2 2 30 y1 y2 2 2 70 | 8.37 inches z1 z2 2 2 52 6 2t (c) The distance is never zero. (d) Using a graphing utility, the minimum distance is 5 inches when t 3t 2 5t 2 30t 70, 0 d t d 10 3 minutes. 15 0 15 0 124. First find the distance D from the point Q 3, 2, 4 to the plane. Let P 4, 0, 0 be on the plane. n D 2, 4, 3 is the normal to the plane. JJJK PQ n 7, 2, 4 2, 4, 3 14 8 12 4 16 9 n 29 18 29 18 29 29 The equation of the sphere with center 3, 2, 4 and radius 18 29 29 is x 3 125. The direction vector v of the line is the normal to the plane, v 3, 1, 4 . The parametric equations of the line are 5 3t , y x 4 t, z 3 4t. 7 26t t 4 13 ,4 4, 13 4 13 126. The normal to the plane, n to the direction vector v 2 324 . 29 127. The direction vector of the line L through 1, 3, 1 and 3, 4, 2 is v 2, 1, 1 . Substituting these equations into the equation of the plane gives 1 2t 3 t 1 t 2 4t 3 t 34 . 4 13 77 , 48 , 13 13 23 13 2, 1, 3 is perpendicular 2, 4, 0 of the line because 4, 1, 4 2, 1, 3 1 2 34 , 3 34 , 1 19 14 19 14 14 3 4 12 , 94 , 14 128. The unknown line L is perpendicular to the normal vector n 1, 1, 1 of the plane, and perpendicular to the direction 1, 1, 1 . So, the direction vector of L is vector u 0. So, the plane is parallel to the line. To find the distance between them, let Q 2, 1, 4 be on the line and JJJK P 2, 0, 0 on the plane. PQ 4, 1, 4 . JJJK PQ n D n 4 19 z 4 Point of intersection: 3 4 2, 1, 3 2, 4, 0 2 8 Point of intersection: 53 y 2 The parametric equations for L are x 1 2t , y 3 t , z 1 t. To find the point of intersection, solve for t in the following equation: 3 5 3t 4 t 4 3 4t 2 i v j k 1 1 1 2, 2, 0 . 1 1 1 The parametric equations for L are x z 2. 1 2t , y 2t , 129. True 130. False. They may be skew lines. See Section Project © 2010 Brooks/Cole, Cengage Learning Chapter 11 50 Vectors and the Geometry of Space 131. True 132. False. The lines x t, y 0, z 1 and x y t , z 1 are both parallel to the plane z the lines are not parallel. 0, 0, but 133. False. Planes 7 x y 11z 5 and 5 x 2 y 4 z 1 are both perpendicular to plane 2 x 3 y z 3, but are not parallel. 134. True. Section 11.6 Surfaces in Space 1. Ellipsoid 10. x 2 z 2 Matches graph (c) 2. Hyperboloid of two sheets 25 The y-coordinate is missing so you have a right circular cylinder with rulings parallel to the y-axis. The generating curve is a circle. Matches graph (e) z 6 3. Hyperboloid of one sheet 4 Matches graph (f ) 8 x 4. Elliptic cone 8 y Matches graph (b) x2 11. y 5. Elliptic paraboloid Matches graph (d) 6. Hyperbolic paraboloid The z-coordinate is missing so you have a parabolic cylinder with rulings parallel to the z-axis. The generating curve is a parabola. Matches graph (a) z 4 5 7. y Plane is parallel to the xz-plane. z 4 3 2 3 x 3 2 −2 4 y −3 1 3 12. y 2 z 1 2 −1 x 1 6 2 −2 4 5 −3 y The x-coordinate is missing so you have a parabolic cylinder with the rulings parallel to the x-axis. The generating curve is a parabola. z 2 8. z Plane is parallel to the xy-plane. z 2 3 −2 2 2 y x 3 2 x −1 2 3 −2 13. 4 x 2 y 2 y −3 9. y 2 z 2 9 The x-coordinate is missing so you have a right circular cylinder with rulings parallel to the x-axis. The generating curve is a circle. z z 4 3 −3 7 6 x 4 x2 y2 1 1 4 The z-coordinate is missing so you have an elliptic cylinder with rulings parallel to the z-axis. The generating curve is an ellipse. 4 y 2 3 x 2 3 y © 2010 Brooks/Cole, Cengage Learning Section 11.6 14. y 2 z 2 Surfaces in Space 51 (b) From 0, 10, 0 : 16 z y2 z2 1 16 16 The x-coordinate is missing so you have a hyperbolic cylinder with rulings parallel to the x-axis. The generating curve is a hyperbola. y z 6 (c) From 10, 10, 10 : 4 z 2 −4 2 6 x 4 3 y 6 −4 −6 3 3 y x sin y 15. z The x-coordinate is missing so you have a cylindrical surface with rulings parallel to the x-axis. The generating curve is the sine curve. 19. z x2 y2 z2 1 4 1 1 Ellipsoid 2 z 2 1 x y 1 4 xy-trace: y 3 2 1 ellipse 2 3 xz-trace: x 2 z 2 4 x 2 ey 16. z z 20. x2 y2 z2 16 25 25 15 xy-trace: 10 5 3 2 x y 17. z 3 4 y (b) You are viewing the paraboloid from above, but not on the z-axis: 10, 10, 20 (c) You are viewing the paraboloid from the z-axis: 0, 0, 20 (d) You are viewing the paraboloid from the y-axis: 0, 20, 0 18. y z 2 x2 y2 16 25 4 3 2 1 ellipse 1 5 2 x z xz-trace: 16 25 1 ellipse yz-trace: y 2 z 2 25 circle 21. 16 x 2 y 2 16 z 2 4 3 2 1 1 2 3 4 5 x 4 x2 4 4 2 y 4z2 4 1 Hyperboloid of one sheet xy-trace: 4 x 2 y2 4 1 hyperbola xz-trace: 4 x 2 z 2 yz-trace: 2 z 5 2 (a) You are viewing the paraboloid from the x-axis: 20, 0, 0 z 1 circle y2 4z2 4 1 hyperbola z (a) From 10, 0, 0 : 3 2 −3 −2 y 2 3 x −2 y −2 1 2 1 2 2 x 1 ellipse Ellipsoid 20 x 2 y z 4 1 yz-trace: The x-coordinate is missing so you have a cylindrical surface with rulings parallel to the x-axis. The generating curve is the exponential curve. 1 circle 2 3 y −3 © 2010 Brooks/Cole, Cengage Learning y Chapter 11 52 Vectors and the Geometry of Space 22. 8 x 2 18 y 2 18 z 2 9 y2 9z 2 4x2 25. x 2 y z 2 2 1 0 Elliptic paraboloid xy-trace: y xy-trace: 9 y 4 x xz-trace: x z yz-trace: 9 y 9 z 2 2 1 hyperbola 2 2 1 hyperbola −3 1 2 0, 1 2 3 3 x 26. z 1 y 2 y −3 1: x 2 z 2 1 2 −2 4 −2 z2 yz-trace: y y z 2 point 0, 0, 0 1 circle xz-trace: 9 z 2 4 x 2 x 3 2 Hyperboloid of one sheet 2 z z x2 4 y 2 4 2 Elliptic paraboloid 1 2 x xy-trace: point 0, 0, 0 y 23. 4 x 2 y 2 z 2 1 xz-trace: z x 2 parabola yz-trace: z 4 y 2 parabola 3 1 2 1 x Hyperboloid of two sheets xy-trace: 4 x 2 y 2 1 hyperbola yz-trace: none xz-trace: 4 x 2 z 2 hyperbola 1 z 27. x 2 y 2 z z Hyperbolic paraboloid xy-trace: y rx xz-trace: z x2 yz-trace: z y2 3 y x 0 r1: z 3 2 3 3 2 x y 1 x2 2 3 y 28. 3z −3 y2 4 24. z 2 x 2 y2 x2 Hyperbolic paraboloid xy-trace: y rx 1 Hyperboloid of two sheets xz-trace: z 1 x2 3 yz-trace: z 13 y 2 xy-trace: none xz-trace: z 2 x 2 1 hyperbola y2 yz-trace: z 4 1 hyperbola 2 r 10: z x2 y2 9 36 1 ellipse 29. z 2 5 5 y 10 x z 1 Elliptic cone −3 xy-trace: point 0, 0, 0 xz-trace: z rx yz-trace: z r When z 1 x 3 y −1 y 3 r1, x 2 x 30. x 2 y 10 y2 9 x2 z 5 z 28 24 20 y2 9 1 ellipse 2 y2 2z2 z 5 Elliptic Cone xy-trace: x r 2y xz-trace: x r 5 x 2z 5 y yz-trace: point: 0, 0, 0 © 2010 Brooks/Cole, Cengage Learning Section 11.6 16 x 2 9 y 2 16 z 2 32 x 36 y 36 31. 16 x 2 x 1 9 y 4 y 4 16 z 2 2 16 x 1 2 9 y 2 x 1 1 2 2 0 2 2 1 16 z 2 y 2 16 9 53 z 36 16 36 2 Surfaces in Space 16 1 2 z2 1 2 x 1 4 −2 y Ellipsoid with center 1, 2, 0 . 9 x 2 y 2 9 z 2 54 x 4 y 54 z 4 32. 0 9 x2 6x 9 y 2 4 y 4 9 z 2 6 z 9 z 81 81 10 5 9x 3 2 y 2 2 9z 3 2 0 15 10 15 x Elliptic cone with center 3, 2, 3 . 20 25 y −15 2 cos x 33. z § 2· ¨ ¸ ©z¹ 37. x 2 y 2 z 3 r y 3 4 x2 z2 y z 2π x 2 4 x 2 0.5 y 2 34. z z 4 4 4 x e z 38. x 2 y 2 −2 1 2 ln x 2 y 2 1 2 x y z y z 35. z x 7.5 y 2 2 r z 2 −4 4 −3 −3 −4 x 2 7.5 y 2 z 4 4 y x 2 −2 −2 2 10 39. z 2 y x xy z 12 36. 3.25 y z 2 z x2 z 2 3.25 y x z 2 r 3.25 y x −8 2 −4 8 8 y x 2 1 −1 1 2 2 −1 3 y x −2 © 2010 Brooks/Cole, Cengage Learning Chapter 11 54 Vectors and the Geometry of Space x 8 x2 y 2 40. z 44. z 4 x2 y 4 x2 z 0, y x 0, z 4 5 2 2 2 4 4 x y 4 3 x 41. 6 x 4 y 6 z 2 36 6z 2 4 y 2 6 x 2 36 3z 2 2 y 2 3 x 2 18 2 2 r z 1 3 2 y 2 3 x 2 18 4 45. x 2 y 2 y 1 x z 2 0 z z 4 z 3 6 2 4 −6 2 2 x 0 z y 6 −2 2 3 x −4 y 3 −6 4 x2 y2 46. z 42. 9 x 2 4 y 2 8 z 2 r z 9 x2 8 1 y2 2 72 y 2z 9 z 0 z z 3 20 −3 10 3 20 20 x x y 47. x 2 z 2 x z 2 z 2 z 2 x2 y 2 2 x2 y 2 1 43. 2 y 3 10 10 x2 y 2 2 48. x 2 z 2 x z 2 2 49. x 2 y 2 2 ª¬r y º¼ and z r y r2 r y 3 y; so, r z z ; so, 2 y ; so, 4 y. 2 ª¬r y º¼ and z 2 9y . 2 ª¬r z º¼ and y z x2 y2 3 z2 , 4x2 4 y 2 4 z 2. 2 50. y 2 z 2 −2 y2 z2 −2 2 x 1 2 2 ª¬r x º¼ and z 1 4 r x 1 2 4 x2 , x2 4 y 2 4z 2 4 x 2 ; so, 4. y © 2010 Brooks/Cole, Cengage Learning Section 11.6 2 51. y 2 z 2 ª¬r x º¼ and y y2 z2 §2· 2 2 ¨ ¸ ,y z © x¹ 2 52. x y x y 2 2 2 2 ª¬r z º¼ and y 2 ; so, x r x (a) When z e ; so, r z 2z e . 53. x 2 y 2 2 z x2 y2 0 2z Major axis: 2 8 4 2 Minor axis: 2 4 4 c 2 2 a b ,c 2 2 z or x cos 2 y Equation of generating curve: x cos y or z 56. The trace of a surface is the intersection of the surface with a plane. You find a trace by setting one variable equal to a constant, such as x 0 or z 2. 2 Major axis: 2 32 8 2 Minor axis: 2 16 8 c 2 32 16 4 0 218S 3 x2 4, 2 4 you have z §1· 4¨ ¸ z 4 © 2¹ ª 4 x3 x º » 2S « 3 4 ¼0 ¬ 4 x2 y2 2 4 62. z x 2 is a cylinder. 2S ³ x 4 x x 2 dx 16, c Foci: 0, r 4, 8 x 2 is a parabola. 4 4 x2 y2 , or 2 4 8 we have 8 (a) When y 57. See pages 814 and 815. 59. V 4, c x2 y2 . 16 32 1 cos y 55. Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and intersecting C is called a cylinder. C is called the generating curve of the cylinder, and the parallel lines are called rulings. In three-space, z 2 2z (b) When z 58. In the xz-plane, z 2 Foci: 0, r 2, 2 Equation of generating curve: y 54. x 2 z 2 x2 y2 , or 2 4 2 we have 2 x2 y2 4 8 1 z 55 x2 y2 2 4 61. z 4 . x2 Surfaces in Space x2. 9· § Focus: ¨ 0, 4, ¸ 2¹ © (b) When x z z 4 2 you have 2 2 y ,4 z 2 4 y 2. Focus: 2, 0, 3 3 63. If x, y, z is on the surface, then 2 h ( x) 1 y 2 2 x2 y 2 2 z2 x 1 2 3 y2 4 y 4 4 p ( x) x2 z 2 S 2S ³ y sin y dy 60. V S z 1.0 0.5 2S 2 64. If x, y, z is on the surface, then y π 2 z2 x2 y 2 z 4 z2 x 2 y 2 z 2 8 z 16 x2 y2 2 8 8 Elliptic paraboloid shifted up 2 units. Traces parallel to xy-plane are circles. 8z π 2 8y Elliptic paraboloid Traces parallel to xz-plane are circles. 0 2S >sin y y cos y@0 x2 y 2 4 y 4 z 2 x 2 y 2 16 z © 2010 Brooks/Cole, Cengage Learning Chapter 11 56 65. Vectors and the Geometry of Space x2 y2 z2 2 2 3963 3963 39502 1 67. z y2 x2 2, z 2 b a bx ay z bx ay 4000 a 4b 2 · 1§ 2 x a 2bx ¸ 2¨ 4 ¹ a © § a 2b · ¨x ¸ 2 ¹ © 2 a 4000 y 4000 x x2 y2 66. (a) ª¬r z º¼ 2 ª 2 z 1º ¬ ¼ x2 y2 2z 2 2 y 2 0 Letting x x at , y y z y2 x2 2 2 b a a 2b 4 · 1§ 2 y ab 2 y ¸ 2¨ 4 ¹ b © 2 § ab 2 · ¨y ¸ 2 ¹ © 2 b b§ a 2b · ab 2 r ¨x ¸ 2 ¹ 2 a© at , you obtain the two intersecting lines bt , z 0 and x at , bt ab 2, z 2abt a 2b 2 . 4 68. Equating twice the first equation with the second equation: 3 2 x2 6 y 2 4z 2 4 y 8 2 x 2 6 y 2 4 z 2 3x 2 4y 8 −2 1 2 2 3 x 2 3x 4 y y 3 6, a plane x 2 ª §1 ·º 2S ³ x «3 ¨ x 2 1¸» dx 0 ©2 ¹¼ ¬ (b) V 2 § 1 · 2S ³ ¨ 2 x x3 ¸ dx 0 2 ¹ © 2 ª x4 º 2S « x 2 » 8 ¼0 ¬ 4S | 12.6 cm3 69. True. A sphere is a special case of an ellipsoid (centered at origin, for example) x2 y2 z2 a2 b2 c2 having a b 1 c. 70. False. For example, the surface x 2 z 2 y formed by revolving the graph of x y-axis, as the graph of z 3 2 1 x 1 2 e y e 2 y can be e y about the about the y-axis. 71. False. The trace x 2 of the ellipsoid 2 2 x y z2 1 is the point 2, 0, 0 . 4 9 3 72. False. Traces perpendicular to the axis are ellipses. ª §1 ·º 2S ³ x «3 ¨ x 2 1¸» dx 12 2 © ¹¼ ¬ 2 (c) V 2S ³ 1 3· § ¨ 2 x x ¸ dx 2 ¹ © 2 12 73. The Klein bottle does not have both an “inside” and an “outside.” It is formed by inserting the small open end through the side of the bottle and making it contiguous with the top of the bottle. 2 ª x4 º 2S « x 2 » 8 ¼12 ¬ 4 31S 64 1 2 225S | 11.04 cm3 64 y 3 2 1 x 3 © 2010 Brooks/Cole, Cengage Learning Section 11.7 Cylindrical and Spherical Coordinates 57 Section 11.7 Cylindrical and Spherical Coordinates 1. 7, 0, 5 , cylindrical x r cos T 7 cos 0 7 y r sin T 7 sin 0 0 z 5 x 7, 0, 5 , rectangular y z 2. 2, S , 4 , cylindrical r cos T 2 cos S 2 y r sin T 2 sin S 0 z 4 x § S · 3. ¨ 3, , 1¸, cylindrical © 4 ¹ 3 cos y 3 sin z 1 S 4 S 4 3 2 2 3 2 2 §3 2 3 2 · , , 1¸¸, rectangular ¨¨ 2 © 2 ¹ S · § 4. ¨ 6, , 2 ¸, cylindrical 4 ¹ © x y z 1 4S cos 2 3 1 4S sin 2 3 8 1 4 3 4 §1 3 · ¨¨ 4 , 4 , 8¸¸, rectangular © ¹ 7. 0, 5, 1 , rectangular 2, 0, 4 , rectangular x 4S · § 6. ¨ 0.5, , 8 ¸, cylindrical 3 ¹ © § S· 6 cos¨ ¸ © 4¹ § S· 6 sin ¨ ¸ © 4¹ 2 3 2 3 2 3 2, 3 2, 2 , rectangular § 7S · , 3¸, cylindrical 5. ¨ 4, © 6 ¹ 7S 4 cos 2 3 x 6 7S 2 y 4 sin 6 z 3 2 3, 2, 3 , rectangular 0 r 2 T arctan z 1 5 2 5 S 5 0 2 § S · ¨ 5, , 1¸, cylindrical © 2 ¹ 8. 2 2, 2 2, 4 , rectangular 2 2 r 2 T arctan 1 z 4 2 2 2 4 S 4 S · § ¨ 4, , 4 ¸, cylindrical 4 ¹ © 9. 2, 2, 4 , rectangular 2 2 2 r T arctan 1 z 4 2 2 2 S 4 S § · ¨ 2 2, , 4 ¸, cylindrical 4 © ¹ 10. 3, 3, 7 , rectangular 32 3 r T arctan 1 z 7 2 18 3 2 S 4 S · § ¨ 3 2, , 7 ¸, cylindrical 4 ¹ © © 2010 Brooks/Cole, Cengage Learning Chapter 11 58 11. 1, Vectors and the Geometry of Space 1 2 r 3 T arctan 3 z 4 2 r 3 x2 y2 3 x2 y2 9 21. 3, 4 , rectangular 2 S z 3 3 2 § S · ¨ 2, , 4 ¸, cylindrical © 3 ¹ 3 4 3 x 4 y −3 12. 2 3, 2, 6 , rectangular 12 4 r 4 5S 6 § 1 · arctan ¨ ¸ 3¹ © 6 T z 2 22. z Same z 3 S · § ¨ 4, , 6 ¸, cylindrical 6 ¹ © 4 is the equation in cylindrical coordinates. 13. z 1 2 (plane) x 9, rectangular equation 14. x r cos T 15. x y z 2 2 r2 z2 2 6 1 3 17, rectangular equation 17, cylindrical equation 3y x x r 2 11, cylindrical equation z 6 y x y x S tan x 2 y 2 11, rectangular equation 16. z S T 23. 9 9 sec T , cylindrical equation r y 3 3 3y 0 z 2 x , rectangular equation 17. y r sin T r cos T 2 1 2 2 sin T r cos 2 T x 2 y sec T tan T , cylindrical equation r 18. x 2 y 2 r −2 8 x, rectangular equation 8r cos T r 8 cos T , cylindrical equation y2 r sin T 2 r 2 sin 2 T z 2 r 24. 2 19. −2 1 10 z 2 , rectangular equation 10 z 2 x2 y 2 x2 y2 z2 4 z 2 z 2 0 z 10, cylindrical equation 4 20. x 2 y 2 z 2 3z r z 3z 2 2 0, rectangular equation 0, cylindrical equation −2 −2 2 2 y x © 2010 Brooks/Cole, Cengage Learning Section 11.7 r2 z2 5 x2 y2 z 2 5 25. Cylindrical and Spherical Coordinates 29. 4, 0, 0 , rectangular U z tan T 3 I 3 x 3 59 42 0 2 0 2 y 0 T x 4 0 S arccos 0 2 S· § ¨ 4, 0, ¸, spherical 2¹ © y −3 30. 4, 0, 0 , rectangular 26. z r 2 cos 2 T U x2 tan T z z 4 2 y x 0 2 02 4 0 T 0 §z· arccos ¨ ¸ arccos 0 ©e¹ S· § ¨ 4, 0, ¸, spherical 2¹ © T 9 S 2 31. 2, 2 3, 4 , rectangular 1 3 2 1 2 3 4 5 6 x y r 2 sin T r2 2r sin T 27. x2 y 2 2 x2 y 1 tan T y x 2S 3 T 0 2 I 1 arccos 2 1 1 2 U tan T 4 2 3 S 1 2 4 y x 2 10 S 1 T 4 2 cos T r2 2r cos T I 2x 2 · S § ¨ 2 10, , arccos ¸, spherical 4 5¹ © x y 2 2 r 28. 2 x y 2x 2 2 3 2 42 22 2 2 4 2 −2 x 1 2 y 2 −1 2 2 3 32. 2, 2, 4 2 , rectangular −2 2 2 2S S · § , ¸, spherical ¨ 4 2, 3 4¹ © z x 2 2y x y 2y 2 U 0 y2 1 2 arccos 5 3, 1, 2 3 , rectangular 33. z U 3 1 12 4 2 tan T −2 2 T y 3 1 3 y x S 6 x I arccos 3 2 S 6 § S S· ¨ 4, , ¸, spherical © 6 6¹ © 2010 Brooks/Cole, Cengage Learning Chapter 11 60 Vectors and the Geometry of Space 34. 1, 2, 1 , rectangular U 1 tan T y x I § ¨ © 2 22 12 6 2 T arctan 2 S § 1 · arccos¨ ¸ © 6¹ 6, arctan 2 S , arccos 4 sin 4 sin y z 4 cos 6, S 4 cos S 4 sin S 1 · ¸, spherical 6¹ S S S | 11.276 z y 6 sin § S· 12 sin 0 sin ¨ ¸ © 4¹ 12 cos 0 12 0, 0, 12 , rectangular 6 cos y 9 sin S sin z 9 cos S S 4 S 4 9 S 2 6 sin S 0 S 0 2 6, 0, 0 , rectangular 41. y 2, rectangular equation U sin I sin T 2 U 42. z 2 csc I csc T , spherical equation 6, rectangular equation U cos I U 6 6 sec I , spherical equation 43. x 2 y 2 z 2 49, rectangular equation 2 49 0 0 7, spherical equation 44. x 2 y 2 3 z 2 x2 y 2 z 2 U 0, rectangular equation 4z2 2 4 U 2 cos 2 I 1 4 cos 2 I cos I § S · 38. ¨ 9, , S ¸, spherical © 4 ¹ 9 sin S cos 5 2 2 cos S U § S· 12 sin 0 cos¨ ¸ © 4¹ x 2 U S · § 37. ¨12, , 0 ¸, spherical 4 ¹ © y 6 sin z 9 2.902, 2.902, 11.276 , rectangular x S x 2 6 2, 2 2 , rectangular 12 cos §5 5 5 2 · ¨¨ , , ¸, rectangular 2 ¸¹ ©2 2 6 6 § 3S S · 36. ¨12, , ¸, spherical 4 9¹ © S 3S x 12 sin cos | 2.902 9 4 S 3S y 12 sin sin | 2.902 9 4 z 3S 4 5 2 5 2 S· § 40. ¨ 6, S , ¸, spherical 2¹ © 2 2 4 5 cos z § S S· 35. ¨ 4, , ¸, spherical © 6 4¹ x § S 3S · 39. ¨ 5, , ¸, spherical © 4 4 ¹ S 3S x 5 sin cos 4 4 S 3S 5 sin sin y 4 4 I 1 2 S 3 , cone spherical equation 0 0 0, 0, 9 , rectangular © 2010 Brooks/Cole, Cengage Learning Section 11.7 45. x 2 y 2 61 16, rectangular equation U sin I sin 2 T U 2 sin 2 I cos 2 T 2 Cylindrical and Spherical Coordinates 2 U sin I sin T cos T 2 2 2 2 U 2 sin 2 I U sin I U 16 16 16 4 4 csc I , spherical equation 13, rectangular equation 46. x U sin I cos T 13 U 13 csc I sec T , spherical equation x2 y 2 47. 2 z 2 , rectangular equation U 2 sin 2 I cos 2 T U 2 sin 2 I sin 2 T 2 U 2 cos 2 I U 2 sin 2 I ª¬cos 2 T sin 2 T º¼ 2 U 2 cos 2 I U 2 sin 2 I 2 U 2 cos 2 T sin I cos 2 I 2 tan 2 I 2 2 tan I 48. x 2 y 2 z 2 9 z 0, rectangular equation U 9 U cos I 2 S 51. I 6 0 U 49. U r 2, spherical equation 5 x y2 z2 2 z cos I 9 cos I , spherical equation x y2 z2 2 3 2 25 z z x2 y 2 z 2 z2 x2 y2 z 2 3 4 6 5 3x 2 3 y 2 z 2 0, z t 0 z 6 5 x 5 6 2 y −2 −6 −1 −2 −1 x 3S 4 50. T 2 1 1 −1 2 y y x y x 0 tan T 1 x y z 3 −3 3 y x −3 © 2010 Brooks/Cole, Cengage Learning Chapter 11 62 Vectors and the Geometry of Space S 52. I U 56. 2 4 sin I cos T z cos I U sin I cos T x2 y 2 z 2 z 0 4 4 x x2 y 2 z 2 z 0 z 4 csc I sec I 6 4 xy-plane z 3 4 y 6 6 2 x −3 −3 y 3 3 § S · 57. ¨ 4, , 0 ¸, cylindrical © 4 ¹ −2 x −3 53. U U 4 cos I x2 y2 z 2 x2 y 2 z 2 4 z x y z 2 2 2 T 4z x2 y2 z 2 I 0 2 4, z t 0 5 3 2 1 2 U 54. 3 2 3 I §0· arccos¨ ¸ ©9¹ 4 S 2 S S· § ¨ 3, , ¸, spherical 4 2¹ © z § S · 59. ¨ 4, , 4 ¸, cylindrical © 2 ¹ 3 U 1 3 3 y T x 55. 2 S T y 2 2 S 32 02 −3 2 sec I U cos I z arccos 0 U −2 2 4 S · § 58. ¨ 3, , 0 ¸, cylindrical 4 ¹ © 4 3 4 S § S S· ¨ 4, , ¸, spherical © 4 2¹ z x 42 02 U csc I I z U sin I 1 2 x2 y 2 1 1 x2 y 2 1 4 2 S 2 § 4 · arccos¨ ¸ ©4 2¹ S 4 S S· § ¨ 4 2, , ¸, spherical 2 4¹ © −2 x 42 4 2 −2 2 1 1 2 y −1 −2 © 2010 Brooks/Cole, Cengage Learning Section 11.7 § 2S · , 2 ¸, cylindrical 60. ¨ 2, © 3 ¹ U 22 2 2 T 2S 3 I § 1 · arccos¨ ¸ © 2¹ 2 2 3S 4 S S · § 61. ¨ 4, , 6 ¸, cylindrical 6 6 ¹ © 42 6 2 2 13 S I arccos 6 3 13 I 4 2 4 2 4 2 S 3 1 arccos 2 S 4 S S· § ¨ 4 2, , ¸, spherical 3 4¹ © 63. 12, S , 5 , cylindrical U 122 52 T S I arccos 13 5 13 § S · 64. ¨ 4, , 3¸, cylindrical © 2 ¹ T 42 32 5 S 2 3 5 3· § S ¨ 5, , arccos ¸, spherical 5¹ © 2 I arccos 2 10 S 6 S 10 cos 0 2 § S · ¨10, , 0 ¸, cylindrical 6 ¹ © § S S· 66. ¨ 4, , ¸, spherical © 18 2 ¹ r 4 sin S 2 4 S 18 4 cos S 2 0 § S · ¨ 4, , 0 ¸, cylindrical © 18 ¹ r U sin I T S z U cos I S 36 sin 2 36 cos S 2 36 0 36, S , 0 , cylindrical § S S· 68. ¨18, , ¸, spherical 3 3¹ © r T z 5· § ¨13, S , arccos ¸, spherical 13 ¹ © U S 10 sin S· § 67. ¨ 36, S , ¸, spherical 2¹ © S · § 62. ¨ 4, , 4 ¸, cylindrical 3 ¹ © T z z 3 · S § ¨ 2 13, , arccos ¸, spherical 6 13 ¹ © U r T T 63 § S S· 65. ¨10, , ¸, spherical 6 2¹ © T 2S 3S · § , ¨ 2 2, ¸, spherical 3 4 ¹ © U Cylindrical and Spherical Coordinates U sin I 18 sin S 3 9 S 3 U cos I 18 cos S 3 9 3 § S · ¨ 9, , 9 3 ¸, cylindrical © 3 ¹ S S· § 69. ¨ 6, , ¸, spherical 6 3¹ © r 6 sin T z 6 cos S 3 3 3 S 6 S 3 3 S · § ¨ 3 3, , 3¸, cylindrical 6 ¹ © © 2010 Brooks/Cole, Cengage Learning Chapter 11 64 Vectors and the Geometry of Space 5S · § 70. ¨ 5, , S ¸, spherical 6 © ¹ 5 sin S 0 r T z 5S 6 5 cos S § S 3S · 72. ¨ 7, , ¸, spherical © 4 4 ¹ r T 5 5S § · ¨ 0, , 5¸, cylindrical 6 © ¹ z 8 sin T 7S 6 z 8 cos S 6 S 6 3S 4 7 2 2 3S 4 S 4 7 cos 7 2 2 §7 2 S 7 2 · , , ¨¨ ¸, cylindrical 2 ¸¹ © 2 4 § 7S S · 71. ¨ 8, , ¸, spherical © 6 6¹ r 7 sin 4 8 3 2 § 7S · , 4 3 ¸, cylindrical ¨ 4, © 6 ¹ Rectangular Cylindrical Spherical 73. 4, 6, 3 7.211, 0.983, 3 7.810, 0.983, 1.177 74. 6, 2, 3 6.325, 0.322, 3 7.000, 0.322, 2.014 75. 4.698, 1.710, 8 § S · ¨ 5, , 8¸ © 9 ¹ 9.434, 0.349, 0.559 76. 7.317, 6.816, 6 10, 0.75, 6 11.662, 0.750, 1.030 77. 7.071, 12.247, 14.142 14.142, 2.094, 14.142 2S S · § , ¸ ¨ 20, 3 4¹ © 78. 6.115, 1.561, 4.052 6.311, 0.25, 5.052 7.5, 0.25, 1 79. 3, 2, 2 3.606, 0.588, 2 4.123, 0.588, 1.064 80. 3 2, 3 2, 3 6, 0.785, 3 6.708, 0.785, 2.034 §5 4 3· 81. ¨ , , ¸ ©2 3 2¹ 2.833, 0.490, 1.5 3.206, 0.490, 2.058 82. 0, 5, 4 5, 1.571, 4 6.403, 1.571, 0.896 83. 3.536, 3.536, 5 § 3S · ¨ 5, , 5 ¸ © 4 ¹ 7.071, 2.356, 2.356 84. 1.732, 1, 3 11S · § , 3¸ ¨ 2, 6 © ¹ 3.606, 2.618, 0.588 ª § 5S ·º «Note: use the cylindrical coordinate ¨ 2, 6 , 3¸» © ¹¼ ¬ © 2010 Brooks/Cole, Cengage Learning Section 11.7 Rectangular Cylindrical 85. 2.804, 2.095, 6 3.5, 2.5, 6 Cylindrical and Spherical Coordinates 65 Spherical 6.946, 5.642, 0.528 ª¬Note: Use the cylindrical coordinates 3.5, 5.642, 6 º¼ 86. 2.207, 7.949, 4 8.25, 1.3, 4 87. 1.837, 1.837, 1.5 2.598, 2.356, 1.5 § 3S S · ¨ 3, , ¸ © 4 3¹ 88. 0, 0, 8 0, 0.524, 8 S · § ¨ 8, , S ¸ 6 ¹ © 97. Rectangular to spherical: U 2 5 89. r 9.169, 1.3, 2.022 Cylinder S § arccos¨ ¨ © I 4 Plane U sin I cos T y U sin I sin T z U cos I 5 Sphere a Cylinder with z-axis symmetry T b Plane perpendicular to xy-plane S z c Plane parallel to xy-plane 4 (b) U a Sphere Cone T b Vertical half-plane Matches graph (a) I c Half-cone 93. r 2 z, x y 2 2 z 99. x 2 y 2 z 2 Paraboloid (a) r z 2 Matches graph (f ) 94. U 4 sec I , z U cos I (b) U 2 4 2 Matches graph (b) 95. Rectangular to cylindrical: r x y 2 2 y x tan T z 2 z Cylindrical to rectangular: x r cos T y r sin T z z c is a half-plane because of the restriction r t 0. 25 25 U 5 z2 z 2 2r (a) 4r 2 z (b) 4 U sin I cos T U 2 sin 2 I sin 2 T 2 2 cos 2 I , tan 2 I 1 , 4 1 I 2 tan I U 2 cos 2 I 2 4 sin 2 I 101. x 2 y 2 z 2 2 z (a) r z 2 z 2 2 25 100. 4 x 2 y 2 Plane 96. T 2 98. (a) r Matches graph (c) 92. I · ¸ x y z ¸¹ z 2 Spherical to rectangular: x Matches graph (e) 91. U y x tan T Matches graph (d) 90. T x2 y 2 z 2 arctan 1 2 0 0 r2 z 1 2 (b) U 2 U cos I 2 U U 2 cos I U 2 1 0 0 2 cos I © 2010 Brooks/Cole, Cengage Learning Chapter 11 66 102. x 2 y 2 (a) r 2 Vectors and the Geometry of Space z z (b) U 2 sin 2 I U cos I U sin I S 0 d z d r cos T cos I 2 S dT d 2 2 0 d r d 3 108. z U cos I sin 2 I U csc I cot I 4 3 −4 103. x y 2 2 4y (a) r 4r sin T , r 4 sin T U sin 2 I 4 U sin I sin T 2 (b) (a) r 0 d r d a U 4 sin T sin I r d z d a U 4 sin T csc I z −a 6 36 U 2 sin 2 I 36 2 2 U 105. x y a 110. 0 d T d 2S 2 d r d 4 9 z (a) r cos T r sin T 2 2 2 r2 9 4 3 9 cos 2 T sin 2 T (b) U 2 sin 2 I cos 2 T U 2 sin 2 I sin 2 T −5 U 2 sin 2 I 9 cos 2 T sin 2 T U2 9 csc 2 I cos 2 T sin 2 T x 5 111. 0 d T d 2S S 0 d I d 6 0 d U d a sec I z (a) r sin T 4 r 107. 0 d T d 4 csc T a 30° (b) U sin I sin T U y 5 9 4 106. y y z 2 d r 2 6r 8 2 2 6 csc I −a a x (b) U sin I cos T U 2 sin 2 I sin 2 T 2 2 a 36 36 r 2 109. 0 d T d 2S 0 U sin I U sin I 4 sin T 104. x 2 y 2 y 4 4 x 2 4, 4 csc I csc T x y S 112. 0 d T d 2S 2 0 d r d 2 S S d I d 4 2 0 d U d1 0 d z d 4 z 5 z 2 3 2 1 −2 −2 2 3 x 2 3 y 2 2 y x © 2010 Brooks/Cole, Cengage Learning Section 11.7 S 113. 0 d T d Cylindrical and Spherical Coordinates 117. Spherical 4 d U d 6 2 S 0 d I d 67 z 2 0 d U d 2 8 z −8 8 2 y x −8 y 2 2 118. Cylindrical d r d 3 1 2 x 0 d T d 2S 114. 0 d T d S S 0 d I d 9 r2 d z d 9 r2 z 2 1d U d 3 4 z −4 3 4 2 y x y −3 −2 4 −4 −1 1 2 3 119. Cylindrical coordinates: x r 2 z 2 d 9, r d 3 cos T , 0 d T d S 115. Rectangular 0 d x d 10 z 0 d y d 10 3 0 d z d 10 −2 −3 z 2 10 4 3 3 y x 10 10 y x 120. Spherical coordinates: U t 2 116. Cylindrical: 0.75 d r d 1.25 U d 3 S 0 d I d 4 0 d z d 8 z z 3 8 2 −2 −2 −2 x 2 2 −1 2 y 1 1 2 y x 121. False. r z x2 y 2 z 2 is a cone. 122. True. They both represent spheres of radius 2 centered at the origin. © 2010 Brooks/Cole, Cengage Learning Chapter 11 68 Vectors and the Geometry of Space 123. False. r , T , z 0, 0, 1 and r , T , z represent the same point x, y, z 0, S , 1 0, 0, 1 . sin T , r 125. z 1 y r sin T z y 1 y The curve of intersection is the ellipse formed by the intersection of the plane z y and the cylinder r 1. 124. True except for the origin . 126. U 2 sec I U cos I U 2 z 2 plane 4 sphere The intersection of the plane and the sphere is a circle. Review Exercises for Chapter 11 1, 2 , Q JJJK (a) u PQ JJJK v PR 4, 1 , R 1. P 4 1, 1 2 3, 1 5 1, 4 2 4, 2 4 2 2 v (d) 2u v 2 20 z-coordinate can be any number. 2, 1 , Q 5, 1 , R JJJK PQ 7, 0 (a) u JJJK v PR 4, 5 (b) u 9. x 3 2 5 2 3, 1 4, 2 2. P (c) or in the fourth quadrant x ! 0, y 0 . The 3i j (b) u (c) 8. Looking towards the xy-plane from the positive z-axis. The point is either in the second quadrant x 0, y ! 0 5, 4 10, 0 2, 4 2 y 2 2 z 6 § 15 · ¨ ¸ ©2¹ 2 §0 4· §0 6· § 4 0· 10. Center: ¨ ¸, ¨ ¸, ¨ ¸ © 2 ¹ © 2 ¹ © 2 ¹ 2 2, 3, 2 Radius: 2 20 x2 2 2 30 y3 2 24 z2 2 2 494 17 17 7i 4 2 52 v (d) 2u v 11. x 2 4 x 4 y 2 6 y 9 z 2 41 2 7, 0 4, 5 x2 18, 5 2 y 3 3 z2 4 4 9 9 Center: 2, 3, 0 3. v v cos T i sin T j Radius: 3 8 cos 60q i sin 60q j §1 3 · j¸¸ 8¨¨ i 2 2 © ¹ z 4i 4 3 j 4. v = v cos T i + v sin T j 1 1 cos 225qi sin 225q j 2 2 2 2 i j 4 4 4 3 2 4, 4 3 6 5 4 3 4 5 6 12. x 2 10 x 25 y 2 6 y 9 2 2 , 4 4 z2 4z 4 x5 5. z 0, y 6. x z 4, x 0, y 5: 5, 4, 0 7: 0, 7, 0 y x 2 y3 2 z2 2 34 25 9 4 4 Center: 5, 3, 2 Radius: 2 z 7. Looking down from the positive x-axis towards the yz-plane, the point is either in the first quadrant y ! 0, z ! 0 or in the third quadrant y 0, z 0 . 6 4 2 The x-coordinate can be any number. 2 y 4 6 8 x © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 11 13. (a), (d) 2, 1, 3 , Q 0, 5, 1 , R JJJK (a) u PQ 2, 6, 2 JJJK v PR 3, 6, 3 z 2 1 4 5 3 1 2 3 −2 y 5 (b) u v x 2 3 6 6 2 3 (c) v v −8 −9 −10 Because u v 4 2, 4 1 , 7 3 2, 5, 10 2i 5 j 10k (c) v v 2 6 5 3 5 u 3 6, 3 2, 8 0 (c) v 3i 5 j 8k 1 3, 6 4, 9 1 5 3, 3 4, 6 1 uv u v cos T 3, 5, 8 T Because 2w · j¸ ¹ i 3j 3 2 4 arcos 4, 2, 10 2, 1, 5 24. u v, the points lie in a straight line. 16. v 8 5, 5 4, 5 7 3, 1, 2 w 11 5, 6 4, 3 7 6, 10, 4 2 v (6, 2, 0) (b) v w 5 2 >i j@ 2 y 4 x 15. v 5 2 1 2 uv 1 16, 12, 24 2S 2S § 2¨ cos i sin 3 3 © v 1 1 0, the vectors are orthogonal. 3S 3S · § i sin j¸ 5¨ cos 4 4 ¹ © 23. u 8 7 6 5 54 4u, the vectors are parallel. Because v z 36 1, 4, 5 4, 3, 6 , v 22. u 14. (a), (d) (− 3, − 5, 8) (3, − 3, 8) 9 36 9 7, 2, 3 , v 21. u (4, 4, −7) (2, 5, −10) (b) v 5, 5, 0 20. P (2, −1, 3) 3 69 5 2 2 1 52 6 ª 3S 2S 15q «or, 4 3 ¬ 6i 2 j 3k , v uv u v cos T 3 2 4 S 12 6 º or 15q» ¼ i 5 j 6 10 49 26 4 7 26 T | 83.6q 10, 5, 15 , v 25. u Because v and w are not parallel, the points do not lie in a straight line. u 2, 1, 3 5 v u is parallel to v and in the opposite direction. 17. Unit vector: 18. 8 6, 3, 2 49 2, 3, 5 38 u u 8 6, 3, 2 7 19. P 5, 0, 0 , Q 4, 4, 0 , R JJJK PQ 1, 4, 0 (a) u JJJK v = PR 3, 0, 6 (b) u v (c) v v 2 , 38 48 24 16 , , 7 7 7 2, 0, 6 1 3 4 0 0 6 9 36 3 , 38 5 38 T S 26. u 1, 0, 3 v 2, 2, 1 uv 1 u 10 v cos T 3 3 uv u v 1 3 10 T | 83.9q 45 © 2010 Brooks/Cole, Cengage Learning Chapter 11 70 Vectors and the Geometry of Space j kº ª i « » « 2 4 3» «1 2 2» ¬ ¼ 27. There are many correct answers. r 6, 5, 0 . For example: v JJJK F PQ 28. W JJJK PQ cos T F 75 8 cos 30q 300 3 ft-lb 3, 2, 1 , v In Exercises 29–38, u w vuw 33. n 2, 4, 3 , n 5 n n 1 1 2i j 2i j , unit vector or 5 5 34. u u v j kº ªi « » 3 2 1» « «2 4 3» ¬ ¼ 10i 11j 8k vuu j kº ªi « » «2 4 3» «3 2 1»¼ ¬ 10i 11j 8k 1, 2, 2 . 29. u u 3 3 2 2 1 1 14 14 uv u v 30. cos T 31. proju w 2 u 11 14 29 § arccos¨ © T 2 So, u u v 11 · ¸ | 56.9q 14 29 ¹ 36. u u v w uw 3, 2, 1 2, 1, 0 3 4 2 5 uuv 10, 11, 8 102 112 8 2 4i 4 j 4k uu v j kº ªi « » 3 2 1» « «2 4 3» ¬ ¼ 10i 11j 8k uuw j kº ª i « » « 3 2 1» «1 2 2» ¬ ¼ 6i 7 j 4k uuv uuw 37. Area parallelogram 4 3, 2, 1 u 1, 2, 1 j kº ªi « » 3 2 1» « «1 2 1» ¬ ¼ 15 5 5 , , 14 7 14 32. Work vuu u vuw 35. V §u w· ¨ ¸u ¨ u 2 ¸ © ¹ 5 3, 2, 1 14 15 10 5 , , 14 14 14 2i j 4i 4 j 4k uu v w (See Exercises 34, 36) 285 38. Area triangle 1 vuw 2 1 2 2 2 1 2 5 See Exercise 33 2 39. F c cos 20q j sin 20qk JJJK PQ 2k i JJJK PQ u F = 0 200 c F F z j k 0 2 PQ 2c cos 20qi 2 ft 0 c cos 20q c sin 20q JJJK PQ u F 2c cos 20q F y 100 cos 20q x 100 cos 20q j sin 20qk cos 20q 100 1 tan 2 20q 70° 100 j tan 20qk 100 sec 20q | 106.4 lb © 2010 Brooks/Cole, Cengage Learning 4 Review Exercises for Chapter 11 ª2 1 0º « » «0 2 1» «0 1 2» ¬ ¼ 40. V u vw 41. v 9 3, 11 0, 6 2 10 4, x y 2 z 3 Solving simultaneously, you have z 1. Substituting z 1 into the second equation, you have y x 1. Substituting for x in this equation you obtain two points on the line of intersection, 0, 1, 1 , 1, 0, 1 . The direction vector of the line of intersection is v 2 4t x 3 6 8 1, 10 4, 5 3 42. v 25 6, 11, 4 (a) Parametric equations: 3 6t , y 11t , z x (b) Symmetric equations: 45. 3x 3 y 7 z y 11 z 2 4 1 t , z (a) x t, y (b) x y 1, z (c) x 1 (b) Symmetric equations: 9 y 4 6 1 1 4 3 3 2t i j. z 9, 6, 2 (a) Parametric equations: 4 6t , z x 1 9t , y 71 −4 −3 2 y −4 −3 −2 z 3 2 2 1 3 4 2 3 4 −2 x −3 −4 43. v j (a) x 2 t, z 1, y i 3 uu v 46. (b) None (c) j k 2 5 3 z 21i 11j 13k 1 1 4 Direction numbers: 21, 11, 13 4 (a) x −4 2 −4 −2 −2 y 1 11 x 21 (b) 2 4 1 11t , z 21t , y 4 13t z 4 13 4 y x (c) −4 z 4 44. −4 Direction numbers: 1, 1, 1 1 t, y (a) x (b) x 1 2 t, z y 2 (c) 2 −4 −2 3t 2 4 z 3 −2 4 y x −4 z 6 5 4 3 47. P JJJK PQ 1 3, 4, 2 , Q JJJK 0, 8, 1 , PR 3, 4, 1 , R 1, 1, 2 >4, 5, 4@ 1 2 6 5 4 3 3 4 5 6 i JJJK JJJK PQ u PR y n x j k 0 8 1 27i 4 j 32k 4 5 4 27 x 3 4 y 4 32 z 2 27 x 4 y 32 z 0 33 z −4 −2 −2 2 2 4 −2 4 y x −4 © 2010 Brooks/Cole, Cengage Learning Chapter 11 72 Vectors and the Geometry of Space 3i j k 48. n 51. Q 1, 0, 2 point 3 x 2 1 y 3 1z 1 3x y z 8 0 2x 3 y 6z 0 6 A point P on the plane is 3, 0, 0 . JJJK PQ 2, 0, 2 z 3 2, 3, 6 normal to plane JJJK PQ n 8 n 7 n 2 1 −2 1 x 2 −1 D (−2, 3, 1) 3 4 −2 y 52. Q 3, 2, 4 point 49. The two lines are parallel as they have the same direction numbers, 2, 1, 1. Therefore, a vector parallel to the 2i + j k. A point on the first line plane is v is 1, 0, 1 and a point on the second line is 1, 1, 2 . The vector u 2i j 3k connecting these two points is also parallel to the plane. Therefore, a normal to the plane is vuu i j k 2 1 1 x 2y 1 z 4 −4 2 −2 point in the second plane, Q 0, 0, 3 . JJJK PQ 0, 0, 5 JJJK PQ n 5 5 D n 35 35 35 7 y 5 2, 1 2, 3 1 3, 3, 2 be the direction vector for the line through the two points. Let n 2, 1, 1 be the normal vector to the plane. Then i j k 3 3 2 1, 2, 1 direction vector u 4 x vun 5, 3, 1 . 54. Q 5, 1, 3 point 2 50. Let v D −2 −2 4 2, 5, 1 normal to plane JJJK PQ n 10 30 n 3 30 n Choose a point in the first plane P 0, 0, 2 . Choose a 0 2 A point P on the plane is 5, 0, 0 . JJJK PQ 2, 2, 4 n 2 i 2 j . Equation of the plane: x 1 2 y −4 10 53. The normal vectors to the planes are the same, 2 1 3 2i 4 j 2x 5 y z P 1, 3, 5 point on line JJJK PQ 6, 2, 2 i JJJK PQ u u j k 6 2 2 1 2 JJJK PQ u u 5, 7, 3 D 2 1 1 is the normal to the unknown plane. 5 x 5 7 y 1 3 z 3 5 x 7 y 3z 27 0 0 264 6 u 55. x 2 y 3z 2, 8, 14 1 2 11 6 Plane Intercepts: 6, 0, 0 , 0, 3, 0 , 0, 0, 2 , z z 4 3 2 (5, 1, 3) 2 2 (2, −2, 1) (0, 0, 2) 3 y (0, 3, 0) 6 4 x y (6, 0, 0) x © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 11 60. 16 x 2 16 y 2 9 z 2 z2 56. y xy-trace: point 0, 0, 0 xz-trace: z r 4x 3 yz-trace: z r 4y 3 z 2 1 3 4 0 Cone Because the x-coordinate is missing, you have a cylindrical surface with rulings parallel to the x-axis. The generating curve is a parabola in the yz-coordinate plane. 2 73 4, x 2 y 2 z y x 9 z 4 1 z 2 57. y −3 −3 2 3 3 x y Plane with rulings parallel to the x-axis. z 2 61. y 2 6 x x2 y2 z2 16 9 1 y2 x2 z2 9 16 1 Hyperboloid of two sheets xy-trace: cos z 58. y y2 x2 9 16 1 xz-trace: None Because the x-coordinate is missing, you have a cylindrical surface with rulings parallel to the x-axis. The generating curve is y cos z. yz-trace: y2 z2 9 1 z z 4 2 −2 5 5 y x −2 59. 2 2 x y 62. x2 y2 z2 16 9 x2 y2 z2 25 4 100 1 Hyperboloid of one sheet 1 Ellipsoid xy-trace: x2 y2 16 9 xz-trace: x2 z2 16 1 yz-trace: y2 z2 9 1 1 xy-trace: x2 y2 25 4 1 xz-trace: x2 z2 25 100 1 yz-trace: y2 z2 4 100 1 z 12 z −5 2 −4 x 4 x 5 5 y y −2 © 2010 Brooks/Cole, Cengage Learning Chapter 11 74 63. x 2 z 2 Vectors and the Geometry of Space 69. 2 2, 2 2, 2 , rectangular 4. Cylinder of radius 2 about y-axis z (a) r 2 2 T arctan 1 2 y −2 64. y z 2 2 (b) U 16. 2 2 3S ,I 4 T Cylinder of radius 4 about x-axis z −2 2 y −2 66. x 2 2 y 2 z 2 x2 z 2 3y 3 y 2 y 2 is a generating curve. Revolve Then x the curve about the y-axis. 2 arccos 2 5, 1 , 5 x z2 ª¬r y º¼ x2 z 2 2y 2 z 3 3 § 3 S 3 3· ,¨ , , ¸, cylindrical 2 ¨© 2 2 2 ¸¹ I , arccos 2 3 § 30 S ,¨ , , arccos 10 ¨© 2 3 30 ,T 2 S 3 1002 502 1 2x 3 2 §1 2x · ¨ ¸ , Cone © 3 ¹ 50 5 S T I § 50 · arccos¨ ¸ © 50 5 ¹ 6 § 1 · arccos¨ ¸ | 63.4q or 1.107 © 5¹ S S § · § · ¨ 50 5, , 63.4q ¸, sperical or ¨ 50 5, , 1.1071¸ 6 6 © ¹ © ¹ 5S § · 72. ¨ 81, , 27 3 ¸, cylindrical 6 © ¹ U 6561 2187 T 5S 6 I § 27 3 · arccos¨¨ ¸¸ © 54 3 ¹ 54 3 arccos 1 2 , 3 · ¸, spherical 10 ¸¹ S § · 71. ¨100, , 50 ¸, cylindrical 6 © ¹ 2y U 2 3 2 § 3· §3 3· § 3· ¨¨ ¸¸ ¨ ¸ ¨¨ ¸¸ 4 4 © ¹ © ¹ © 2 ¹ (b) U 1 revolved about the x-axis ª¬r x º¼ S 3 , 2 arctan 3 r 2y y2 z2 2 2 5 2 2 y revolved about y-axis 2 z arccos 2 T 3y 2 y2 3 y 2 y 2 (Trace in xy-plane) 68. 2 x 3z 2 2 2 2 § 3· § 3· ¨¨ ¸¸ ¨ ¸ © 4¹ © 4 ¹ x-axis. z 2 2 x and revolve the curve about the 2 r x (a) r 67. z 2 2, § 3 3 3 3· 70. ¨¨ , , ¸¸, rectangular © 4 4 2 ¹ x Let x 2 3S ,z 4 4, § 3S 5· ¨¨ 2 5, 4 , arccos 5 ¸¸, spherical © ¹ 2 65. Let y 2 2 2 § 3S · ¨ 4, , 2 ¸, cylindrical © 4 ¹ 2 x 2 S 3 5S S · § ¨ 54 3, , ¸, spherical 6 3¹ © © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 11 S 3S · § 73. ¨ 25, , ¸, spherical 4 4 ¹ © 2 § § 3S · · ¨ 25 sin ¨ ¸ ¸ r © 4 ¹¹ © r2 78. z 4, cylindrical equation z 4, rectangular equation 25 2 2 z S 4 T z U cos I 4 25 cos 3S 4 25 2 2 −2 T 4 2 § 2S · 12 cos¨ ¸ © 3 ¹ 75. x y S 1 4 y x 1 y x, x t 0, rectangular coordinates, half-plane 6 z 3 4 2 tan 6 3 S § · ¨ 6 3, , 6 ¸, cylindrical 2 © ¹ 2 , spherical coordinates tan T S U cos I z S 79. T 2 r y x S 2S · § 74. ¨12, , ¸, spherical 2 3 ¹ © § § 2S · · ¨12 sin ¨ ¸ ¸ r © 3 ¹¹ © 2 2 § 25 2 S 25 2 · , , ¨¨ ¸, cylindrical 4 2 ¸¹ © 2 2 75 2z 3 2 1 3 4 y x −3 (a) Cylindrical: r 2 cos 2 T r 2 sin 2 T 2 z r 2 cos 2T 2z (b) Spherical: U 2 sin 2 I cos 2 T U 2 sin 2 I sin 2 T U sin 2 I cos 2 T 2 cos I U 2 2 16 (a) Cylindrical: r 2 z 2 (b) Spherical: U 80. U 3 cos T , spherical coordinates 16 x y2 z2 2 x 2 y 2 z 2 3z 3· § x2 y 2 ¨ z ¸ 2¹ © 4 0 2 2 § 3· ¨ ¸ , rectangular coordinates, sphere © 2¹ z 4 5 cos T , cylindrical equation 77. r 3z x2 y 2 z 2 0 2 sec 2T cos I csc2 I 76. x y z 2 2 U cos I 3 5r cos T r2 −2 x2 y2 5x 1 2 25 x2 5x y2 4 2 25 4 x 1 2 y 2 5· § 2 ¨x ¸ y 2¹ © §5· ¨ ¸ , rectangular equation © 2¹ z 3 x 3 2 y © 2010 Brooks/Cole, Cengage Learning Chapter 11 76 Vectors and the Geometry of Space Problem Solving for Chapter 11 abc 1. 3. Label the figure as indicated. 0 bu abc 0 bua buc 0 aub buc buc b c sin A aub a b sin C From the figure, you see that JJK JJJK JJK 1 1 SP a b RQ and SR 2 2 JJK JJJK JJK JJJK Because SP RQ and SR PQ, 1 1 a b 2 2 JJJK PQ. PSRQ is a parallelogram. Q Then, buc a b c sin A a a aub a b c 1 2 sin C . c R a− 1b S 1 2 b 2 a+ 1b 2 4. Label the figure as indicated. JJJK ab PR JJJK b a SQ a c P ab ba b 2 a 2 0, because b sin A a The other case, x ³0 2. f x (a) b in a rhombus. a sin B is similar. b S t 4 1 dt R a y P Q b 4 2 5. (a) u x −4 −2 2 −2 −4 (b) f c x fc 0 T u (c) r 0, 1, 1 is the direction vector of the line determined by P1 and P2 . JJJJK P 1Q u u D u 4 2, 0, 1 u 0, 1, 1 x4 1 2 tan T 1 1, 2, 2 S 2 4 1 i j 2 2 2 , 2 2 3 2 2 z 6 5 4 3 2 2 , 2 2 (d) The line is y 3 2 P1 P2 1 x: x t, y t. 4 3 2 Q 2 3 4 y x (b) The shortest distance to the line segment is P1Q 2, 0, 1 5. © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 11 JJJK JJJK 6. n PP 0 A n PP 0 9. (a) U 77 2 sin I Torus Figure is a square. JJJG So, PP 0 n and the points P form a circle of radius z 2 n in the plane with center at P0 . −3 n − PP0 n + PP0 n 3 n x P0 S³ 7. (a) V 1 ª z2 º «S » ¬ 2¼0 z dz 0 1 Note: (base)(altitude) 2 x 2 ca At z −2 c 1 1 2 y 2 3 2 cb ca y 1 S 2 x 1 2 −2 c, figure is ellipse of area S 3 2 cos I Sphere z 1 S1 2 z: slice at z 2 (b) U 1 S 2 −3 x2 y2 2 2 a b (b) y P 2 1 3 −2 10. (a) r S abc. cb 2 cos T Cylinder 2 k ªS abc º « » ¬ 2 ¼0 k ³ 0 S abc dc V 1 S abk k 2 (c) V S abk 2 2 z2 0 x2 y2 d2 2 2 2 a b c x2 y2 2 2 a b x2 a2 c2 d 2 c2 V S 2³ c 0 c 2 d2 c2 c2 c · ¸ ¸ ¹ 1 t 1, z 2 c2 4, 3, s 3, 1, 1 point on line 1, 2, s 1 i j 1 2 s 1 2 1 S ab 2t 1; Q 2, 1, 4 direction vector for line JJJK PQ u u 1. ·§ b 2 c 2 d 2 ¸¨ ¸¨ c2 ¹© k 4 7 s i 6 2 s j 5k c2 d 2 D 2 d3º 2S ab ª 2 c d » 2 « c ¬ 3 ¼0 P JJJK PQ c2 d 2 c2 ª¬ u u v zº¼ w ª¬ u u v wº¼ z. t 3, y (a) u c d dd 2 uuv u wuz 12. x y2 b2 c2 d 2 § a2 c2 d 2 ¨ ¨ c2 © S ab 4 3 Sr 3 1 1 x2 y 2 11. From Exercise 66, Section 11.4, d ! 0, (b) At height z Area ª x3 º 2S «r 2 x » 3 ¼0 ¬ r 2 ³ S r 2 x 2 dx r 2 cos 2 T Hyperbolic paraboloid 1 (area of base)(height) 2 r 8. (a) V (b) z JJJK PQ u u u 7 s 2 6 2 s 2 25 21 4 S abc 3 © 2010 Brooks/Cole, Cengage Learning 78 Chapter 11 Vectors and the Geometry of Space (b) 10 −11 10 −4 The minimum is D | 2.2361 at s 1. x, you have (c) Yes, there are slant asymptotes. Using s 1 21 D(s) u cos 0 i sin 0 j 13. (a) u x 2 2 x 22 5 21 x1 2 21 o r 5 x1 21 105 s 1 slant asymptotes. 21 r y 5 21 5 x 2 10 x 110 u i j Downward force w T cos 90q T i sin 90q T j T T sin T i cos T j 0 u w T u sin T T u i j T sin T i cos T j cos T T 1 If T 30q, u (b) From part (a), u 1 2 T and 1 tan T and T 3 2 T T 2 | 1.1547 lb and u 3 1§ 2 · | 0.5774 lb 2 ¨© 3 ¸¹ sec T . Domain: 0 d T d 90q (c) (d) T 0q 10q 20q 30q 40q 50q 60q T 1 1.0154 1.0642 1.1547 1.3054 1.5557 2 u 0 0.1763 0.3640 0.5774 0.8391 1.1918 1.7321 2.5 T ⎜⎜u ⎜⎜ 0 60 0 (e) Both are increasing functions. (f) lim T T o S 2 f and lim T o S 2 u f. Yes. As T increases, both T and u increase. © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 11 79 14. (a) The tension T is the same in each tow line. T cos 20q cos 20 i T sin 20q sin 20q j 6000i 2T cos 20qi 6000 | 3192.5 lb 2 cos 20q T 2T cos T (b) As in part (a), 6000i 3000 cos T T Domain: 0 T 90q (c) (d) T 10q 20q 30q 40q 50q 60q T 3046.3 3192.5 3464.1 3916.2 4667.2 6000.0 10,000 0 90 0 (e) As T increases, there is less force applied in the direction of motion. 15. Let T D E , the angle between u and v. Then uuv u v sin D E vuu . u v For u cos D , sin D , 0 and v i j k vuu cos E sin E 0 cos D sin D 0 So, sin D E vuu cos E , sin E , 0 , u v 1 and sin D cos E cos D sin E k. sin D cos E cos D sin E . 16. (a) Los Angeles: 4000, 118.24q, 55.95q Rio de Janeiro: 4000, 43.23q, 112.90q (b) Los Angeles: x 4000 sin 55.95q cos 118.24q Rio de Janeiro: x 4000 sin 112.90q cos 43.23q y 4000 sin 55.95q sin 118.24q y 4000 sin 112.90q sin 43.23q z 4000 cos 55.95q z 4000 cos 112.90q x, y, z | 1568.2, 2919.7, 2239.7 (c) cos T uv u v x, y, z | 2684.7, 2523.8, 1556.5 1568.2 2684.7 2919.7 2523.8 2239.7 1556.5 4000 4000 | 0.02047 T | 91.17q or 1.59 radians (d) s rT 4000 1.59 | 6360 miles © 2010 Brooks/Cole, Cengage Learning 80 Chapter 11 Vectors and the Geometry of Space (e) For Boston and Honolulu: a. Boston: 4000, 71.06q, 47.64q Honolulu: 4000, 157.86q, 68.69q b. Boston: x 4000 sin 47.64q cos 71.06q Honolulu: x 4000 sin 68.69q cos 157.86q y 4000 sin 47.64q sin 71.06q y 4000 sin 68.69q sin 157.86q z 4000 cos 47.64q z 4000 cos 68.69q 959.4, 2795.7, 2695.1 959.4 3451.7 2795.7 1404.4 2695.1 1453.7 | 0.28329 4000 4000 uv u v c. cos T 3451.7, 1404.4, 1453.7 T | 73.54q or 1.28 radians d. s rT | 5120 miles 17. From Theorem 11.13 and Theorem 11.7 (6) you have JJJK PQ n D n w uuv uuv w u vuw uuv uuv uuv z D a b c 2 2 d1 d 2 The new v-axis is the line z a b c 2 2 2 a b c 2 2 2 2 y. 2 y, x 0. Then the intersection of the cylinder and plane satisfies the equation of an ellipse: x2 y2 z2 4 x2 d1 d 2 plane Introduce a coordinate system in the plane z § z· x2 ¨ ¸ © 2¹ 2 cylinder 2y between this point and the second plane is a d1 a b 0 c 0 d 2 1 The new u-axis is the original x-axis. . 18. Assume one of a, b, c, is not zero, say a. Choose a point in the first plane such as d1 a, 0, 0 . The distance 19. x 2 y 2 . 1 2 1 1 ellipse z 3 2 (0, 1, 2) y 2 −2 2 x (0, −1, −2) 20. Essay. © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 2 Vector-Valued Functions Section 12.1 Vector-Valued Functions .....................................................................82 Section 12.2 Differentiation and Integration of Vector-Valued Functions .............92 Section 12.3 Velocity and Acceleration..................................................................102 Section 12.4 Tangent Vectors and Normal Vectors ...............................................113 Section 12.5 Arc Length and Curvature..................................................................131 Review Exercises ........................................................................................................153 Problem Solving .........................................................................................................161 © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 2 Vector-Valued Functions Section 12.1 Vector-Valued Functions 1 t i j 3t k t 1 2 1. r t 3. r t 1 t 1 t 2 3t Component functions: f t g t ht ln ti et j tk Component functions: f t ln t gt e t ht t Domain: 0, f 4. r t Domain: f, 1 1, f sin ti 4 cos tj tk Component functions: f t 4 t 2 i t 2 j 6tk 2. r t 4 t2 Component functions: f t 2 sin t gt 4 cos t ht t Domain: f, f gt t ht 6t Domain: > 2, 2@ Ft Gt 5. r t cos ti sin tj t k cos ti sin tj 2 cos ti tk Domain: >0, f 6. r t Ft Gt ln ti 5tj 3t 2k i 4tj 3t 2k ln t 1 i 5t 4t j 3t 2 3t 2 k ln t 1 i tj Domain: 0, f i 7. r t Ft uGt j k sin t cos t 0 cos 2 ti sin t cos tj sin 2 tk 0 sin t cos t i j k t3 t t Domain: f, f 8. r t Ft uGt 3 1 t 2 t 1 t § t3 · t · § 3 3 t 3 t ¸k ¨ t t 2 ¸i t t 2 t t j ¨ t t 1 1 © ¹ © ¹ Domain: f, 1 , 1, f 9. r t 1 t 2i 2 t 1j (a) r 1 1i 2 (b) r 0 j (c) r s 1 1 2 2 s 1 i s 11j (d) r 2 't r 2 1 2 2 s 1 i sj 2 2 't i 2 't 1 j 2i j 2't 82 1 2 1 2 't 2 i 't j 1 't 2 2 2' t 1 2 't 2 i 1 ' t j 2i j 't 4 i ' t j © 2010 Brooks/Cole, Cengage Learning Section 12.1 10. r t Vector-Valued Functions 83 cos ti 2 sin tj (a) r 0 i §S · (b) r¨ ¸ ©4¹ 2 i 2 (c) r T S 2j cos T S i 2 sin T S j §S · §S · (d) r¨ 't ¸ r¨ ¸ 6 © ¹ ©6¹ cos T i 2 sin T j § §S · S · §S · §S · cos¨ 't ¸i 2 sin¨ 't ¸ j ¨ cos¨ ¸i 2 sin j¸ 6 6 6 6 ¹ © ¹ © ¹ © © ¹ 1 ln ti j 3tk t 1 (a) r 2 ln 2i j 6k 2 11. r t (b) r 3 is not defined. ln 3 does not exist. (c) r t 4 1 j3t 4k t 4 1 ln 1 't i j 3 1 't k 0i j 3k 1 't ln t 4 i (d) r 1 't r 1 t i t 3 2 j e t 4k 12. r t (a) r 0 k (b) r 4 2i 8 j e 1k (c) r c 2 c 2i c 2 (d) r 9 't r 9 32 je ª¬ c 2 4º¼ k 9 't i 9 't 9 't 3 i 32 j e >9 ' t 4@k 3i 27 j e 9 4 k 9 't 32 rt t 2 3t 2 4t t 9t 2 16t 2 27 j e ª¬ 9 ' t 4º¼ 2 rt t 1 25t sin 3ti cos 3tj tk sin 3t rt 2 cos 3t x t 2 1t 2 t, z 2t , 0 d t d 1, Parametric equation Answers may vary 16. P 0, 2, 1 , Q 4, 7, 2 JJJG v PQ 4, 5, 3 rt x Answers may vary 2 5t , z rt 1 4t i 6 4t j 8 3t k , 0 d t d 1 x 1 4t , y 6 4t , z 8 3t , 0 d t d 1, Parametric equation (Answers may vary) 19. r t u t 4ti 2 5t j 1 3t k , 0 d t d 1 4t , y 3 12t , 18. P 1, 6, 8 , Q 3, 2, 5 JJJG v PQ 4, 4, 3 3ti tj 2tk , 0 d t d 1 3t , y 5 t, z 0 d t d 1, Parametric equation 2 15. P 0, 0, 0 , Q 3, 1, 2 JJJG v PQ 3, 1, 2 rt 2 t i 5 t j 3 12t k , 0 d t d 1 2 t , y x rt 14. e 9 4 k 17. P 2, 5, 3 , Q 1, 4, 9 JJJG v PQ 1, 1, 12 t i 3tj 4tk rt 13. § 't · ln 1 't i ¨ ¸ j 3't k © 1 't ¹ 1 3t , 0 d t d 1, Parametric equation 3t 1 t 2 3t 3 t 2 2t 3 4t 3 1 t3 4 8 4 t 3 5t 3 t 2 , a scalar. No, the dot product is a scalar-valued function. Answers may vary © 2010 Brooks/Cole, Cengage Learning 84 Chapter 12 20. r t u t Vector-Valued Functions 3 cos t 4 sin t 2 sin t 6 cos t t 2 t 2 t 3 2t 2 , a scalar. No, the dot product is a scalar-valued function. ti 2tj t 2k , 2 d t d 2 21. r t x t, y x 2 . Matches (b) So, z x cos S t , y So, x 2 y 2 sin S t , z t 2t k , 0.1 d t d 5 3 2t ln t , z 3 ti ln tj 24. r t 2 t, y x 1. Matches (c) e0.75t x 2 . Matches (d) So, y cos S t i sin S t j t 2k , 1 d t d 1 22. r t t2, z t, y x t2 2t , z ti t 2 j e 0.75t k , 2 d t d 2 23. r t 2x 3 So, z and y ln x. Matches (a) 25. (a) View from the negative x-axis: 20, 0, 0 (b) View from above the first octant: 10, 20, 10 (c) View from the z-axis: 0, 0, 20 (d) View from the positive x-axis: 20, 0, 0 ti tj 2k 26. r t x t, y (a) 0, 0, 20 2 x t, z y (b) 10, 0, 0 (c) 5, 5, 5 z z y 1 2 3 3 2 1 −3 −3 −2 1 −2 −1 −1 2 2 1 2 3 3 y 1 x y t t 4 t 1 y 4x 1 27. x 2 4x x 3 3 −3 29. x t3, y y x2 3 t2 y 7 6 5 4 3 2 y 4 3 2 1 x − 5 − 4 − 3 − 2 −1 x − 4 −3 − 2 − 1 1 2 3 4 5t t y t y 5 x Domain: t t 0 1 2 3 4 5 −2 −3 −2 28. x y −2 t 2 t, y 30. x 5 x t2 t y y 9 8 7 6 5 4 3 2 1 5 4 3 2 1 x − 5 −4 − 3 − 2 − 1 1 2 3 4 5 x −1 1 2 3 4 5 −1 © 2010 Brooks/Cole, Cengage Learning Section 12.1 cos T , y 31. x 2 cos t , y 37. x y 2 sin t , z 1, Ellipse x2 y2 4 4 z t 2 1 x −3 −2 z t 2 3 1 Circular helix −3 3 x 32. x y 2 x 2 cos t y 2 sin t 2 4, circle t, y 38. x y y2 z2 1 3 cos t , z 3 sin t 3 3 sin t 3 cos t −1 2 tan T y 9 y 4 8 x 12 y2 1, Hyperbola 4 9 4 4 x2 9 3 z 1 −1 3 sec T , y 3 Circular helix along cylinder y 2 z 2 x 33. x 85 7 y2 9 x2 3 sin T Vector-Valued Functions 9 6 3 6 −3 2 sin t , y 39. x x −12 −9 − 6 et 2 cos t , z 9 12 x2 y2 −6 −9 z −12 e 4 t z 2 cos3 t , y 34. x § x· ¨ ¸ ©2¹ 23 2 sin 3 t § y· ¨ ¸ © 2¹ 23 y 23 6 cos 2 t sin 2 t 1 x 23 −3 22 3 y 3 3 x y 3 40. x 2 x −3 −2 2 x 3 t2, y 2t , z y2 ,z 4 3 y 4 3 t 2 −2 −3 35. x t 1 y 4t 2 z 2t 3 z (0, 6, 5) 5 t 2 1 0 1 2 x 4 1 0 1 4 y 4 2 0 2 4 z 3 32 0 3 2 3 4 3 (2, − 2, 1) Line passing through the points: 0, 6, 5 , 1, 2, 3 (1, 2, 3) z 1 3 4 5 3 y 6 3 2 x 36. x −4 − 3 − 2 −1 t y 2t 5 y 3t z ( 25 , 0, 152 ) 5 −6 2 3 4 y −3 x −4 Line passing through the points: 0, 5, 0 , 2 −2 4 −6 1 −1 6 (0, −5, 0) 1 −2 5 , 0, 15 2 2 2 4 x 6 2 4 y −4 −6 © 2010 Brooks/Cole, Cengage Learning y Chapter 12 86 t2, z t, y 41. x 2t3 3 z 1 3 2 t 2 i tj t k 2 2 43. r t 2 x3 3 x2 , z y Vector-Valued Functions −3 2 1 0 1 2 x 2 1 0 1 2 y 4 1 0 1 4 z 16 3 23 0 2 3 −3 1 −1 2 Parabola t −2 −2 3 y −2 x −3 −4 −5 16 3 3 2 1 t j t 2k 2 2 ti 44. r t z Parabola −3 1 z )2, 4, ) 6 −2 −1 16 3 1 1 2 4 x 2 2 3 3 −2 y −3 2 x 5 −2 y § 3 §1 1 · 3· sin ti ¨¨ cos t t ¸¸ j ¨¨ cos t ¸¸k 2 2 2 2 © ¹ © ¹ −4 42. x cos t t sin t y sin t t cos t z t Helix z z 2 4 −2 −1 1 2 x x2 y2 1 t2 or x y z 2 z 45. r t )− 2, 4, − 163 ) −6 2 2 1 z2 2 3 2 3 4 2 y 3 x 1 t y Helix along a hyperboloid of one sheet 2 sin ti 2 cos tj 46. r t Ellipse 2 sin tk z 2 1 −1 −1 1 1 −1 2 y x −2 z 47. z (a) 2π (b) π −2 −3 −2 −2 1 1 x y −2 −2 −2 2 π 4π π 2 x 2π 8π −2 −2 z (c) z 2π 2 2 2 2 x y The helix is translated 2 units back on the x-axis. (d) The height of the helix increases at a faster rate. (e) z x y 2 y The orientation of the helix is reversed. z 2 −2 π x 2 −2 −6 π −6 y 2π 6 x The axis of the helix is the x-axis. 6 y The radius of the helix is increased from 2 to 6. © 2010 Brooks/Cole, Cengage Learning Section 12.1 ti t 2 j 12 t 3h 48. r t 49. y t 5 t , then y ti t 5 j rt 5 87 x 5 Let x z Vector-Valued Functions 4 3 50. 2 x 3 y 5 2 1 1 2 3 1 2 3 4 5 4 ti 1 3 x 2 2 rt 5 x (a) u t r t 2 j is a 1 3 t , then y Let x y 0 2t 5 . 2t 5 j z translation 2 units to the left along the y-axis. 51. y 5 4 3 Let x 2 −2 1 1 2 3 2 2 ti t 2 j rt y 2 t 2 . t , then y 3 4 5 52. y x (b) u t t 2i tj 12 t 3k ti 4 t 2 j rt 5 4 t 2. t , then y Let x z has the roles of x and y interchanged. The graph is a reflection in the plane x y. 4 x2 4 3 53. x 2 y 2 2 −2 1 1 2 3 2 25 5 cos t , then y Let x y 5 sin t. 3 4 5 cos ti 5 sin tj rt 5 x (c) u t r t 4k is 54. z an upward shift 4 units. x 2 2 y2 Let x 2 5 4 2 cos t , y 2 sin t. 4 2 2 cos t i 2 sin tj rt 3 2 1 1 1 2 3 4 5 2 3 y 55. 4 x2 y2 16 4 1 5 (d) u t ti t 2 j 18 t 3k rt z shrinks the z-value by a factor of 4. The curve rises more slowly. 5 4 56. 3 2 1 2 x2 y2 9 16 y 5 3 4 x rt r t reverses 1 3 cos t and y 2 Then 5 2 tan t. 4 sec ti 2 tan tj Let x 1 (e) u t 4 sec t , y Let x x 2 x y 9 16 4 sin t cos 2 t sin 2 t 1 3 cos ti 4 sin tj z the orientation. 5 57. r1 t 4 3 2 r2 t 2 t i 4 j, 0 d t d 2 r3 t 4 t j, 0 d t d 4 1 1 2 3 4 5 1 2 3 5 ti t 2 j, 0 d t d 2 y x2 y (Other answers possible) x © 2010 Brooks/Cole, Cengage Learning Chapter 12 88 Vector-Valued Functions ti, 0 d t d 10 r1 0 58. r1 t 0, r1 10 10i 10 cos ti sin tj , r2 t S § 0 d t d So, x y 2 §S · 10i, r2 ¨ ¸ ©4¹ ¨ r2 0 4 © · 5 2i 5 2 j ¸ ¹ 0 d t d 1 r3 0 5 2i 5 2 j, r3 1 61. x 2 y 2 Other answers possible Let x t , then y and z x y So, x t, y 2 x 2 z 0 t 2 2t 2 . ti tj 2t 2k rt z ( 2, 4 ) 5 2, − (− 2, 4) 2, x 2 t 0 x 0 y 2 z 0 rt 6 2 sin t , z 4. 2 x2 4, z 2 x 2 cos t 2 4 sin t 2t . t , z z 4 or 2 sin t , y x x2 y 2 , x y 59. z 4 2 cos ti 2 sin tj 4k rt 0 2 2 cos t , y x 5 2 1 t i 5 2 1 t j, r3 t x2 y2 , z 60. z S S S 6 4 2 1 3 1 3S 4 2 2 2 0 4 2 2 S 0 2 2 2 0 2 sin ti 2 cos tj 4 sin 2 tk z 4 −3 1 2 2 y 3 3 x −3 3 3 y x 62. 4 x 2 4 y 2 z 2 If z 16, x z2 16 4t 4 t 2 . 1 2 t 2 and y t , then x z 4 t 1.3 1.2 1 0 1 1.2 x 1.69 1.44 1 0 1 1.44 y 0.85 1.25 1.66 2 1.66 1.25 z 1.3 1.2 1 0 1 1.2 2 t 2i rt 4, x z 1 sin t , then z 1 sin t 2 y 1 sin t 2 2 2 x 2 2 cos 2 t , y r 2 cos t x 1 sin t , y r 2 cos t z 1 sin t y2 y 2 16 4t 4 t 2 j tk 1 2 63. x 2 y 2 z 2 Let x 2 4 x 1 sin t and x 2 y 2 z 2 2 2 sin t y 2 2 4 4. 3 3 3 1 sin t i 2 cos tj 1 sin t k and rt 1 sin t i 2 cos tj 1 sin t k x 0 1 2 y 0 r z 2 3 2 2 S 6 0 S S 6 2 z −3 rt S t y x −3 6 2 1 3 2 r 2 r 1 1 2 2 6 2 0 0 © 2010 Brooks/Cole, Cengage Learning y Section 12.1 64. x 2 y 2 z 2 10, x y Vector-Valued Functions 89 4 z 2 sin t , then y Let x S S 2 sin t and z S S 6 2 2 1 sin 2 t x 1 3 2 2 5 2 3 2 y 3 5 2 2 3 2 1 2 z 0 0 0 6 6 2 6 2 2 2 sin t i 2 sin t j rt 65. x 2 z 2 4, y 2 z 2 4 S t 2 2 cos t. y 4 4 x 2 2 cos tk z 4 3 Subtracting, you have x 2 y 2 0 or y So, in the first octant, if you let x t i tj rt 66. x 2 y 2 z 2 Let x t , then x t, y 4 t2 . t, z 16, xy 3 4 4 t2k 2 4 y (2, 2, 0) x 4 first octant 4 and x 2 y 2 z 2 t t , then y 1 t z (0, 0, 2) r x. t2 16 z2 t2 z 16. 4 t 4 16t 2 16 84 3 d t d 8 4 3 4 y 4 x 8 4 3 t 1.5 2 2.5 3.0 3.5 8 4 3 x 1.0 1.5 2 2.5 3.0 3.5 3.9 y 3.9 2.7 2 1.6 1.3 1.1 1.0 z 0 2.6 2.8 2.7 2.3 1.6 0 ti rt 67. y 2 z 2 4 1 j t 4 16t 2 16k t t 2t cos t 2 2t sin t 2 4t 2 4x2 e t cos t 68. x 2 y 2 z 7 6 5 e t sin t 2 e 2t z2 z 16 160 12 120 8 80 4 x 2 40 4 8 40 120 80 12 16 x y 40 80 120 y 69. lim ti cos tj sin tk Si j 2 1 · § 70. lim ¨ 3ti 2 j k¸ t o2 © t 1 t ¹ 6i t oS 2 1 j k 3 2 © 2010 Brooks/Cole, Cengage Learning 90 Chapter 12 Vector-Valued Functions 1 cos t º ª 71. lim «t 2i 3tj k» t o0¬ t ¼ because 1 cos t lim t o0 t § 72. lim ¨ t o1 © ti lim t o0 sin t 1 0. L'Hôpital's Rule ln t 1 · j k¸ t2 1 t 1 ¹ does not exist because lim t o1 t 2 i t 3 j tk 81. r t 0 1 does not exist. t 1 (a) s t r t 3k t 2i t 3 j t 3 k (b) s t r t 2i t 2 2 i t 3 j tk (c) s t r t 5j 82. A vector-valued function r is continuous at t a if the limit of r t exists as t o a and lim r t ra. t oa ­ i j t t 2 is not continuous at ® ¯i j t 2 The function r t sin t ª º j et k » 73. lim «et i t o0 ¬ t ¼ i jk 0. t because t 2 i t 2 j tk 83. One possible answer is sin t lim t o0 t cos t lim t o0 1 1 L'Hôpital's Rule 1 t ª º 74. lim «e t i j 2 k t of ¬ t t 1 »¼ 1.5 cos ti 1.5 sin tj rt Note that r 2S 0 1 S tk , 0 d t d 2S 1.5i 2k. z 3 because 1 t of t lim et 0, lim t of 0, and lim t of t 2 t 1 2 0. −2 1 −2 −1 −1 75. r t 1 1 ti j t 2 −1 2 x y Continuous on f, 0 , 0, f 84. (a) x 76. r t ti t 1j x 1 9 Continuous on >1, f 77. r t ti arcsin tj t 1 k (b) x 2e t , e t , ln t 1 Continuous on t 1 ! 0 or t ! 1: 1, f . 79. r t e t , t 2 , tan t Discontinuous at t S 2 nS 8, t, 3 y 2 25 1, z 3 cos t 1, z 2 z 2 25 2 y 2 25 2 y 2 25 4 4 5 sin t 2 2 1, x 4 5 sin t 2, z 4 2 1, z 3 cos 2t 1, y x 1 9 5 sin t 2, z 2 3 cos t 1, y x 1 9 (d) x S § S · Continuous on ¨ nS , nS ¸ 2 © 2 ¹ 80. r t (c) x 2 4, y y 1 9 Continuous on >1, 1@ 78. r t 3 cos t 1, y 4 5 sin 2t 2, z 4 2 1, z 4 (a) and (d) represent the same graph t Continuous on >0, f © 2010 Brooks/Cole, Cengage Learning Section 12.1 x1 t i y1 t j z1 t k and u t 85. Let r t Vector-Valued Functions x2 t i y2 t j z2 t k. Then: ^ lim ¬ªr t u u t º¼ t oc 91 ` lim ª¬ y1 t z2 t y2 t z1 t º¼ i ª¬ x1 t z2 t x2 t z1 t º¼ j ª¬ x1 t y2 t x2 t y1 t º¼ k t oc ªlim y t lim z t lim y t lim z t º i ªlim x t lim z t lim x t lim z t º j 2 1 2 1 «¬t o c 1 t o c 2 »¼ «¬t o c 1 t o c 2 »¼ t oc t oc t oc t oc ª«lim x1 t lim y2 t lim x2 t lim y1 t º»k t oc t oc t oc ¬t o c ¼ ªlim x t i lim y t j lim z t k º u ªlim x t i lim y t j lim z t k º 1 1 2 2 »¼ «¬t o c 2 »¼ t oc t oc t oc t oc ¬«t o c 1 lim r t u lim u t t oc t oc x1 t i y1 t j z1 t k and u t 86. Let r t lim ¬ªr t u t ¼º t oc x2 t i y2 t j z2 t k. Then: lim ª¬ x1 t x2 t y1 t y2 t z1 t z2 t º¼ t oc lim x1 t lim x2 t lim y1 t lim y2 t lim z1 t lim z2 t t oc t oc t oc t oc t oc t oc ªlim x t i lim y t j lim z t k º ªlim x t i lim y t j lim z t k º 1 1 2 2 »¼ ¬«t o c 2 »¼ t oc t oc t oc t oc ¬«t o c 1 lim r t lim u t t oc t oc x t i y t j z t k. Because r is 87. Let r t continuous at t c, then lim r t t oc rc. are defined at c. xt r lim r 2 xc t oc 2 yt yc 2 2 zt zc Equating components t 2 s 3 t2 2 t 2 c 12s 2 2 s 3 rc ­ 1, if t t 0 ® ¯1, if t 0 8s 4 s 2 12 s 9 8s 4 s 20 s 9 0 2s 9 2s 1 0 For s 1, 2 t 2 1 2 3 2. For s 9, 2 t 2 9 2 3 6 and f t i. Then r is not continuous at 0, whereas, r 2 2 88. Let and r t 8s 3 So, r is continuous at c f t 2s 3 i 8sj 12 s 2 k us x ci y c j z ck x c,y c,z c rc ti t 2 j t 3k 90. r t 1 is continuous for all t. t2 8 9 2 36 and t 3 12 9 2 54. Impossible. The paths intersect at 2, 4, 8 , but at different times t 2i 9t 20 j t 2k 89. r t t 2 and s 3s 4 i s 2 j 5s 4 k. us 9t 20 t 2 So, 3s 4 3s 4 s . No collision. 91. No, not necessarily. See Exercise 90. Equating components: t2 1 2 92. Yes. See Exercise 89. 2 93. True 5s 4 5s 4 s 94. False. The graph of x y z t 3 represents a line. 4 9t 20 s2 16 t 4. The paths intersect at the same time t 16, 16, 16 . The particles collide. 95. True. See Exercises 89 and 90. 4 at the point 96. True. y 2 z 2 t 2 sin 2 t t 2 cos 2 t t2 x © 2010 Brooks/Cole, Cengage Learning 92 Chapter 12 Vector-Valued Functions Section 12.2 Differentiation and Integration of Vector-Valued Functions t 2i tj, t0 1. r t t2, y t xt x 2 t x2 y2 r 4i 2 j rc t 2ti j −2 rc 2 4i j −4 4 6 §S · r¨ ¸ ©2¹ rc t 8 rc t0 is tangent to the curve at t 0 . ti t 1 j, t0 2 t, y t xt sin t r′ 1 r §S · rc¨ ¸ ©2¹ 1 sin ti cos tj i rc t0 is tangent to the curve at t 0 . y t2 1 x 1 j 3 y x2 1 r1 2 r′ (1, 0) r i 2tj rc 1 i 2j −3 − 2 − 1 1 2 x 3 2 r c t0 is tangent to the curve at t 0 . 1 t 2i j, t0 t 2 §S · rc¨ ¸ ©2¹ y 2 1 y2 x §S · r¨ ¸ ©2¹ rc t 1 t t2, y t xt r 1 1 j 2 1 2ti 2 j t 1 4i j 4 rc t rc 2 (4, ( y 7. r t 1 y 1t t3 x 1 1, ellipse y 3i 3 2 3 cos ti 4 sin tj 1 −4 4 j (3, 0) r −2 −1 1 −2 x 2 4 r′ rc t0 is tangent to the curve at t 0 . r′ 2 1 t i t 3 j, t0 4. (a) r t 2 −3 1 2 rc t0 is tangent to the curve at t 0 . x 2 4 cos t x 4i r2 3 sin t , y t xt § x· § y· ¨ ¸ ¨ ¸ ©3¹ © 4¹ −2 −3 3. r t S 3 sin ti 4 cos tj, t0 6. r t 1 i rc t (0, 1) x 2 2. r t cos t , y t xt r′ (4, 2) 2 y 2 4 y2 r2 S cos ti sin tj, t0 5. r t y e t , e 2 t , t0 xt et , y t y x2 , x ! 0 0 e 2t et 2 y 3 r0 1, 1 2 rc t e t , 2e 2 t 1 rc 0 1, 2 r′ (1, 1) r x 1 2 3 rc t0 is tangent to the curve at t 0 . 3 3 r 2 (b) r 1 2i j rc t i 3t 2 j rc 1 i 3j 1 (2, 1) r x −1 1 −1 2 3 (1, 0) rc t0 is tangent to the curve at t 0 . © 2010 Brooks/Cole, Cengage Learning Section 12.2 e t , et , t0 8. r t 1 , yt et et xt 0 15. r t y et r′ 1, 1 rc t e t , et rc 0 1, 1 x 1 2 rc t −1 rc t 4, z 2 j y 2π 2 19. r t 2 i 2tj r2 2i 4 j x 4 rc t −4 3t 2 , 3 sin 3t , 3 cos 3t t sin t , t cos t , t 21. r t r rc t −6 −4 y sin t t cos t , cos t t sin t , 1 r' i 4j −6 arcsin t , arccos t , 0 22. r t t 3i 3tj rc t t 3 , cos 3t , sin 3t −2 2 3k 2 e t i 5et 5tet k 20. r t 2 −2 1 rc t 1 t2 3t 2i 3 j 23. r t ti 1 t3 j 12. r t 1 i 3t 2 j 2 t rc t 2 cos t , 5 sin t 13. r t rc t t sin t cos t , 2 cos t 1 1 t2 ,0 1 2 t j 2 3t 2i tj (b) rcc t 6ti j 3t 2 6t t 18t 3 t t2 t i t2 t j (a) rc t 2t 1 i 2t 1 j (b) rcc t 2i 2 j (c) rc t rcc t 25. r t , (a) rc t 24. r t t cos t , 2 sin t rc t t 3i (c) rc t rcc t 2 sin t , 5 cos t 14. r t t2 · 2 ¸j k t 2 t¹ e t i 4 j 5tet k rc t y z 3 2 rc t rc 2 2 t 2 5t 3 2 2 i j k 2 t t 1 x t j ln t 2k § 2 i ¨ 2t t © r π 2i k x2 , z 4 ti t 2 r′ 3S k 2 ti t 2 j 32 k , t0 11. r t )0, − 2, 32π ) 3a cos 2 t sin ti 3a sin 2 t cos tj rc t −2 § 3S · rc¨ ¸ © 2 ¹ 10. r t 18. r t z t 2 sin ti 2 cos tj k § 3S · r¨ ¸ © 2 ¹ 3S 2 2 cos ti 2 sin tj tk , t0 9. (a) and (b) r t rc t a cos3 ti a sin 3 tj k 17. r t rc t0 is tangent to the curve at t 0 . x2 y 2 t2 1 i 16tj k t 2 1 2 i 16 j tk t 16. r t r −1 r0 6i 14tj 3t 2k (1, 1) 1 93 6ti 7t 2 j t 3k rc t 2 1 , x ! 0 x y Differentiation and Integration of Vector-Valued Functions 2t 1 2 2t 1 2 8t 4 cos ti 4 sin tj (a) rc t 4 sin ti 4 cos tj (b) rcc t 4 cos ti 4 sin tj (c) rc t rcc t 4 sin t 4 cos t 4 cos t 4 sin t 0 © 2010 Brooks/Cole, Cengage Learning 94 Chapter 12 26. r t Vector-Valued Functions 8 cos ti 3 sin tj (a) rc t 8 sin ti 3 cos tj (b) rcc t 8 cos ti 3 sin tj (c) rc t rcc t 8 sin t 8 cos t 3 cos t 3 sin t 1 2 1 t i tj t 3k 2 6 27. r t (a) rc t ti j (b) rcc t i tk (c) rc t rcc t 1 2 t k 2 t1 10 1 2 t t 2 t t3 2 ti 2t 3 j 3t 5 k 28. r t (a) rc t i 2 j 3k (b) rcc t 0 (c) rc t rcc t 0 cos t t sin t , sin t t cos t , t 29. r t (a) rc t sin t sin t t cos t , cos t cos t t sin t , 1 (b) rcc t cos t t sin t , sin t t cos t , 0 (c) rc t rcc t t cos t , t sin t , 1 t cos t cos t t sin t t sin t sin t t cos t t e t , t 2 , tan t 30. r t (a) rc t e t , 2t , sec 2 t (b) rcc t e t , 2, 2 sec 2 t tan t e 2t 4t 2 sec 4 t tan t (c) rc t rcc t 31. 55 sin t cos t rt cos S t i sin S t j t 2k , t0 rc t S sin S t i S cos S t j 2tk 2S i 2 § 1· rc¨ ¸ © 4¹ § 1· rcc¨ ¸ © 4¹ rcc 1 4 rcc 1 4 2S 1 j k 2 2 2 rc 1 4 rc 1 4 § 1· rcc¨ ¸ © 4¹ 1 4 2 2 § 2S · § 2S · § 1· ¨¨ 2 ¸¸ ¨¨ 2 ¸¸ ¨© 2 ¸¹ © ¹ © ¹ §1· rc¨ ¸ © 4¹ rcc t 1 2S i 4S 1 2 S2 1 4 4S 2 1 2 z r″ ⎜⎜r ″ ⎜⎜ 2S j k S 2 cos S t i S 2 sin S t j 2k 2S 2 i 2 2S 2 j 2k 2 2 § ¨¨ © § 2S 2 · ¸ ¨¨ 2 ¸¹ © 1 2 S4 4 x y 2 2S 2 · ¸ 2 2 ¸¹ 2S 2i r′ ⎜⎜r ′ ⎜⎜ 2 S4 4 2S 2 j 4k © 2010 Brooks/Cole, Cengage Learning Section 12.2 32. rc t §1· rc¨ ¸ © 4¹ 3 1 i j e 1 4k 2 2 §1· r c¨ ¸ © 4¹ rc 1 4 rc 1 4 9 1 e 1 2 4 4 3 10 4e 1 2 1 10 4e1 2 2 1 i 10 4e 1 2 §1· 2 j e t k , rcc¨ ¸ © 4¹ rcc t §1· rcc¨ ¸ © 4¹ 2 4e rc 0 0 1 2 j e 1 4 4 e 1 2 rc t 39. r t 1 2 cos3 T i 3 sin 3 T j 6 cos 2 T sin T i 9 sin 2 T cos T j 1 cos T i sin T j Smooth on 37. r T rc T 1 t 1 i j t 2k t 1 i 2 j 2tk z 0 t r is smooth or all t z 0: f, 0 , 0, f 40. r t et i e t j 3tk et i e t j 3k z 0 r is smooth for all t: f, f T sin T i 1 cos T j rc 2 n 1 S rc t rc t 0 § nS n 1 S · Smooth on ¨ , ¸, n any integer. 2 © 2 ¹ rc T 2. r is not continuous when t Smooth on f, 2 , 2, f Smooth on f, 1 , 1, f § nS · rc¨ ¸ © 2 ¹ 2t 2t 2 i j 3 8t 8 t3 16 4t 3 32t 2t 4 i j 2 2 t3 8 t3 8 rc t z 0 for any value of t. 1 i 3tj t 1 1 i 3j 2 t 1 Not continuous when t 36. r T k k Smooth on f, 0 , 0, f rc T 10 4e 1 2 38. r t 2ti 3t 2 j 35. r T 2e 1 4 2 j e 1 4k t 2i t 3 j rc t rc t j 4 e 1 2 §1· rcc¨ ¸ ©4¹ §1· rcc¨ ¸ ©4¹ 34. r t 95 3 1 ti t 2 j e t k , t 0 2 4 3 1 3 1 § · i 2tj e t k , r¨ ¸ i j e 1 4k 2 8 16 © 4¹ rt 33. r t Differentiation and Integration of Vector-Valued Functions 0, n any integer 2n 1 S , 2 n 1 S T 2 sin T i 1 2 cos T j 1 2 cos T i 2 sin T j rc T z 0 for any value of T Smooth on f, f 41. r t rc t ti 3tj tan tk i 3 j sec 2 tk z 0 r is smooth for all t z S 2 nS 2n 1 S. 2 S § S · Smooth on intervals of form ¨ nS , nS ¸, 2 2 © ¹ n is an integer. 42. r t rc t ti t2 1 j 1 i 2tj 1 tk 4 1 k z 0 4 2 t r is smooth for all t ! 0: 0, f © 2010 Brooks/Cole, Cengage Learning 96 Chapter 12 Vector-Valued Functions ti 3tj t 2k , u t 43. r t (a) rc t i 3 j 2tk (b) rcc t 2k (c) r t u t 4ti t 2 j t 3k 4t 2 3t 3 t 5 Dt ¬ªr t u t ¼º 8t 9t 2 5t 4 (d) 3r t u t ti 9t t 2 j 3t 2 t 3 k Dt ª¬3r t u t º¼ (e) r t u u t i 9 2t j 6t 3t 2 k 2t 4i t 4 4t 3 j t 3 12t 2 k Dt ¬ªr t u u t º¼ 8t 3i 12t 2 4t 3 j 3t 2 24t k 10t 2 t 4 (f ) r t t 10 t 2 10 2t 2 Dt ª¬ r t º¼ 10 t 2 ti 2 sin tj 2 cos tk 44. r t 1 i 2 sin tj 2 cos tk t ut (a) rc t i 2 cos tj 2 sin tk (b) rcc t 2 sin tj 2 cos tk (c) r t u t 1 4 sin 2 t 4 cos 2 t Dt ¬ªr t u t ¼º 0, t z 0 1· § ¨ 3t ¸i 4 sin tj 4 cos tk t¹ © (d) 3r t u t 1· § ¨ 3 2 ¸i 4 cos tj 4sin tk t ¹ © Dt ª¬3r t u t º¼ j kº ªi « » «t 2 sin t 2 cos t » «1 » « 2 sin t 2 cos t » ¬t ¼ (e) r t u u t t2 4 1 2 t 4 2 Dt r t 45. r t ti 2t 2 j t 3k , u t (a) r t u t 1· §1 · § 2 cos t ¨ t ¸ j 2 sin t ¨ t ¸k t¹ ©t ¹ © ª ª 1· 1 ·º §1 · § 1 ·º § § «2 sin t ¨ t t ¸ 2 cos t ¨ t 2 1¸» j «2 cos t ¨ t t ¸ 2 sin t ¨1 t 2 ¸» k © ¹ © ¹ © ¹ © ¹¼ ¬ ¼ ¬ Dt ¬ªr t u t º¼ (f ) r t 5 1 2 2t t t 4 2 t 4k t7 (i) Dt ¬ªr t u t ¼º 7t 6 (ii) Alternate Solution: Dt ª¬r t u t º¼ r t uc t rc t u t ti 2t 2 j t 3k 4t 3k i 4tj 3t 2k t 4k 4t 6 3t 6 7t 6 © 2010 Brooks/Cole, Cengage Learning Section 12.2 (b) r t u u t i j k t 2 t3 2t Differentiation and Integration of Vector-Valued Functions 2t 6i t 5 j 0 t4 0 (i) Dt ª¬r t u u t º¼ 12t 5i 5t 4 j r t u uc t u rc t u u t (ii) Alternate Solution: Dt ¬ªr t u u t º¼ i j k t 2 t 1 4t 3t 2 0 cos ti sin tj tk , u t 46. r t (a) r t u t 97 2t i j k 3 0 4t 3 0 0 t 12t 5i 5t 4 j 4 j tk sin t t 2 (i) Dt ¬ªr t u t ¼º cos t 2t (ii) Alternate Solution: r t uc t rc t u t Dt ª¬r t u t º¼ cos ti sin tj tk k sin ti cos tj k j tk i (b) r t u u t j (i) Dt ª¬r t u u t º¼ 2t cos t k cos t sin t 0 t cos t t t sin t t i t cos t j cos tk t 1 t t cos t sin t 1 i cos t t sin t j sin tk (ii) Alternate Solution: r t u uc t rc t u u t Dt ª¬r t u u t º¼ i j k cos t sin t 0 47. 0 rt 3 sin ti 4 cos tj rc t 3 cos ti 4 sin tj r t rc t ª arccos « « «¬ T j 1 t 0 1 7 sin t cos t 9 sin 2 t 16 cos 2 t º » 9 cos 2 t 16 sin 2 t »» ¼ 7 sin t cos t 9 sin 2 t 16 cos 2 t 1.855 maximum at t 3.927 T 1.287 minimum at t 2.356 § 3S · ¨ ¸ and t © 4 ¹ 2 9 cos 2 t 16 sin 2 t T S sin t t cos t 1 i t sin t cos t j sin tk 7 sin t cos t § 5S · ¨ ¸ and t © 4 ¹ T k 1 9 sin t cos t 16 cos t sin t r t rc t rt rc t cos T i t sin t cos t 1.571 for t nS ,n 2 0.785 5.498 §S · −1 7 0 ¨ ¸. ©4¹ § 7S · ¨ ¸. © 4 ¹ 0, 1, 2, 3, ! © 2010 Brooks/Cole, Cengage Learning 98 Chapter 12 Vector-Valued Functions rt t 2 i tj rc t 2ti j r t rc t 2t 3 t 48. t 4 t 2 , rc t rt cos T T T 1.0 4t 2 1 2t 3 t −0.5 t 4 t 2 4t 2 1 ª º 2t 3 t arccos « » 4 2 2 4t 1 ¼ ¬ t t 0.340 | 19.47q maximum at t T z S 2 49. rc t 2 ª¬3 t 't 2º¼ i ª1 t 't º j 3t 2 i 1 t 2 j ¬ ¼ lim 't o 0 't r t 't r t lim 't o 0 't lim 2 r t 't r t 't 3 ª « t 't i t 't j 2 t 't ¬ lim 't o 0 't lim 't o 0 't t 't t lim ª 1 lim « ¬ t 't 't o 0 « t i t 3 3 º t t t j 2k » ' i » 't » ¼ º 3 j 2k » t 't t »¼ 1 2 t i 3 j 2k t2 r t 't r t 't 2 t 2 , 0, 2t 2t't 't , 0, 2't lim 't 't o 0 lim ª « t 't lim « 't o 0 't « ¬ r t 't r t 't 2 't o 0 3 º ª º k » « t i j 2tk » t ¼ ¬ ¼ º 3't j 2k » » t 't t 't ¼ i t 't , 0, 2 t 't lim 0, sin t 't , 4 t 't 't o 0 't 0, 0 cos t , 4 ³ 2ti j k dt 54. ³ 4t 3i 6tj 4 t k dt 55. ³ ¨© t i 56. ³ «¬ln ti 1 º j k » dt t ¼ lim 2t 't , 0, 2 't o 0 2t , 0, 2 0, sin t , 4t 't lim 0, 't o 0 sin t cos 't 1 't § sin 't cos t ¨ © 't · ¸, 4 ¹ 0, cos t , 4 53. · j t 3 2k ¸ dt ¹ 't 't o 0 0, sin t cos 't sin 't cos t sin t , 4't 't o 0 ª 3i 2tj lim lim §1 lim 3i 2t 't j 't o 0 't o 0 ª lim « 't o 0 « 't ¬ 52. rc t j 't 't o 0 51. rc t § 2· ¨¨ ¸¸. © 2 ¹ 0.707 for any t. 3't i 2t 't 't 50. rc t 0 t 2 i tj tk C t 4i 3t 2 j 83 t 3 2k C ln ti tj 2 52 t k C 5 t ln t t i ln tj tk C (Integration by parts) © 2010 Brooks/Cole, Cengage Learning Section 12.2 57. ³ ª¬ 2t 1 i 4t 58. ³ ª¬e i sin tj cos tk º¼ dt 59. ³ «¬sec 2 60. ³ ª¬e sin ti e t cos tjº¼ dt 3 j 3 t k º¼ dt t ti t 2 t i t 4 j 2t 3 2k C 1 º j dt 1 t 2 »¼ tan ti arctan tj C et et sin t cos t i cos t sin t j C 2 2 1 1 61. ³0 62. ³ 1 ti t 63. ³0 64. ³0 65. 66. 1 1 S 2 S 4 2 ³0 1 ªt 2 º 1 ª¬4t 2iº¼ « j» >tk @0 0 2 ¬ ¼0 8ti tj k dt 3 j 3 99 et i cos tj sin tk C t ª Differentiation and Integration of Vector-Valued Functions 1 jk 2 4i 1 1 ªt 2 º ªt 4 º ª3 4 3 º « i» « j» « t k » 2 4 ¼ 1 ¬ ¼ 1 ¬ ¼ 1 ¬ 4 t k dt S 2 >a sin ti@0 ª¬ a cos t i a sin t j k º¼ dt 0 S 2 >a cos tj@0 ª¬ sec t tan t i tan t j 2 sin t cos t k º¼ dt S 2 >tk @0 ai aj S 2 S 4 ª¬sec ti ln sec t j sin 2 tk º¼ 0 k 2 1 i ln 2 j 12 k 2 2 ªt 2 º t 2 t « i» ¬ªe j¼º 0 ¬ª t 1 e k ¼º 0 2 ¬ ¼0 ti et j tet k dt ti t 2 j 3 ³0 67. r t r0 rt t2 t4 3 ³0 t ti t 2 j dt ³ t 1 t 2 for t t 0 1 t 2 dt 4e 2t i 3et j dt 2i 3 j C 2i e 2 1 j e 2 1 k ª1 1 t 2 ¬« 3 32 3 2e 2t i 3et j C 2i C 3 j 2e 2 t i 3 e t 1 j 68. r t ³ r0 C rt i 2 t 3 j 4t 3 2k 3t j 6 t k dt 2 t j 4t k C 3 32 i 2j º ¼» 0 1 3 103 2 1 70. rcc t 4 sin tj 3 cos tk C1 rc 0 3k ³ 32 j dt 32tj C1 rc 0 C1 rc t 600 3i 600 32t j rt ³ ª¬600 600 3i 600 j 3i 600 32t jº¼ dt 600 3ti 600t 16t 2 j C r0 C rt 600 3ti 600t 16t 2 j 0 3k C1 C1 rt 4 cos tj 3 sin tk C2 r0 4 j C2 rt 4 cos tj 3 sin tk 71. r t 69. rc t 4 cos tj 3 sin tk rc t ³ 2 4 j C2 te t i e1j k dt 0 0 1 2 e t i e t j tk C 2 r0 1 i jC 2 1 i jk C 2 rt 1 t 2 · § t ¨1 e ¸i e 2 j t 1 k 2 © ¹ i 2j k § 2 et 2 · ¨ ¸i e t 2 j t 1 k ¨ ¸ 2 © ¹ © 2010 Brooks/Cole, Cengage Learning 100 Chapter 12 ª Vector-Valued Functions 1 ³ «¬1 t 2 i 72. r t 74. To find the integral of a vector-valued function, you integrate each component function separately. The constant of integration C is a constant vector. 1 1 º j k » dt 2 t t ¼ 1 arctan ti j ln tk C t S r1 4 i jC 2i C 75. At t S· § ¨ 2 ¸i j 4¹ © and z directions simultaneously. 76. The graph of u t does not change position relative to 1· S ª º § «2 4 arctan t » i ¨1 t ¸ j ln tk ¬ ¼ © ¹ rt t0 , the graph of u t is increasing in the x, y, the xy-plane. 73. See “Definition of the Derivative of a Vector-Valued Function” and Figure 12.8 on page 842. x t i y t j z t k. Then 77. Let r t cr t cx t i cy t j cz t k and Dt ª¬cr t º¼ cxc t i cyc t j czc t k c ª¬ xc t i yc t j zc t k º¼ 78. Let r t x1 t i y1 t j z1 t k and u t rt rut Dt ª¬r t r u t º¼ x2 t i y2 t j z2 t k. ª¬ x1 t r x2 t º¼ i ª¬ y1 t r y2 t º¼ j ª¬ z1 t r z2 t º¼ k ª x1c t r x2c t º i ª y1c t r y2c t º j ª z1c t r z2c t º k ¬ ¼ ¬ ¼ ¬ ¼ ª x c t i y1c t j z1c t k º r ª x2c t i y2c t j z2c t k º ¬ 1 ¼ ¬ ¼ 79. Let r t x t i y t j z t k , then w t r t Dt ª¬w t r t ¼º ª¬w t xc t wc t x t º¼ i ª¬w t yc t wc t y t º¼ j ª¬w t zc t wc t z t º¼ k x1 t i y1 t j z1 t k and u t rt uut D1 ª¬r t u u t º¼ rc t r uc t w t x t i w t y t j w t z t k. w t ª¬ xc t i yc t j zc t k º¼ wc t ª¬ x t i y t j z t k º¼ 80. Let r t crc t . w t rc t wc t r t x2 t i y2 t j z2 t k. ª¬ y1 t z2 t z1 t y2 t º¼ i ª¬ x1 t z2 t z1 t x2 t º¼ j ª¬ x1 t y2 t y1 t x2 t º¼ k ª y1 t z2c t y1c t z2 t z1 t y2c t z1c t y2 t º i ª x1 t z2c t x1c t z2 t z1 t x2c t z1c t x2 t º j ¬ ¼ ¬ ¼ ª x1 t y2c t x1c t y2 t y1 t x2c t y1c t x2 t º k ¬ ¼ ^¬ª y t z c t ^ª y c t z ¬ 1 1 ` z1 t y2c t º i ª x1 t z2c t z1 t x2c t º j ª x1 t y2c t y1 t x2c t º k ¼ ¬ ¼ ¬ ¼ 2 2 ` t z1c t y2 t º i ª x1c t z2 t z1c t x2 t º j ª x1c t y2 t y1c t x2 t º k ¼ ¬ ¼ ¬ ¼ r t u uc t rc t u u t 81. Let r t x t i y t j z t k. Then r w t Dt ª¬r w t º¼ x w t i y w t j z w t k and xc w t wc t i yc w t wc t j zc w t wc t k Chain Rule wc t ª¬ xc w t i yc w t j zc w t k º¼ 82. Let r t x t i y t j z t k. Then rc t r t u rc t Dt ª¬r t u rc t º¼ wc t rc w t . xc t i yc t j zc t k. ª¬ y t zc t z t yc t º¼ i ª¬ x t zc t z t xc t º¼ j ª¬ x t yc t y t xc t º¼ k ª¬ y t zcc t yc t zc t z t ycc t zc t yc t º¼ i ª¬ x t zcc t xc t zc t z t xcc t zc t xc t º¼ j ª¬ x t ycc t xc t yc t y t xcc t yc t xc t º¼k ª¬ y t zcc t z t ycc t º¼ i ¬ª x t zcc t z t xcc t ¼º j ª¬ x t ycc t y t xcc t º¼ k r t u rcc t © 2010 Brooks/Cole, Cengage Learning Section 12.2 x1 t i y1 t j z1 t k , u t 83. Let r t r t ¬ªu t u v t º¼ Differentiation and Integration of Vector-Valued Functions x2 t i y2 t j z2 t k , and v t 101 x3 t i y3 t j z3 t k. Then: x1 t ª¬ y2 t z3 t z2 t y3 t º¼ y1 t ª¬ x2 t z3 t z2 t x3 t º¼ z1 t ª¬ x2 t y3 t y2 t x3 t º¼ x1 t y2 t z3c t x1 t y2c t z3 t x1c t y2 t z3 t x1 t y3 t z2c t Dt ª¬r t u t u v t º¼ x1 t y3c t z2 t x1c t y3 t z2 t y1 t x2 t z3c t y1 t x2c t z3 t y1c t x2 t z3 t y1 t z2 t x3c t y1 t z2c t x3 t y1c t z2 t x3 t z1 t x2 t y3c t z1 t x2c t y3 t z1c t x2 t y3 t z1 t y2 t x3c t z1 t y2c t x3 t z1c t y2 t x3 t ^x c t ª¬ y 1 ` t z3 t y3 t z2 t º¼ y1c t ª ¬ x2 t z3 t z2 t x3 t º¼ z1c t ª¬ x2 t y3 t y2 t x3 t º¼ 2 ^ ^x t ª y ¬ ` t x c t º` ¼ x1 t ª y2c t z3 t y3 t z2c t º y1 t ª x2c t z3 t z2c t x3 t º z1 t ª x2c t y3 t y2c t x3 t º ¬ ¼ ¬ ¼ ¬ ¼ 1 2 t z3c t y3c t z2 t º y1 t ª x2 t z3c t z2 t x3c t º z1 t ª x2 t y3c t y2 ¼ ¬ ¼ ¬ 3 rc t ª¬u t u v t º¼ r t ª¬uc t u v t º¼ r t ª¬u t u vc t º¼ x t i y t j z t k. If r t r t is constant, then: 84. Let r t x2 t y2 t z 2 t C Dt >C @ Dt ª¬ x t y t z t º¼ 2 x t xc t 2 y t yc t 2 z t zc t 0 2 ª¬ x t xc t y t yc t z t zc t º¼ 0 2 ª¬r t rc t º¼ 0. 2 So, r t rc t 2 2 0. t sin t i 1 cos t j 85. r t (a) 2 cos ti 3 sin tj 86. r t (a) Ellipse 5 y 2 0 40 1 0 x −3 The curve is a cycloid. (b) rc t rcc t rc t 1 3 −1 1 cos t i sin tj −2 sin ti cos tj 1 2 cos t cos 2 t sin 2 t 2 2 cos t is 0, t 0. Maximum of rc t is 2, t S . sin 2 t cos 2 t (b) rc t 2 sin ti 3cos tj rcc t 2 cos ti 3 sin tj rc t Minimum of rc t rcc t −1 4 sin 2 t 9 cos 2 t Minimum of rc t is 2, t S 2. Maximum of rc t is 3, t 0. 1 Minimum and maximum of rc t is 1. © 2010 Brooks/Cole, Cengage Learning 102 Chapter 12 Vector-Valued Functions et sin ti et cos tj 87. r t rc t et cos t et sin t i et cos t et sin t j rcc t et sin t et cos t et sin t et cos t i et cos t et sin t et sin t et cos t j r t rcc t 2e 2t sin t cos t 2e 2t sin t cos t 2et cos ti 2et sin tj 0 So, r t is always perpendicular to rcc t . 89. True ti 4 t 2 j 88. (a) r t y 90. False. The definite integral is a vector, not a real number. 5 r(1) cos t i sin t j k. 91. False. Let r t 3 r (1.25) − r (1) 1 d ª rt º ¼ dt ¬ rc t x −3 −1 −1 (b) 3 r1 i 3j r 1.25 1.25i 2.4375 j r 1.25 r 1 0.25i 0.5625 j (c) 2 rt r(1.25) 2 0 sin t i cos t j rc t 1 92. False. rc t i 2tj D ¬ªr t u t ¼º rc 1 i 2j (See Theorem 2.2, part 4) r 1.25 r 1 1.25 1 0.25i 0.5625 j 0.25 r t uc t rc t u t i 2.25 j This vector approximates rc 1 . Section 12.3 Velocity and Acceleration 1. r t 3ti t 1 j vt rc t 3i j at rcc t 0 3t , y y x 1 3 2ti j at rcc t 2i 6 t2, y t, x At 4, 2 , t 2. v2 4i j a2 2i x −4 1. 3i j, a 1 6 t i tj vt rc t i j at rcc t 0 x 6 t, y v a y2 x 2 4 6 −2 −4 0 ti t 2 4 j 4. r t 2. r t (4, 2) 2 4 −2 At 3, 0 , t v1 vt 4 v x t 1, y rc t 2 (3, 0) x t 2 i tj 3. r t y 6 x t, y vt rc t at rcc t x i 2tj t 4 t, y At 1, 3 , t y 2 j 4 x2 2 i 2 j, a 1 1, v 1 2 j y 5 4 v (1, 3) 3 (3, 3) 2 2 1 x 2 4 a v x −3 −1 © 2010 Brooks/Cole, Cengage Learning 8 Section 12.3 t 2i t 3 j 5. r t rc t vt vt rc t 1 cos t , sin t at rcc t sin t , cos t y rcc t at x 2i 6tj t2, y t3, x At 1, 1 , t 8 7 6 5 4 3 2 1 y2 3 1. v1 2i 3 j a1 2i 6 j a At S , 2 , t (1, 1) x −1 t sin t , y x v 2 3 4 5 6 7 8 103 t sin t , 1 cos t 9. r t 2ti 3t 2 j Velocity and Acceleration 1 cos t cycloid S. vS 2, 0 aS 0, 1 y 4 2i (π , 2) v 2 j a x 1 t3 4 vt rc t 3 t 2i 4 at r cc t 3 ti 2 x j y At 3, 2 , t 1 1 y3 4 3 4 x 1 3i j, a 2 2, v 2 vt rc t e t , et at rcc t e t , et x 3i y 4 (3, 2) 0. v0 1, 1 a0 1, 1 v 2 1 ,y et et At 1, 1 , t 6 a 2π e t , et 10. r t t x 1, y 1 t3 4 π 1 i tj 6. r t et , y y 1 x 2 1 v (1, 1) a i j x 1 i j 2 x − 6 −4 −2 2 4 6 11. r t −4 ti 5tj 3tk vt i 5 j 3k 2 cos ti 2 sin tj st vt vt rc t 2 sin ti 2 cos tj at at rcc t 2 cos ti 2 sin tj x 2 cos t , y 2 sin t , x 2 y 2 −6 7. r t At 2, §S · v¨ ¸ ©4¹ 2 ,t S 4 12. r t 4 y 2i 0 4ti 4tj 2tk vt 4i 4 j 2k . v ( 2) 2, st vt x 2j −3 at 0 16 16 4 vt 3 cos ti 2 sin tj st vt vt 3 sin ti 2 cos tj at 2j k at 3 cos ti 2 sin tj 8. r t x 13. r t 2i At 3, 0 , t 2j −3 14. r t x2 y2 2 sin t , 9 4 3 cos t , y 1 Ellipse y 0. 2j a0 3i 1 −1 1 −1 1 4t 2 t 2 1 5t 2 3ti tj 14 t 2k 3i j 12 tk st vt at 1k 2 9 1 14 t 2 10 14 t 2 v a −2 ti t 2 j vt 3 v0 6 3 t2 k 2 i 2tj tk §S · a¨ ¸ ©4¹ 35 3 a 1 52 32 x 2 (3, 0) −3 © 2010 Brooks/Cole, Cengage Learning 104 Chapter 12 15. r t vt st at Vector-Valued Functions t i tj i j 9 t2k t 9 t2 9 9 t2 32 vt 2ti j 3 t k st vt at 2i 4t 2 1 9t 4, 3 sin t , 3 cos t 16 9 sin t 9 cos t st vt at 2 cos t , 2 sin t , 2 vt rc t 1, rc 3 3 3 1, , 4 4 2 e 2t 2 cos t sin t e 2t 1 ln t , , t 4 t 1 1 , , 4t 3 t t2 t , 25 t 2 4 z 3 3 t 4 3 3 0.1 , 4 0.1 4 4 i j k, v 0 0, r 0 vt ³ i j k dt ti tj tk C v0 C 0, v t 23. a t 2et sin ti 2et cos tj et k at 25 t 2 , t0 3.100, 3.925, 3.925 3 vt 1 3 0.1 4 4 2 1 t2 1 1 16t 6 t2 t4 1 t2 1 t 16t 2 10 0 t i t j tk , v t t i jk 2 t i jk C 2 rt ³ r0 C r2 2i jk 24. a t 2i 3k , v 0 4 j, r 0 vt ³ 2ti 3tk C v0 C rt ³ r0 C r2 4i 8 j 6k vt st t 25 t 2 3 t, y x et cos t et sin t i et sin t et cos t j et k et 25 t 2 , t, 3 cos tj 3 sin tk 4 sin 2 t 4 cos 2 t 4t 2 cos t sin t 1 3 t 4 4 1 2t , z 22. (a) r t 5 et cos t , et sin t , et e 1 t, y (b) r 3 0.1 | 3 0.1, 4 2 sin t , 2 cos t , 2t 20. r t 2 2 cos t , 2 sin t , t 2 2t 3 4 1.100, 1.200, 0.325 4i 3 sin tj 3 cos tk 2 vt at 1, 2, 4t , 3 cos t , 3 sin t 0, 3 cos t , 3 sin t st rc 1 4t 2 9t 1 3 k 2 t at vt 3t 2 4 1 (b) r 1 0.1 | 1 0.1, 1 2 0.1 , vt 19. r t 1, 2t , 18 t 2 9 t2 t2 9 t2 st 18. r t rc t x t 2i tj 2t 3 2k vt t3 , t0 4 k 16. r t 17. r t t , t 2 , k 11 vt 21. (a) r t ti tj tk dt t2 i jk, 2 2i 2 j 2k 0, r t 2i 3k dt 4j v t 2ti 4 j 3tk 2ti 4 j 3tk dt 0 rt 0 t 2i 4tj 32 t 2k C t 2i 4tj 32 t 2k 1 2 , , 12t 2 t 2 t3 © 2010 Brooks/Cole, Cengage Learning Section 12.3 25. a t tj tk , v 1 5 j, r 1 t2 t2 j k C 2 2 9 1 5j C j k 2 2 ³ v1 1 1 j k C 2 2 vt § t2 § t2 9· 1· ¨ ¸ j ¨ ¸k 2¹ 2¹ ©2 ©2 rt ³ «¬¨© 2 r1 14 1 j k C 3 3 rt r2 26. a t ª§ t 2 § t2 9· 1· º ¸ j ¨ ¸k » dt 2¹ 2 2¹ ¼ © 0 C § t3 § t3 9 · 1 · ¨ t ¸ j ¨ t ¸k C 6 2 6 2 ¹ © ¹ © 14 1 j k 3 3 § t3 § t3 9 14 · 1 1· ¨ t ¸ j ¨ t ¸k 6 2 3 6 2 3¹ © ¹ © 17 2 j k 3 3 32k vt ³ 32k dt v0 C rt ³ ª¬3i 2 j r0 C r2 6i j 60k 32tk C 3i 2 j k v t 3i 2 j 1 32t k 1 32t k º¼ dt 5 j 2k r t 3ti 2tj t 16t 2 k C 3ti 5 2t j 2 t 16t 2 k cos ti sin tj, v 0 j k, r 0 vt ³ sin ti cos tj C v0 jC vt sin ti cos tj k rt ³ r0 i C rt cos ti sin tj tk 27. a t r2 28. a t cos ti sin tj dt jk C sin ti cos tj k dt i C i k cos ti sin tj tk C 0 cos 2 i sin 2 j 2k et i 8k 29. r t vt ³ v0 i C vt et 1 i 3 j 1 8t k rt 105 0 vt tj tk dt Velocity and Acceleration et i 8k dt ³ ª¬ e t et i 8tk C 2i 3 j k C 88 cos 30q ti ª¬10 88 sin 30q t 16t 2 º¼ j 44 3ti 10 44t 16t 2 j i 3j k 50 1 i 3j 1 8t k º¼ dt et t i 3tj t 4t 2 k C r0 i C 0 C rt et t 1 i 3tj t 4t 2 k 0 300 0 i © 2010 Brooks/Cole, Cengage Learning 106 Chapter 12 Vector-Valued Functions 900 cos 45q ti ¬ª3 900 sin 45q t 16t 2 ¼º j 30. r t The maximum height occurs when yc t 450 2t i 3 450 2t 16t 2 j 450 2 32t 0, which implies that t 225 2 16. The maximum height reached by the projectile is § 225 2 · § 225 2 · 3 450 2 ¨¨ ¸¸ 16¨¨ ¸¸ © 16 ¹ © 16 ¹ y 2 50,649 8 6331.125 feet. 3 450 2t 16t 2 The range is determined by setting y t 0 which implies that 450 2 405,192 | 39.779 seconds 32 t Range: x § 450 2 405,192 · 450 2 ¨¨ ¸¸ | 25,315.500 feet 32 © ¹ v0 v § · ti ¨ 3 0 t 16t 2 ¸ j 2 2 © ¹ 1 º ª v0 cos T ti «h v0 sin T t gt 2 » j 2 ¼ ¬ 31. r t v0 t 2 300 when 3 v0 t 16t 2 2 3. § 300 2 · 300 2 v0 § 300 2 · , ¨¨ ¸¸ 16¨¨ ¸¸ v0 v 2© 0 ¹ © v0 ¹ t v02 9600 300 32 , v0 2 40 6, v0 0, 300 3002 32 v02 0 40 6 | 97.98 ft sec The maximum height is reached when the derivative of the vertical component is zero. tv0 16t 2 2 yt 3 yc t 40 3 32t 40 3 32 t 3 rt 3 40 3t 16t 2 0 5 3 4 §5 3· Maximum height: y¨¨ ¸¸ © 4 ¹ 32. 50 mi h 40 6 t 16t 2 2 §5 3· §5 3· 3 40 3 ¨¨ ¸¸ 16¨¨ ¸¸ 4 © ¹ © 4 ¹ 2 78 feet 220 ft sec 3 ª º § 220 · § 220 · cos 15q ¸ti «5 ¨ sin 15q ¸t 16t 2 » j ¨ 3 3 © ¹ © ¹ ¬ ¼ The ball is 90 feet from where it is thrown when x 220 cos 15qt 3 90 t 27 | 1.2706 seconds. 22 cos 15q 2 The height of the ball at this time is y 33. x t yt y t v0 cos T or t · § · 27 27 § 220 ·§ 5¨ sin 15q ¸¨ ¸ 16¨ ¸ | 3.286 feet. q q 3 22 cos 15 22 cos 15 © ¹© ¹ © ¹ x v0 cos T t v0 sin T 16t 2 h § · x x2 v0 sin T 16¨ 2 ¸ h 2 T v0 cos T v cos © 0 ¹ § 16 · tan T x ¨ 2 sec 2 T ¸ x 2 h v © 0 ¹ © 2010 Brooks/Cole, Cengage Learning Section 12.3 x 0.005 x 2 34. y (a) y (b) 16 sec 2 T v02 16 2 v02 negative of coefficient of x 0.005 or v0 107 ti 0.004t 2 0.37t 6 j 35. r t From Exercise 33 we know that tan T is the coefficient of x. So, tan T 1, T S 4 rad 45q. Also Velocity and Acceleration 0.004 x 2 0.37 x 6 18 2 80 ft sec 0 120 0 40 2t i 40 2t 16t 2 j. Position function rt When 40 2t vt §3 2 · v¨¨ ¸¸ © 4 ¹ 0 x (d) From Exercise 33, tan T 3 2 4 16 sec T v02 2 40 2i 40 2 32t j 45.8375 36. r t 8 2 5i 2 j . Direction §3 2 · v¨¨ ¸¸ © 4 ¹ 8 2 25 4 0.3667 T | 20.14q 16 sec 2 T 0.004 0.004 v02 4000 cos 2 T v0 | 67.4 ft sec. 40 2i 40 2 24 2 j Speed 0.008 x 0.37 and y 45.8375 | 14.56 ft 60, 60 40 2 t (c) yc 140 cos 22q ti 2.5 140 sin 22q t 16t 2 j When x 375, t | 2.889 and y | 20.47 feet. 8 58 ft sec So, the ball clears the 10-foot fence. 60 0 450 0 miles ·§ feet · § sec · § ¨100 ¸¨ 5280 ¸ ¨ 3600 ¸ hr ¹© mile ¹ © hour ¹ © 37. 100 mi h (a) r t ª º § 440 · § 440 · cos T 0 ¸ti «3 ¨ sin T 0 ¸t 16t 2 » j ¨ 3 3 © ¹ © ¹ ¬ ¼ Graphing these curves together with y (b) 440 ft sec 3 10 shows that T 0 20q. 100 θ 0 = 20 θ 0 = 25 500 0 0 θ 0 = 10 θ 0 = 15 (c) You want xt § 440 · cos T ¸t t 400 and y t ¨ © 3 ¹ § 440 · 3¨ sin T ¸t 16t 2 t 10. © 3 ¹ 30 11 cos T . Substituting this for t in y t yields: From x t , the minimum angle occurs when t 2 § 30 · § 440 ·§ 30 · 3¨ sin T ¸¨ ¸ 16¨ ¸ © 3 ¹© 11 cos T ¹ © 11 cos T ¹ 14,400 400 tan T sec 2 T 121 14,400 1 tan 2 T 400 tan T 7 121 14,400 tan 2 T 48,400 tan T 15,247 tan T T 10 7 0 0 48,400 r 48,4002 4 14,400 15,247 2 14,400 § 48,400 1,464,332,800 · tan 1 ¨¨ ¸¸ | 19.38q 28,800 © ¹ © 2010 Brooks/Cole, Cengage Learning 108 Chapter 12 7 feet, T 38. h Vector-Valued Functions 35q, 30 yards 90 feet v0 cos 35q ti ¬ª7 v0 sin 35q t 16t 2 º¼ j rt (a) v0 cos 35qt 90 when 7 v0 sin 35q t 16t 2 4 t § · § · 90 90 7 v0 sin 35q ¨ ¸ 16¨ ¸ © v0 cos 35q ¹ © v0 cos 35q ¹ 90 v0 cos 35q 2 90 tan 35q 3 v02 4 129,600 cos 2 35q 129,600 cos 2 35q 90 tan 35q 3 v02 v0 | 54.088 ft sec (b) The maximum height occurs when yc t v0 sin 35q 32t 0. v0 sin 35 | 0.969 sec 32 t At this time, the height is y 0.969 | 22.0 ft. (c) x t 90 v0 cos 35q t 90 90 | 2.0 sec 54.088 cos 35q t v cos T ti ª¬ v sin T t 16t 2 º¼ j (a) You want to find the minimum initial speed v as a function of the angle T . Because the bale must be thrown to the position 16, 8 , you have 39. r t 16 8 t v cos T t v sin T t 16t 2 . 16 v cos T from the first equation. Substituting into the second equation and solving for v, you obtain: 8 1 § · 1 512¨ 2 ¸ 2 © v cos T ¹ 1 v2 v2 You minimize f T fcT fcT § 16 · § 16 · v sin T ¨ ¸ 16¨ ¸ © v cos T ¹ © v cos T ¹ § sin T · § · 1 2¨ ¸ 512¨ 2 ¸ 2 © cos T ¹ © v cos T ¹ § sin T · 2¨ ¸ 1 © cos T ¹ § sin T · cos 2 T 1¸ ¨2 © cos T ¹ 512 2 2 sin T cos T cos 2 T 512 512 2 sin T cos T cos 2 T 512 . 2 sin T cos T cos 2 T § · 2cos 2 T 2 sin 2 T 2 sin T cos T ¸ 512¨ 2 ¨¨ ¸¸ 2 sin T cos T cos 2 T © ¹ 0 2 cos 2T sin 2T 0 tan 2T 2 T | 1.01722 | 58.28q Substituting into the equation for v, v | 28.78 ft sec. © 2010 Brooks/Cole, Cengage Learning Section 12.3 (b) If T Velocity and Acceleration 109 45q, v cos T t 16 v 2 t 2 v sin T t 16t 2 8 v 2 t 16t 2 2 512 From part (a), v 2 2 2 2 2 2 2 2 40. Place the origin directly below the plane. Then T 0, v0 v0 cos T ti 30,000 v0 sin T t 16t j 1024 v 32 ft sec. 792 and 792ti 30,000 16t 2 j 2 rt 512 12 2 792i 32tj. vt α At time of impact, 30,000 16t 2 0 t2 1875 t | 43.3 seconds. 30,000 r 43.3 34,294.6i v 43.3 792i 1385.6 j v 43.3 1596 ft sec α 1088 mi h (0, 0) 30,000 | 0.8748 D | 0.7187 41.18q 34,294.6 tan D v0 cos T ti ª¬ v0 sin T t 16t 2 º¼ j 41. r t v0 sin T t 16t 2 0 when t 0 and t 42. From Exercise 41, the range is v0 sin T . 16 x The range is v0 cos T t x v0 cos T v0 sin T 16 v02 sin 2T . 32 v02 sin 2T 32 v02 sin 24q 32 So, x 200 v02 6400 sin 24q v0 | 125.4 ft sec So, 2 x 34,295 1200 sin 2T 32 43. (a) T rt 10q, v0 1 T | 1.91q. 15 3000 sin 2T 66 ft sec 66 cos 10q ti ª¬0 66 sin 10q t 16t 2 º¼ j 5 r t | 65t i 11.46t 16t 2 j Maximum height: 2.052 feet 0 Range: 46.557 feet (b) T rt 10q, v0 50 0 146 ft sec 146 cos 10q ti ¬ª0 146 sin 10q t 16t 2 ¼º j 15 r t | 143.78t i 25.35t 16t j 2 Maximum height: 10.043 feet Range: 227.828 feet (c) T rt 45q, v0 300 0 0 66 ft sec 40 66 cos 45q ti ª¬0 66 sin 45q t 16t º¼ j 2 r t | 46.67t i 46.67t 16t 2 j Maximum height: 34.031 feet 0 200 0 Range: 136.125 feet © 2010 Brooks/Cole, Cengage Learning 110 Chapter 12 (d) T Vector-Valued Functions 45q, v0 146 ft sec 200 146 cos 45q ti ¬ª0 146 sin 45q t 16t ¼º j 2 rt r t | 103.24t i 103.24t 16t 2 j Maximum height: 166.531 feet Range: 666.125 feet 60q, v0 66 ft sec (e) T 0 800 0 60 66 cos 60q ti ¬ª0 66 sin 60q t 16t ¼º j 2 rt r t | 33t i 57.16t 16t 2 j Maximum height: 51.047 feet Range: 117.888 feet (f ) T 60q, v0 146 ft sec 140 0 0 300 146 cos 60q ti ª¬0 146 sin 60q t 16t º¼ j 2 rt r t | 73t i 126.44t 16t 2 j Maximum height: 249.797 feet Range: 576.881 feet 44. (a) r t 0 t v0 cos T i tv0 sin T 16t 2 j t v0 sin T 16t Range: x 0 when t v0 sin T . 16 100 cos 30q ti ¬ª1.5 100 sin 30q t 4.9t 2 ¼º j § v02 · ¨ ¸ sin 2T © 32 ¹ § v sin T · v0 cos T ¨ 0 ¸ © 32 ¹ § v02 · ¨ ¸ 2 cos 2T © 32 ¹ 2T (b) y t dy dt 2 ,T S 4 The projectile hits the ground when 4.9t 2 100 1 2 t 1.5 0 t | 10.234 seconds. So the range is 100 cos 30q 10.234 | 886.3 meters. The maximum height occurs when dy dt 0 100 sin 30 or S v0 cos T ti ª¬h v0 sin T t 4.9t 2 º¼ j 45. r t The range will be maximum when dx dt 600 0 0. 9.8t t | 5.102 sec The maximum height is y rad. 2 | 129.1 meters. tv0 sin T 16t 2 v0 sin T 32t 1.5 100 sin 30q 5.102 4.9 5.102 v0 sin T . 32 0 when t Maximum height: § v sin T · y¨ 0 ¸ © 32 ¹ v02 sin 2 T v 2 sin 2 T 16 0 2 32 32 Minimum height when sin T 46. r t x v02 sin 2 T 64 S 1, or T 2 . v0 cos T ti ª¬h v0 sin T t 4.9t 2 º¼ j v0 cos 8q ti ¬ª v0 sin 8q t 4.9t 2 ¼º j 50 50 when v0 cos 8q t 50 t . For this value of t , y v0 cos 8q § 50 · § 50 · v0 sin 8q ¨ ¸ 4.9¨ ¸ © v0 cos 8q ¹ © v0 cos 8q ¹ 0: 2 50 tan 8q 0 4.9 2500 v02 v02 cos 2 8q 4.9 50 | 1777.698 v0 | 42.2 m sec tan 8q cos 2 8q © 2010 Brooks/Cole, Cengage Learning Section 12.3 Velocity and Acceleration 111 b Z t sin Z t i b 1 cos Z t j 47. r t vt b Z Z cos Z t i bZ sin Z t j at bZ 2 sin Z t i bZ 2 cos Z t j 2bZ vt bZ 1 cos Z t i bZ sin Z t j bZ 2 ª¬sin Z t i cos Z t jº¼ 1 cos Z t bZ 2 at 0 when Z t 0, 2S , 4S , !. (a) vt (b) v t is maximum when Z t S , 3S , ! , then v t 2bZ. b Z t sin Z t i b 1 cos Z t j 48. r t bZ ª¬ 1 cos Z t i sin Z t jº¼ vt Speed bZ vt 1 2 cos Z t cos 2 Z t sin 2 Z t The speed has a maximum value of 2bZ when Z t 60 mi h 88 ft sec 88 rad sec since b 2 bZ 1 cos Z t . S , 3S , ! 1. So, the maximum speed of a point on the tire is twice the speed of the car: 2 88 ft sec bZ sin Z t i bZ cos Z t j vt 49. 120 mi h b 2Z sin Z t cos Z t b 2Z sin vt cos Z t rt vt 0 So, r t and v t are orthogonal. 50. (a) Speed b 2Z 2 sin 2 Z t b 2Z 2 cos 2 Z t v (b) b 2Z 2 ª¬sin 2 Z t cos 2 Z t º¼ bZ 10 −10 10 −10 The graphing utility draws the circle faster for greater values of Z. 51. a t bZ 2 cos Z t i bZ 2 sin Z t j bZ 2 ª¬cos Z t i sin Z t jº¼ Z 2r t a t is a negative multiple of a unit vector from 0, 0 to cos Z t , sin Z t and so a t is directed toward the origin. 52. at bZ 2 cos Z t i sin vt j 53. at Z 2 b, b 1 F Z vt 30 mi h vt vt 2Z 2 8 10 ft sec bZ 2 10 F 44 ft sec 44 rad sec 300 b at 1 32 4 10 rad sec bZ 54. Z 2 m 32 m Z 2b bZ 2 m bZ 2 3400 § 44 · 300 ¨ ¸ 32 © 300 ¹ 2 2057 lb 3 Let n be normal to the road. n cos T 3400 n sin T 2057 3 121 600 T | 11.4q Dividing, tan T © 2010 Brooks/Cole, Cengage Learning 112 Chapter 12 Vector-Valued Functions 55. To find the range, set yt 0 then §1 · 2 ¨ g ¸t v0 sin T t h. By the Quadratic ©2 ¹ Formula, discount the negative value 0 v0 sin T t 2 v0 sin T 4 ª¬ 1 2 g º¼ h 2 ¬ª 1 2 g ¼º v0 sin T § v sin T v0 cos T ¨ 0 ¨ © v02 sin 2 T 2 gh · ¸ ¸ g ¹ v0 cos T § ¨ v0 sin T g ¨ © § 2 gh · · v02 ¨ sin 2 T 2 ¸ ¸ v0 ¹ ¸ © ¹ v02 cos T § ¨¨ sin T g © 6 feet, v0 56. h 2 gh · sin T 2 ¸¸ feet. v0 ¹ 2 45 feet per second, T m xt rt vt x t i ª¬m x t bº¼ j xc t i mxc t j st ª¬ xc t º¼ ª¬mxc t º¼ 45 sin 42.5q 2 2 xcc t 0 xcc t i mxcc t j at 0. 6 cos ti 3 sin tj 59. r t rc t (a) v t 6 sin t i 3 cos t j 36 sin 2 t 9 cos 2 t vt 3 4 sin 2 t cos 2 t vc t at 3 3 sin 2 t 1 6 cos ti 3 sin tj (b) t 0 Speed 3 S S 4 2 3 10 2 6 2S 3 S 3 13 2 3 y (c) 8 32 6 | 2.08 seconds. 4 2 At this time, x t | 69.02 feet. 57. r t C , C is a constant. 1 m2 42.5q. From 45 sin 2 42.5q 2 32 6 2 C So, xc t Exercise 55, t b, m and b are constants. yt v02 sin 2 T 2 gh second. g At this time, xt xti yt j 58. r t 1 h v0 sin T t gt 2 2 x −8 −4 −2 −2 2 4 6 8 −4 x t i y t j z t k Position vector −6 −8 vt xc t i yc t j zc t k Velocity vector at xcc t i ycc t j zcc t k Acceleration vector Speed xc t vt 2 yc t 2 zc t (d) The speed is increasing when the angle between v and a is in the interval ª S· «0, 2 ¸. ¬ ¹ 2 C , C is a constant. dª xc t dt ¬ 2 yc t 2 zc t º ¼ 2 2 xc t xcc t 2 yc t ycc t 2 zc t zcc t 2 ª¬ xc t xcc t yc t ycc t zc t zcc t º¼ vt at Orthogonal The speed is decreasing when the angle is in the interval §S º ¨ , S ». ©2 ¼ 0 0 0 0 a cos Z t i b sin Z t j 60. r t (a) rc t Speed (b) a t vt vt vc t aZ sin Z t i bZ cos Z t j a 2Z 2 sin 2 Z t b 2Z 2 cos 2 Z t aZ 2 cos Z t i bZ 2 sin Z t j Z 2 a cos Z t i b sin Z t j Z 2 r t 61. The velocity of an object involves both magnitude and direction of motion, whereas speed involves only magnitude. © 2010 Brooks/Cole, Cengage Learning Section 12.4 Tangent Vectors and Normal Vectors sin ti cos tj 62. (a) The speed is increasing. 64. a t (b) The speed is decreasing. vt ³a t dt xt i yt j ztk v0 i i C1 C1 r1 2t vt cos ti sin tj rt ³v t 63. (a) r1 t r2 t Velocity: r2c t 2r1c 2t Acceleration: r2cc t r1 Z t , then: (b) In general, if r3 t Velocity: r3c t 4r1cc 2t Z r1c Z t Acceleration: r3cc t Z r1cc Z t 2 113 cos ti sin tj C1 0 sin ti cos tj C2 dt j C2 C 2 r0 j rt sin ti cos tj 0 The path is a circle. 65. False. The acceleration is the derivative of the velocity. 66. True 67. True 68. False. For example, 6t r t at t 3i. Then v t 3t 2 i and 6t i. v t is not orthogonal to a t . Section 12.4 Tangent Vectors and Normal Vectors y 1. 5. r t t 2i 2tj, t 1 rc t 2ti 2 j, rc t T1 rc 1 rc 1 4t 2 4 1 i j 2 2 i 2 2 t2 1 2 j 2 x 2. 6. r t t 3i 2t 2 j rc t 3t 2i 4tj y rc t T T N T1 N N 9t 4 16t 2 rc 1 rc 1 1 3i 4 j 9 16 3 4 i j 5 5 T x 7. y 3. rt 4 cos ti 4 sin tj, t rc t 4 sin ti 4 cos tj rc t §S · T¨ ¸ ©4¹ x 4. 8. y T N N N §S · rc¨ ¸ ©4¹ S· § rc¨ ¸ ©4¹ 2 i 2 6 cos ti 2 sin tj rc t 6 sin ti 2 cos tj x §S · T¨ ¸ ©3¹ 4 16 sin 2 t 16 cos 2 t rt rc t T T S 4 2 j 2 36 sin 2 t 4 cos 2 t §S · rc¨ ¸ © 3¹ §S · rc¨ ¸ © 3¹ 3 3i j 36 3 4 1 4 1 3 3i j 28 © 2010 Brooks/Cole, Cengage Learning 114 Chapter 12 Vector-Valued Functions 3ti ln tj, t 9. r t e 14. r t 1 3i j t 1 3i j e rc e rc e rc t rc e Te rc t 3ei j 9e 2 1 e cos ti e j, t t | 0.9926i 0.1217 j et cos t et sin t i et j rc 0 i j T0 rc 0 rc 0 i j 2 2 i 2 0, rc 0 rc 0 rc 0 i k , ª¬t 1, b Parametric equations: x rc t 1, rc t rc 1 rc 1 2i j 5 2, b rc 0 T0 § 1 at ¨1, 1, © 1, c 4 ·º ¸. 3 ¹»¼ 2t 1, y t 1, z 4 3 3, y 3t , z 1 t 2, 4 4 at §S · , rc¨ ¸ ©4¹ 2, 2, 2, 0 , º 2, 4 ». ¼ 1 2, 2 2, 0 2, c 2 sin t , 2 cos t , 4 sin 2 t , P 1, rc t 2 cos t , 2 sin t , 8 sin t cos t S 6 §S · T¨ ¸ ©6¹ S 6 §S · , rc¨ ¸ ©6¹ at 1, 2t 2, 3, 1 3, 1, 2 3 , º 3, 1 ». ¼ rc S 6 rc S 6 1 4 3, 1, 2 3 1, c 3, b 3t 1, y Parametric equations: x z 0 2, y 16. r t T3 3, c 2, 2t ª¬t 3j k 10 Parametric equations: x t 1, y Parametric equations: x z 4 2 3 t 3, 2 3t 1 2 t, t 2 , t 3 3 z 1, 2t , 2t 2 When t 3j k 1 3 t 1, 1, c 2, b rc t 0 at P 3, 0, 0 0, b S rc S 4 rc S 4 17. r t 3 sin ti 3 cos tj k Direction numbers: a 1, b Direction numbers: a ª «t ¬ 3 º. ¼ 1 at 1, 1, 21 1 1, 1, 7 3 Direction numbers: a 0 3 cos ti 3 sin tj tk , P 3, 0, 0 rc 0 rc 0 4 When t 5 2i j 5 Parametric equations: x t 4· ¸ 3¹ ª 2i j «t ¬ rc 1 Direction numbers: a rc t t 2ti j When t 13. r t 1 0, z S §S · T¨ ¸ ©4¹ 0 at 0, 0, 0 º¼. 0, c t, y 4 § k , P¨1, 1, 3 © t 2 i tj 12. r t T1 ª «t ¬ 1 ,t 3 2 sin t , 2 cos t , 0 When t 2 i k 2 Direction numbers: a 1, 1, 3 2 cos t , 2 sin t , 4 , P rc t 2 j 2 i 2tj k T0 1, rc 1 Direction numbers: a 15. r t ti t 2 j tk , P 0, 0, 0 When t t 4 t2 Parametric equations: x 1 z t 3 3 0 rc t rc t 1, 1, rc 1 rc 1 T1 t 11. r t 4 t 2 , P 1, 1, When t 1 3i j e 1 9 2 e 10. r t t, t, 3, rc 3 1, 6, 18 , 9 3 at 3, 9, 18 º¼. rc 3 rc 3 6 18 15 12 9 6 3 3 −3 x 12 15 18 y 1 1, 6, 18 19 Direction numbers: a 1, b 6, c Parametric equations: x t 3, y 18 6t 9, z 18t 18 © 2010 Brooks/Cole, Cengage Learning Section 12.4 1 k 2 1 3 sin ti 4 cos tj k 2 3 cos ti 4 sin tj 18. r t rc t §S · , rc¨ ¸ 2 ©2¹ S When t ª «t ¬ §S · T¨ ¸ ©2¹ S ·º § at ¨ 0, 4, ¸». 2 © 4 ¹¼ ti ln tj 1 1 i j k ; rc 1 t 2 t T1 rc t rc t 1 6i k 37 1 t 4, z i j 1 t, y t, z uc 0 1, 0, 1 cos T rc 0 uc 0 rc 0 uc 0 4 1 k 2 1 1 t 2 rc t i tj Tt rc t rc t Tc t rc t e t i 2 sin tj 2 cos tk r0 i 2 j, rc 0 T0 rc 0 rc 0 i 2k 5 u8 2, 16, 2 i 1 t 1 2 32 j 5 2 5 i j 5 5 1 2i j 5 24. r t ti 6 j, t t rc t i 6 j t2 rc t rc t 3 6 · § ¨ i 2 j¸ t © ¹ 1 36 t 1 4 t2 6 · § ¨ i 2 j¸ t ¹ t 36 © 4 1 1, 2t , , rc 4 2 0.9, 2, 0.2 1 1, 8, 2 uc s 1 1 , 2, s 2 3 , uc 8 4 3 cos T rc 4 uc 8 rc 4 uc 8 | t 1 32 Tc 2 Tc 2 Tc t 72t t 4 36 32 i Tc 2 144 96 i 32j 523 2 52 N2 Tc 2 Tc 2 So the curves intersect. rc t t N2 2s | 1 0.1, 2, 2 0.1 2, 16, 2 1 t2 2 1 i 32j 53 2 5 r 0 0.1 21. r 4 i tj Tc 2 Tt Parametric equations: xs 1 s, y s 2, z s r t0 0.1 5 2 2 0 i 2k , rc 0 S 0 T 1 2 t j, t 2 ti 2 r 1.1 | 1.1i 0.1j 1.05k e t i 2 cos tj 2 sin tk , t0 sin s cos s cos s , sin s cos s cos s, 1 1 cos 2 s 2 2 1.1, 0.1, 1.05 20. r t 1, 0, 1 y S 2 2 1 i j k 3 3 3 11 14 r t0 0.1 5 23. r t i j 12k Tangent line: x uc s 4 1 rc t 1, sin t , cos t , rc 0 1 0, c 6t , y t k , t0 0, 1, 0 rc t 2 5 4 6, b Parametric equations: x 19. r t 3 2 § 1 · ¨ 3i k ¸ 2 ¹ 37 © Direction numbers: a u0 So the curves intersect. 4 x rc S 2 rc S 2 0, 1, 0 5 1 S 22. r 0 115 z 1 k, 2 3i Tangent Vectors and Normal Vectors 12t 3 t 4 36 32 j 1 3i 2 j 13 1 1 , 2, 4 12 16.29167 T | 1.2q 16.29513 © 2010 Brooks/Cole, Cengage Learning 116 Chapter 12 25. r t rc t Tt Tc t Tc 2 N2 27. r t rc t Tt Tc t Vector-Valued Functions ln ti t 1 j, t 2 1 i j t 1 1 t2 rc t rc t t 1t 2 32 i 1 1t 2 Tc t Tc 2 Tc 2 N0 j 32 2 5 5 i j 5 5 ti t 2 j ln tk , t S 6 S Tt rc t rc t Tc t cos ti sin tj, Tc t sin ti cos tj §S · Tc¨ ¸ ©6¹ §S · N¨ ¸ ©6¹ §S · Tc¨ ¸ ©6¹ §S · Tc¨ ¸ ©6¹ 1 3 1 i j 2 2 3 1 i j 2 2 1 1 i 2tj k t 1 i 2tj k t 1 2 1 4t 2 t rc t rc t 1 4t 4 4t 4 t 2 1 32 i ti 2t 2 j k 4t 4 t 2 1 2t 3 4t 4t 4 t 2 1 8t 3 t j 32 4t 4 t 2 1 2e e rc t rc t 0 29. r t e e 2 t e e t t 2 e e t t 2 i 1 1 j k 2 2 2 2 j k 2 2 2 e e t t 2 j 2 e e t t 2 k 6 cos ti 6 sin tj k , t rc t 6 sin ti 6 cos tj Tt rc t rc t Tc t cos ti sin tj, Tc t t 2i et j e t k et e t 2 e t et k 14 2 14 3 14 i j k 14 14 14 2i e t j e t k 2t 32 3 >i 2 j 3k@ 63 2 2ti et j e t k , t t Tc 0 rc t 2 1 i 32j 32 5 5 i 2 j 3k 14 Tt S sin ti S cos tj 1 t2 N1 rc t rc t i tj 3 6 9 i 3 2 j 3 2k 63 2 6 6 rc t S cos ti S sin tj, t 1 i j t Tc 1 28. r t 26. r t § 3S · N¨ ¸ © 4 ¹ 30. r t 3S 4 sin ti cos tj Tc 3S 4 Tc 3S 4 1 2 2 i j 2 2 cos 3ti 2 sin 3tj k , t rc t 3 sin 3ti 6 cos 3tj Tt rc t rc t S 3 sin 3ti 6 cos 3tj 9 sin 2 3t 36 cos 2 3t The normal vector is perpendicular to T t and points toward the z-axis: 6 cos 3ti 3 sin 3tj Nt 9 sin 2 3t 36 cos 2 3t NS 6i 36 i © 2010 Brooks/Cole, Cengage Learning Section 12.4 31. r t 4ti vt 4i at 0 35. r t at Tt vt vt Tc t 0 Nt Tc t Tc t 4i 4 Tt i T1 4i 2 j at 0 vt vt Tc t 0 Nt Tc t Tc t 2t Nt is undefined. N1 aT aN aN 36. r t 8ti at 8i vt vt Tc t 0 Nt Tc t Tc t 8ti 8t vt 2tj at 2j Tt vt vt Tc t 0 Nt Tc t Tc t 2i vt 1 4t 4 vt 2 1 i j 2 1 2ti 2 j t 1 2 ti j 2 2 i j 2 2 t2 1 Tc t Tc t 32 i t t2 1 32 j 1 t2 1 1 t2 1 2tj 2t j 2i 2 j is undefined. t jk 32 i t2j 1 2 t4 1 1 i N1 34. r t t 2i 2tj, t 2i, a 1 The path is a line and the speed is variable. 2t 3 2 at Nt i 2 2ti 2 j, v 1 T1 t 2i j 2 i j 2 vt 4t 2i vt 1 i j 2 aT t 1 2t t4 1 t 1 Tt Tt t4 1 Tc t Tc t 32 1 1 2i j 5 1 4 2 i j 2 4 The path is a line and the speed is constant. 33. r t 1 · § ¨ i 2 j¸ t ¹ t 1© 4 1 i j 2 117 i j, t2 vt vt 4ti 2tj vt Tt 1 1 ti j, v t i 2 j, v 1 t t 2 j, a 1 2j t3 is undefined. The path is a line and the speed is constant. 32. r t Tangent Vectors and Normal Vectors i tj 2 2 i j 2 2 aT aT 2 aN aN 2 j is undefined. The path is a line and the speed is variable. © 2010 Brooks/Cole, Cengage Learning 118 Chapter 12 37. r t Vector-Valued Functions t t 3 i 2t 2 j, t 1 vt 1 3t 2 i 4tj, v 1 at 6ti 4 j, a 1 Tt T1 2i 4 j 20 i 2 j 5 16t 3t 2 1 9t 4 10t 2 1 N1 2i j 5 40. r t i 32 1 68 5 aT e t i e t j tk , t et i e t j k , v 0 at e i e j, a 0 Tt T0 Tc t Tc 0 vt 6ti 2 j, a 0 vt vt T0 4i 16 3t 4 i 2tj 9t 4 20t 2 16 i 4t 3t 2 4 9t 20t 16 j 32 8 5 5 2j 2 4 Tc 1 32 j 163 2 N1 j aT aT aN aN 39. r t 4i 2 2 t et i 4e 2t j, a 0 i 2j 5 N0 2i j 5 32 0 at T0 9t 20t 2 16 2 e i 2e vt vt 32 18t 4 4 0 vt Tt i 1 j 2 et i e 2t j, t t 32 j, v 0 e i 2e t i 2j i 4j 2 t j 4e 4t e 2t aT aT 1 18 5 7 5 5 aN aN 1 2 4 5 6 5 5 i jk i j et i e t j k e 2t e 2t 1 vt i jk 3 e 2 t e 2t 2 e 4t e 2t 1 i 32 e 2 t 2e 2 t 1 e 4 t e 2t 1 j 32 et 1 e 4t e 4t e 2t 1 32 k 3 3 i 32j 3 3 32 aT 2 2 i j 2 2 aT 0 aN aN N0 9t 4 10t 2 1 3t 4 i 2tj, v 0 0 vt t 4 36t 4 0 2 Tc t 14 5 5 1 12 4 5 aN t 5 i 2j 5 t 3 4t i t 2 1 j, t Tt 9t 4 10t 2 1 64 32 i 32j 203 2 20 aN at 6i 4 j Tc 1 aT vt 2i 4 j 1 3t 2 i 4tj vt vt Tc t 38. r t 2 © 2010 Brooks/Cole, Cengage Learning j Section 12.4 et cos t i et sin t j 41. r t 42. r t vt et cos t sin t i et cos t sin t j at et 2 sin t i et 2 cos t j S At t 2 1 i j 2 v v , T vt 2 i j . 2 Motion along r is counterclockwise. So, N 1 i j 2 2 i j. 2 aT aT 2eS 2 aN aN 2eS 2 Tangent Vectors and Normal Vectors 119 a cos Z t i b sin Z t j aZ sin Z t i bZ cos Z t j v0 bZ j at aZ 2 cos Z t i bZ 2 sin Z t j a0 aZ 2i T0 v0 v0 j Motion along r t is counterclockwise . So, N 0 aT aT 0 aN aN aZ 2 i. cos Z t0 Z t0 sin Z t0 i sin Z t0 Z t0 cos Z t0 j 43. r t0 Z 2t0 cos Z t0 i Z 2t0 sin Z t0 j v t0 Z 2 ª¬ cos Z t0 Z t0 sin Z t0 i Z t0 cos Z t0 sin Z t0 jº¼ a t0 v v T t0 cos Z t0 i sin Z t0 j Motion along r is counterclockwise. So sin Z t0 i cos Z t0 j. N t0 aT aT Z2 aN aN Z 2 Z t0 Z 3t0 Z t0 sin Z t0 i 1 cos Z t0 j 44. r t0 v t0 Z ª¬ 1 cos Z t0 i sin Z t0 jº¼ a t0 Z 2 ª¬ sin Z t0 i cos Z t0 jº¼ T 46. T t points in the direction that r is moving. N t points in the direction that r is turning, toward the concave side of the curve. y 1 cos Z t0 i sin Z t0 j v v a T 2 1 cos Z t0 N Motion along r is clockwise. So, sin Z t0 i 1 cos Z t0 j N . 2 1 cos Z t0 aT aN 45. r t Z 2 sin Z t0 2 1 cos Z t0 aT aN Z2 2 1 cos Z t0 a Z2 2 1 cos Z t0 aZ sin Z ti aZ cos Z tj at aZ 2 cos Z ti aZ 2 sin Z tj Tt vt vt Nt Tc t Tc t aZ 47. Speed: v t The speed is constant because aT 0. 48. If the angular velocity Z is halved, a cos Z ti a sin Z tj vt x aN §Z · a¨ ¸ ©2¹ 2 aZ 2 . 4 aN is changed by a factor of 1 . 4 sin Z ti cos Z tj cos Z ti sin Z tj aT aT 0 aN aN aZ 2 © 2010 Brooks/Cole, Cengage Learning 120 Chapter 12 Vector-Valued Functions 1 ti j, t0 2 t 1 x t, y xy 1 t 1 rc t i 2j t t 2i j Tt t4 1 i t2j Nt t 1 t i tj, t0 3 50. r t rc t N )2, 12 ) T 1 x 2 x1 3 3t i j rc t rc t 9t 4 1 y 2 1 3 10 10 i j 10 10 (1, 1) x 10 3 10 i j 10 10 N1 4ti 4t 2 j, t0 51. r t 1 2 4t 2 §1· r¨ ¸ © 4¹ rc t Tt §1· T¨ ¸ © 4¹ § x· 4¨ ¸ © 4¹ x2 4 1 −2 −1 1 −1 i 1 1j 2 14 1 t2 2i j , perpendicular to T 2 5 2 cos ti 2 sin tj, t0 S 4 2 sin t x y 2 2 rc t 2 sin ti 2cos tj Tt 1 2 sin ti 2 cos tj 2 Nt cos ti sin tj §S · r¨ ¸ ©4¹ 2i §S · T¨ ¸ ©4¹ 2 i j 2 §S · N¨ ¸ ©4¹ 2 i j 2 4 sin ti cos tj y T 2j 1 ( 2, 2) N x −1 1 −1 2 1 4 )1, ) x 3 cos ti 2 sin tj, t0 cos t , y 2 S x2 y2 9 4 sin t 1, Ellipse 3 sin ti 2 cos tj rc S 2 j T S NS i y 3 j 1 N x −2 − 1 1 2 −1 4i 8tj 16 64t i tj 4 4t 2 T 4i 8tj T −8 N2 rc t N T 1 i j 4 N −6 i 2j 5 x 3 3 2 (5, − 4) −4 T2 54. r t y 4t , 6 2 −1 1 4 4 2 2i 2tj 2 cos t , y 2 T N −1 y 2i 2tj 3t 2i j 3i j 10 T1 § x 1· ¨ ¸ © 2 ¹ rc t x y 3 or y 2 x 5i 4 j 53. r t 3 2 −6 − 4 − 2 r2 2 Tt x t 2 1 1 t x t3, y y 2 17 i 4j 17 N2 x 3 17 4i j 17 T2 2t 1, y 1 j 2 2i r2 x Tt 4 y 2t 1 i t 2 j, t0 52. r t 49. r t i 2tj 2 −3 1 4t 2 2i j 5 2 5 5 i j 5 5 §1· §1· N¨ ¸ is perpendicular to T¨ ¸: 4 © ¹ © 4¹ §1· N¨ ¸ © 4¹ i 2 j 5 © 2010 Brooks/Cole, Cengage Learning Section 12.4 55. r t ti 2tj 3tk , t vt i 2 j 3k at 0 1 57. r t v v Tt 14 i 2 j 3k 14 T1 Tc is undefined. Tc at cos ti sin tj, a 4i 4 j 2k at 0 aT at Tt §S · a¨ ¸ ©3¹ 4ti 4tj 2tk vt vt vt §S · T¨ ¸ ©3¹ 3 1 sin 2 t cos 2 t 4 Tt aN aT , aN are not defined. 56. r t sin ti cos tj 2k 121 S cos ti sin tj 2tk , t vt vt 1 i 2 j 3k 14 Nt Tangent Vectors and Normal Vectors 5 1 sin ti cos tj 2k 5 0 a 2 a 2T 10 1 · 1 § 3 1 i j 2k ¸¸ ¨¨ 2 5© 2 ¹ 1 3 i j 2 2 aTT an N N 1 2i 2 j k 3 Tt v v Nt Tc is undefined. Tc aT , aN are not defined. 58. r t 3ti tj t 2k , t 1 vt 3i j 2tk , v t at 2k , a Tt vt vt a 1 2k , T 1 2 3i j 2tk aT a 1 T 1 aN a 2 a 2T a N 2k 10 4t 2 10 4t 2 aTT aN N 1 3i j 2k 14 4 14 4 16 14 20 7 2 35 7 4 ª 1 º 2 35 N 3i j 2k » 7 14 «¬ 14 ¼ 7 ª 2 º 2k 3i j 2k » 7 2 35 ¬« ¼ 35 ª 6 2 10 º i j k» 10 ¬« 7 7 7 ¼ © 2010 Brooks/Cole, Cengage Learning 122 Chapter 12 Vector-Valued Functions ti t 2 j 59. r t t2 k, t 2 et cos t et sin t i et sin t et cos t j et k i 2j k v0 i jk 2j k at 2et cos ti 2et sin tj et k a0 2i k i 2tj tk v1 at 1 v v i 2tj tk 1 5t 2 1 5t 2 32 Nt Tc Tc N1 30 5i 2 j k 30 aT 5 6 6 aN aN 30 6 vt 2i 2tj 4k , vt 20 4t 2 2 j, a at a2 2 j, T 2 aT a2 T2 N a 2j 2 1 5 t2 i tj 2k Nt 1 ª sin t cos t i cos t sin t jº¼ 2¬ N0 2 2 i j 2 2 aT aT 3 aN aN 2 16 9 2 3 et i 2 j e t k , v t at et i e t k , a t v0 i 2j k, a 0 T0 i 2j k 6 aT i k 4 2 i 2 j 2k 9 3 e 2t 4 e 2t e 2t e 2t i k 0 a 2 aT2 N 5 0 vt a 4 et i 2tj e t k , t aN 4 3 aTT aN N 1 >i j k@ 3 aT 1 i 2 j 2k 3 a 2T T0 62. r t 2 2 5 t2 aN 2 2 5 t2 2i 2tj 4k Tt a 5 1 5t 2 2t 1 i t 2 j 4tk , t 60. r t 1 ª cos t sin t i sin t cos t j k º¼ 3¬ 5ti 2 j k 5 1 5t 2 aT v v Tt 6 i 2j k 6 5ti 2 j k T1 et sin ti et cos tj et k vt vt Tt 61. r t 1 2 aTT aN N 2N 1 i k 2 5N 3 ª 4 º 2 j i 2 j 2k » 9 2 5 «¬ ¼ 5 4 5 2 5 i j k 15 3 15 © 2010 Brooks/Cole, Cengage Learning Section 12.4 S 4ti 3 cos tj 3 sin tk , t 63. r t 65. r t 2 4i 3 sin tj 3 cos tk vt §S · v¨ ¸ ©2¹ 4i 3 j 3 cos tj 3 sin tk at 3k Tt v v §S · T¨ ¸ ©2¹ at 6j k 2π k 3 0 aN aN 3 1 S 1 j k 3 aT aN cos ti sin tj 66. r t aS i Tt v v T S 3 10 § 1 · ¨j k¸ 10 © 3 ¹ 3 10 § 1 · ¨ sin ti cos tj k ¸ 10 © 3 ¹ NS i 3 10 cos ti sin tj 10 3 10 10 aT aT aN 0, aN z cos t i sin tj aT aN 2i 2k at 2i Tt v v T1 1 i k 2 Nt Tc Tc 1 4 1 i tk 2 t2 1 t2 1 32 t 1 32 2 i tk t2 1 1 i k 2 aT aT aN aN 2 2 T x 3 2 1 y ti k 2ti 2k z 4 2 N 8 1 1 2 2 6 37 149 4t 2 4 1t 2 T t 2i j 2tk , t v1 2 4 x 37 5513 2ti 2k z 4 N 74 149 vt N1 >37ti 6 j k@ 1 >74i 6 j k@ 37 149 1 74i 6 j k 5513 N2 10 3 6 j k@ 37 1 37 2 x 1 sin ti cos tj k , v t 3 Tc Tc >37ti 37 1 37t 2 t 2 cos t i 1 sin t j k , t 3 Nt 32 y 4π aT at Tc Tc 1 37t 2 3 i 6tj tk 1 i 12 j 2k 149 1 N cos tj sin tk 1 1 37t 2 z T aT vS i 12 j 2k Nt 1 4i 3 j 5 §S · N¨ ¸ ©2¹ vt v2 T2 1 4i 3 sin tj 3 cos tk 5 Tc Tc 64. r t i 6tj tk v v 123 t2 k 2 ti 3t 2 j vt Tt §S · a¨ ¸ ©2¹ Nt Tangent Vectors and Normal Vectors 2 2 3 T N 1 2 5 x 4 3 2 1 2 3 y y © 2010 Brooks/Cole, Cengage Learning 124 Chapter 12 Vector-Valued Functions 68. The unit tangent vector points in the direction of motion. 67. Let C be a smooth curve represented by r on an open interval I. The unit tangent vector T t at t is defined as 69. (a) If aN rc t , rc t z 0. rc t Tt (b) If aT 70. r t The principal unit normal vector N t at t is defined as Tc t , Tc t z 0. Tc t Nt 0, then the motion is in a straight line. The tangential and normal components of acceleration are defined as a t a TT t aN N t . 0, then the speed is constant. 3ti 4tj vt rc t 3i 4 j, v t at vc t 0 Tt vt vt Tc t 0 N t does not exist. 9 16 5 3 4 i j 5 5 The path is a line. The speed is constant (5). S t sin S t, 1 cos S t 71. r t The graph is a cycloid. (a) r t S t sin S t, 1 cos S t vt S S cos S t, S sin S t at S 2 sin S t, S 2 cos S t Tt vt vt Nt Tc t Tc t aT aT aN aN 1 1 2 1 cos S t 1 2 1 cos S t S2 When t 1: aT 0, aN (b) Speed: 3 : aT 2 s ª¬S 2 sin 2 S t S 2 cos S t 1 cos S t º¼ 2 1 cos S t 1 : aT 2 2S 2 , aN 2 2 When t 1 : aT 2 When t 1: aT When t 3 : aT 2 2S 2 S 2 1 cos S t 2 1 cos S t S2 2 1 cos S t 2 2 t=1 t = 23 x 2 1 cos S t S 2 sin S t 2 1 cos S t ds dt S 2 sin S t 2 1 cos S t y t = 21 2S , aN 2 S 2S 2 2 S2 2 vt sin S t, 1 cos S t ª¬S 2 sin S t 1 cos S t S 2 cos S t sin S tº¼ 1 When t When t 1 cos S t, sin S t 2 1 cos S t aT 2S 2 ! 0 the speed in increasing. 2 0 the height is maximum. 2S 2 0 the speed is decreasing. 2 © 2010 Brooks/Cole, Cengage Learning Section 12.4 vt S sin S t S sin S t S 2t cos S t, S cos S t S cos S t S 2t sin S t at S 2 cos S t S 3t sin S t, S 2 sin S t S 3t cos S t vt Tt aT cos S t S 2 cos S t S 3t sin S t sin S t S 2 sin S t S 3t cos S t aT Tt Nt S 2 , aN 1, aT S 3 . When t t k , t0 2 1 2 sin ti 2 cos tj k 2 2 cos ti 2 sin tj S 2j §S · T¨ ¸ ©2¹ 2 17 § 1 · ¨ 2i k ¸ 17 © 2 ¹ §S · N¨ ¸ ©2¹ j 4 rc t Tt Nt r1 T1 N1 B1 2S 3 . 1 and t 2. S 2 z 3 2 B 1 −2 −1 T −2 N ( 0, 2, π2 ) 1 2 §S · §S · T¨ ¸ u N¨ ¸ ©2¹ ©2¹ ti t 2 j y x k 17 4i k 17 i §S · B¨ ¸ ©2¹ S 2 , aN 2, aT 2 17 § 1 · ¨ 2 sin ti 2 cos tj k ¸ 17 © 2 ¹ cos ti sin tj §S · r¨ ¸ ©2¹ S2 S 3t S 2 ! 0 for all values of t, the speed is increasing when t (b) Because aT rc t S 4 1 S 2t 2 S 4 a 2 aT 2 When t S 2t cos S t, S 2t sin S t cos S t, sin S t vt aN 73. r t 125 cos S t S t sin S t, sin S t S t cos S t 72. (a) r t 74. r t Tangent Vectors and Normal Vectors t3 k , t0 3 j 4 17 17 0 0 1 k 17 17 0 17 4 17 i k 17 17 17 i 4k 17 1 i 2tj t 2k 1 1 4t 2 t 4 i 2tj t 2k 1 ª 2t t 3 i 1 t 4 j t 2t 3 k º ¼ 1 4t t 4 1 t 2 t 4 ¬ z 1 i j k 3 1 2 N 1 i 2j k B 6 2 1 3i 3k 6 3 T1 u N1 2 i k 2 i j k 6 6 6 3 6 6 2 2 0 2 2 x 1 2 T −1 2 ( 1, 1, 31 ) 3 3 3 i j k 3 3 3 1 y 3 i jk 3 © 2010 Brooks/Cole, Cengage Learning 126 Chapter 12 Vector-Valued Functions S i sin tj cos tk , t0 75. r t rc t 4 cos tj sin tk , rc t 1 §S · rc¨ ¸ ©4¹ §S · T¨ ¸ ©4¹ Tc t 2 2 j k 2 2 sin tj cos tk , §S · N¨ ¸ ©4¹ §S · B¨ ¸ ©4¹ 2 2 j k 2 2 §S · §S · T¨ ¸ u N¨ ¸ ©4¹ ©4¹ i j 0 2 2 2 2 0 2 2 2 2 2et i et cos tj et sin tk , t0 76. r t k i 0 rc t 2et i et cos t et sin t j et sin t et cos t k rc 0 2i j k T 0 rc t 2 1 2i j k 6 4e2t e 2t cos 2 t e 2t sin 2 t 2e2t cos t sin t e2t sin 2 t e 2t cos 2 t 2e 2t sin t cos t 4e2t 2e 2t cos 2 t sin 2 t rc t Tt 6e 2 t 6e t rc t rc t 1 ª¬2i cos t sin t j sin t cos t k º¼ 6 Tc t 1 ª¬ sin t cos t j cos t sin t k º¼ 6 Tc 0 1 > j k@ N 0 6 B0 T0 uN0 2 j 2 i j k 2 6 1 6 1 6 0 2 2 2 2 2 k 2 3 3 3 i j k 3 3 3 © 2010 Brooks/Cole, Cengage Learning Section 12.4 77. r t rc t 3 4 cos ti 4 sin tj 2k , 16 cos 2 t 16 sin 2 t 4 §S · rc¨ ¸ ©3¹ 2i 2 3j 2k §S · T¨ ¸ ©3¹ 1 2i 2 3 j 2k 2 5 Tc t 1 2 5 20 5 i 5 5 5 §S · §S · T¨ ¸ u N¨ ¸ ©3¹ © 3¹ 3 cos 2ti 3 sin 2tj tk , t rc t 6 sin 2ti 6 cos 2tj k rc t 37 §S · rc¨ ¸ ©4¹ 6i k §S · T¨ ¸ ©4¹ Nt rc t rc t j k 15 5 5 5 1 2 0 3 2 78. r t Tc t 15 5 j k 5 5 5 i 5 3j k 3 1 i j 2 2 Tt 2 5 4 sin ti 4 cos tj i §S · B¨ ¸ ©3¹ 127 S 4 sin ti 4 cos tj 2tk , t0 rc t §S · N¨ ¸ ©3¹ Tangent Vectors and Normal Vectors 5 15 4 5 i j k 10 10 10 5 i 10 3 j 4k S 4 1 6 sin 2ti 6 cos 2tj k 37 1 12 cos 2ti 12 sin 2tj 37 1 6i k 37 Tc t Tc t cos 2ti sin 2tj §S · N¨ ¸ ©4¹ j §S · B¨ ¸ ©4¹ §S · §S · T¨ ¸ u N¨ ¸ 4 © ¹ ©4¹ i 6 37 0 j 0 1 k 1 37 0 1 i 37 6 k 37 © 2010 Brooks/Cole, Cengage Learning 128 Chapter 12 Vector-Valued Functions 79. From Theorem 12.3 you have: rt v0t cos T i h v0t sin T 16t 2 j vt v0 cos T i v0 sin T 32t j at 32 j v0 cos T i v0 sin T 32t j Tt v02 cos 2 T v0 sin T 32t 2 v0 sin T 32t i v0 cos T j Nt v02 cos 2 T v0 sin T 32t 32 v0 sin T 32t aT aT aN aN v02 32v0 cos T v02 cos 2 T v0 sin T 32t At maximum height, aT 45q, v0 v0 cos T 2 cos 2 T v0 sin T 32t Maximum height when v0 sin T 32t 80. T Motion is clockwise. 2 0; vertical component of velocity 0 and aN 32. 150 150 v0 sin T 32t 2 2 150 75 2 2 32t 2 75 2 32t 32 75 2 32t 16 32t 75 2 aT 11250 75 2 32t 2 256t 2 1200 2t 5625 2 256t 1200 2t 5625 32 75 2 1200 2 aN 11250 75 2 32t At the maximum height, aT 81. (a) r t 2 0 and aN v0 cos T ti ª¬h v0 sin T t 2 32. 1 gt 2 º j ¼ 2 120 cos 30q ti ¬ª5 120 sin 30q t 16t 2 ¼º j (b) 60 3ti ¬ª5 60t 16t 2 ¼º j 70 0 400 0 Maximum height | 61.25 feet range | 398.2 feet (c) v t Speed at 60 3i 60 32t j vt 3600 3 60 32t 2 8 16t 2 60t 225 32 j © 2010 Brooks/Cole, Cengage Learning Section 12.4 (d) T 0.5 1.0 1.5 2.0 2.5 3.0 Speed 112.85 107.63 104.61 104.0 105.83 109.98 (e) From Exercise 79, using v 0 120 and T Tangent Vectors and Normal Vectors 129 30q, 32 60 32t aT 60 3 2 60 32t 2 32 60 3 aN 60 3 2 60 32t 2 40 aN 0 4 aT −20 1.875, aT At t 0 and the projectile is at its maximum height. When a T and a N have opposite signs, the speed is decreasing. v0 cos T ti ª¬h v0 sin T t 82. (a) r t 1 gt 2 º j 2 ¼ 220 cos 45q ti ¬ª4 220 sin 45q t 16t 2 º¼ j 110 2ti ª¬4 110 2t 16t 2 º¼ j (b) 450 0 −10 1800 Maximum height | 382.125 at t | 4.86 Range | 1516.4 110 2i ª¬110 2 32t º¼ j (c) v t 110 2 vt 2 t 0.5 1.0 1.5 2.0 2.5 3.0 Speed 208.99 198.67 189.13 180.51 172.94 166.58 10 cos 10S t, 10 sin 10S t, 4 4t , 0 d t d 83. r t (a) 110 2 32t 32 j at (d) 2 rc t rc t (b) aT aT 1 20 100S sin 10S t , 100S cos 10S t , 4 100S 2 sin 2 10S t 100S 100S 2 16 0 and aN 2 cos 2 10S t 16 4 625S 2 1 | 314 mi h 1000S 2 0 because the speed is constant. © 2010 Brooks/Cole, Cengage Learning 130 Chapter 12 84. 600 mi h Vector-Valued Functions 880 ft sec rt 880ti 16t 2 36,000 j vt 880i 32tj at 32 j Motion along r is clockwise, therefore 2ti 55 j Nt 4t 2 3025 (a) F aN m at mv 2 r 4t 3025 2 GMm 2 ,v r2 1760 4t 2 3025 From Exercise 45, we know a T (a) Let Z0 0 and 2w. Then aZ02 aN a 2Z 2 mv 2 r 4aZ 2 GM ,v r GM r GM r 9.56 u 104 | 4.82 mi sec 4000 115 88. v GM r 9.56 u 104 | 4.75 mi sec 4000 245 89. v 9.56 u 104 | 4.67 mi sec 4385 aZ 2 . aN m 2 2 rZ r 87. v a cos Z t i a sin Z t j 85. r t m rZ 2 (b) By Newton’s Law: 64t aN v rZ 2 at 4t 2 3025 rZ rZ 2 cos Z t i rZ cos Z t j 55i 2tj 16 4t 3025 aT rZ 1 at 2 aT rZ sin Z t i rZ cos Z t j vt vt 880i 32tj Tt r cos Z t i r sin Z t j 86. r t or the centripetal acceleration is increased by a factor of 4 when the velocity is doubled. a 2. Then (b) Let a0 §a· 2 ¨ ¸Z ©2¹ a0Z 2 aN §1· 2 ¨ ¸ aZ © 2¹ or the centripetal acceleration is halved when the radius is halved. 90. Let x distance from the satellite to the center of the earth x v 4S 2 x 2 24 2 2 3600 x3 v | 2S x t 2S x 24 3600 r 4000 . Then: 9.56 u 104 x 9.56 u 104 x 9.56 u 104 24 2 3600 4S 2 2 x | 26,245 mi 2S 26,245 | 1.92 mi sec | 6871 mi h 24 3600 91. False. You could be turning. 92. True. All the motion is in the tangential direction. cosh bt i sinh bt j, b ! 0 93. (a) r t cosh bt , y x x y 2 (b) v t at 2 sinh bt cosh bt sinh 2 bt 2 1, hyperbola b sinh bt i b cosh bt j b 2 cosh bt i b 2 sinh bt j b 2r t © 2010 Brooks/Cole, Cengage Learning Section 12.5 cos Ii sin I j be the unit tangent vector. 94. Let T t vua sin Ii cos I j dI dt M v aT T u T v aN T u N v aN T u N vua sin Ii cos I j v aN T u N 97. If dI dt ! 0, then the curve bends to the left and M has the same direction as Tc. y So,p M has the same direction as a aTT aN N aTT aN N aT 2 T Because aN ! 0, we have aN x 98. F T M again points to the concave side of the curve. N x dv dt x at bt 2 ct 3 v dx dt φ a 2 aT 2 . dv Force dt a 2bt 3ct 2 dv dt 2b 6ct F2 4b 2 24bct 36c 2t 2 xt i yt j 4b 2 12c 2bt 3ct 2 b, m and b are constants. yt m xt rt x t i ª¬m x t vt xc t i mxc t j 4b 2 12c v a bº¼ j 2 ª¬ xc t º¼ ª¬mxc t º¼ r i mj vt vt 1 ma y Tc Tc So, Tc t 2 M M has the opposite direction as Tc. Thus, Tt 2aT aN T N aN 2 N a 2 aT 2 aN 2 If dI dt 0, then the curve bends to the right and vt 2 aT 2 aN 2 φ which is toward the concave side of the curve. 95. r t aa 2 T Tc , Tc v aN vua . v So, aN and is rotated counterclockwise through an angle of S 2 from T. N 0, and T u N v T u aTT aN N dI . dt cos ª¬I S 2 º¼ i sin ª¬I S 2 º¼ j N 131 you have: dT dt d T dI dI dt Tc t M aTT aN N, T u T 96. Using a Then Arc Length and Curvature 1 m2 F 2 f v r 4b 2 12ac 12cv The sign of the radical is the sign of 2b 6ct , which cannot change. xc t 1 m2 , constant 0. Section 12.5 Arc Length and Curvature 3ti tj, >0, 3@ 1. r t dx dt s 3, 3 ³0 dy dt 1, dz dt 3 1 2 y 2 3 0 (0, 0) x dt 3 ª 10t º ¬ ¼0 6 3 10 9 (9, − 3) −3 −6 © 2010 Brooks/Cole, Cengage Learning 1, 132 Chapter 12 Vector-Valued Functions y ti t 2 j 2. r t (4, 16) 16 dx dt s dy 1, dt dz 2t , dt 0 12 8 4 ³0 1 4t 2 dt 4 4 1ª 2t 1 4t 2 ln 2t 4¬ s dy dt dz dt 0 9t 4 4t 2 dt ³0 3t 2 , 1 ³0 2t , 1, dy dt 6 ³0 1 dx dt s 1ª 2 9t 4 27 ¬« 32 1 1 133 2 8 | 1.4397 27 º ¼» 0 4t 2 1 2t S 2 12a ³ 6 º 4t 2 1» ¼0 1 t 2 40 35 30 25 20 15 10 5 1 ln 4 sin t cos t dt (1, 0) x 145 12 3 145 1 2 3 4 5 6 7 8 −1 3a sin 2 t cos t a 2 3a ³ S 2 0 2 sin 2t dt x −a >3a cos 2t@S0 2 a −a 6a a cos ti a sin tj 6. r t (7, 36) y 2 S 2 0 dy dt 1 y 2 2 ¬ª3a cos t sin t ¼º ¬ª3a sin t cos t ¼º dt 0 4 x (0, 0) 1 4t 2 dt 3a cos 2 t sin t , 4³ 3 9t 2 4 t dt a cos3 ti a sin 3 tj 5. r t 2 (1, 1) 2t ª1 « 4 ln ¬ 1 1 t 1 i t 2 j, 0 d t d 6 4. r t s x (0, 0) y 12 1 1 2 9t 4 18t dt 18 ³ 0 dx dt 65 º | 16.819 ¼ t 3i t 2 j, >0, 1@ 3. r t dx dt 1ª 8 65 ln 8 4¬ 1 4t º ¼0 y a dx dt s a sin t , 2S ³0 7. (a) r t dy dt a cos t a 2 sin 2 t a 2 cos 2 t dt 2S ³0 a dt 2S >at@0 a x 1 º ª v0 cos T ti «h v0 sin T t gt 2 » j 2 ¼ ¬ 1 ª º 100 cos 45q ti «3 100 sin 45q t 32 t 2 » j 2 ¬ ¼ (b) v t 2S a 50 2ti ¬ª3 50 2t 16t 2 ¼º j 50 2i 50 2 32t j 50 2 32t 0 t 25 2 16 § 25 2 · § 15 2 · Maximum height: 3 50 2 ¨¨ ¸¸ 16¨¨ 16 ¸¸ 16 © ¹ © ¹ 2 81.125 ft © 2010 Brooks/Cole, Cengage Learning Section 12.5 (c) 3 50 2t 16t 2 Arc Length and Curvature 133 0 t | 4.4614 Range: 50 2 4.4614 | 315.5 feet 4.4614 ³0 (d) s 2 50 2 2 50 2 32t dt | 362.9 feet 1 º ª v0 cos T ti « v0 sin T t gt 2 » j 2 ¼ ¬ 8. (a) r t 1 2 gt 2 yt v0 sin T t yc t v0 sin T gt Maximum height when sin T Range: x t S 1, or T 2 2v0 sin T g § 2v sin T · v0 cos T ¨ 0 ¸ g © ¹ v0 2 sin 2 T g The range x t is a maximum for sin 2T (c) xc t S 1, or T 4 . v0 cos T yc t xc t . 0 t 1 2 gt 2 v0 sin T t (b) y t v0 sin T . g 0 when t v0 sin T gt 2 yc t 2 v0 2 cos 2 T v0 sin T gt 2 v0 sin T g ³0 sT Because v0 v0 2 cos 2 T v0 2 sin 2 T 2v0 2 g sin T t g 2t 2 v0 2 2v0 g sin T t g 2t 2 12 ª¬v0 2 2v0 g sin T t g 2t 2 º¼ dt 96 ft sec, you have 6 sin T ³0 sT 2 12 ª¬962 6144 sin T t 1024t 2 º¼ . dt Using a computer algebra system, s T is a maximum for T | 0.9855 | 56.5q. ti 4tj 3tk , >0, 1@ 9. r t dx dt s 1, 1 ³0 dy dt 4, dz dt z 4 3 3 2 ª 26t º ¬ ¼0 1 16 9 dt 26 3 x s 2 −3 (−1, 4, 3) 1 −1 −2 1 2 3 4 5 y i t 2 j t 3k , >0, 2@ 10. r t dx dt −2 (0, 0, 0) 1 0, dy dt 2t , dz dt 2 4t 2 9t 4 dt 2 4 9t 2 t dt ³0 ³0 z 8 7 6 5 4 3 2 1 3t 2 1 4 9t 2 27 3 2º 2 » ¼0 1 403 2 43 2 27 1ª 80 10 8º¼ 27 ¬ (1, 0, 0) 3 4 (1, 4, 8) −4 5 6 y x © 2010 Brooks/Cole, Cengage Learning Chapter 12 134 Vector-Valued Functions ª 3S º 4t , cos t , sin t , «0, » ¬ 2¼ 11. r t dx dt dy dt 4, 3S 2 ³0 s dz dt sin t , cos t 3S 2 ³0 16 sin 2 t cos 2 t dt 3S 2 3S 2 ª 17t º ¬ ¼ 17 dt 0 17 z (0, − 1, 0) − 12 21 x 6 −9 9 −6 6 −3 −6 −9 (6 π , 0, − 1) − 12 18 15 12 dx dt 2 cos t , S ³0 dx dt 2S ³0 dx dt dz dt 2 sin t S ³0 29S 29 dt dy dt a cos t , dy dt t cos t , (a, 0, 2π b) dz dt b S 2 ³0 S 2 2 t cos t 2S a2 b2 (0, 5 , − 2) 2π b x (a, 0, 0) y z 2t 2 2 2t 2 (π2 , 1, π4 ) 2 (1, 0, 0) dt 1 2 2 2 S 2 5S 2 8 t º 5 » 2 ¼0 5t 2 dt −4 −6 3 dz dt t sin t 4 6 8 10 12 14 πb 2S t sin t , − 10 −8 −6 z ª a2 b2 tº ¬ ¼0 a 2 b 2 dt −4 y x a 2 sin 2 t a 2 cos 2 t b 2 dt ³0 3 y 3 x t 2i tj ln tk 15. r t dx dt 2t , dy dt 1, dz dt 1 t 2 3 ³1 2t 2 2 §1· 1 ¨ ¸ dt ©t ¹ 3 ³1 4t 4 t 2 1 dt t2 3 ³1 4t 4 t 2 1 dt | 8.37 t sin S ti cos S tj t 3k 16. r t s 5, cos t t sin t , sin t t cos t , t 2 14. r t dx dt dy dt a sin t , 2S s z 12 10 8 6 4 (0, 0, 2) 4 cos 2 t 25 4 sin 2 t dt ³0 s y a cos ti a sin tj btk 13. r t s 9 2 sin t , 5t , 2 cos t , >0, S @ 12. r t s 6 S cos S t , 2 ³0 dy dt S cos S t S sin S t , 2 dz dt S sin S t 2 3t 2 2 3t 2 dt 2 ³0 S 2 9t 4 dt | 11.15 © 2010 Brooks/Cole, Cengage Learning Section 12.5 ti 4 t 2 j t 3k , 0 d t d 2 17. r t (a) r 0 0, 4, 0 , r 2 2 4 8 2 distance 2 (a) r 0 2 84 (b) r 0 6i 6, 0, 0 2 j 2k r2 2 21 | 9.165 (b) r 0 1, 3, 1 r 1.5 1.5, 1.75, 3.375 r2 44 2 11 | 6.633 0.5, 3.75, 0.125 r1 0, 2, 2 6 2 22 2 2 distance 0, 4, 0 r 0.5 135 § St · § St · 6 cos¨ ¸i 2 sin ¨ ¸ j tk , 0 d t d 2 ©4¹ ©4¹ 18. r t 2, 0, 8 Arc Length and Curvature 2, 0, 8 distance | 0.5 0.5 0.5 0.5 2 2 0.25 2 0.125 2 0.75 2 0.875 2 2 1.25 2 2.375 2 2 1.75 2 4.625 2 6, 0, 0 r 0.5 5.543, 0.765, 0.5 r 1.0 4.243, 1.414, 1.0 r 1.5 2.296, 1.848, 1.5 r 2.0 0, 2, 2 distance | 6.9698 (c) Increase the number of line segments. (d) Using a graphing utility, you obtain s 2 ³0 rc t dt | 7.0105. | 0.5728 1.2562 2.7300 4.9702 | 9.529 (c) Increase the number of line segments. (d) Using a graphing utility, you obtain 9.57057. 2 cos t , 2 sin t , t 19. r t t s 5 (b) 2 ³0 (a) s 2 t 2 ³0 ª¬ xc u º¼ ª¬ yc u º¼ ª¬ zc u º¼ du 2 sin u § s · 2 cos¨ ¸, y © 5¹ § s · 2 sin ¨ ¸, z © 5¹ § s · § s · 2 cos¨ ¸i 2 sin ¨ ¸j © 5¹ © 5¹ r s (c) When s 1 2 du t ³0 5 du t ª º ¬ 5u ¼ 0 5t 5: x 2 cos 1 | 1.081 y 2 sin 1 | 1.683 z 1 s k 5 When s 2 § 2 § § 2 § s ·· sin cos¨¨ ¨ ¨ ¸ ¸ ¨¨ 5 5 5 © ¹ © ¹ © © rc s (a) s 2 s 5 1.081, 1.683, 1.000 20. r t 2 cos u t x (d) 2 4 | 0.433 5 4 y 2 sin | 1.953 5 4 z | 1.789 5 0.433, 1.953, 1.789 2 cos 4: x 2 2 s ·· § 1 · ¸¸ ¸¸ ¨ ¸ 5 ¹¹ © 5¹ 4 1 5 5 1 3 4 sin t t cos t , 4 cos t t sin t , t 2 2 t ³0 t ³0 2 2 2 ª¬ xc u º¼ ª¬ yc u º¼ ª¬ zc u º¼ du 4u sin u 2 4u cos u 2 3u 2 du t ³0 16u 9u 2 du t ³ 0 5u du 5 2 t 2 © 2010 Brooks/Cole, Cengage Learning 136 Chapter 12 Vector-Valued Functions 2s 5 (b) t x § 4¨¨ sin © 2s 5 2s cos 5 2s · ¸ 5 ¸¹ y § 4¨¨ cos © 2s 5 2s sin 5 2s · ¸ 5 ¸¹ z 3§ ¨ 2 ¨© 2s · ¸ 5 ¸¹ 2 § 4¨¨ sin © r s 3s 5 2s 5 2s cos 5 § 2s · ¸¸i 4¨¨ cos 5 ¹ © 2s 5 2s · 3s ¸¸ j k 5 ¹ 5 2s sin 5 5: (c) When s x § 4¨ sin ¨ © 2 5 5 2 5 cos 5 2 5· ¸ | 1.030 5 ¸ ¹ y § 4¨ cos ¨ © 2 5 5 2 5 sin 5 2 5· ¸ | 5.408 5 ¸ ¹ z 3 5 | 1.342 5 1.030, 5.408, 1.342 When s 4: § 4¨¨ sin © x y z 8 5 8 cos 5 8· ¸ | 2.291 5 ¸¹ § 8 4¨¨ cos 5 © 12 2.4 5 8 sin 5 8· ¸ | 6.029 5 ¸¹ 2.291, 6.029, 2.400 (d) 21. r s rc s Ts Tc s 22. r s 2 §4 ¨¨ sin ©5 rc s §4 2s · ¸ ¨¨ cos 5 ¸¹ ©5 2 2s · § 3· ¸ ¨ ¸ 5 ¸¹ ©5¹ § § 2 · 2 · s ¸¸i ¨¨1 s¸j ¨¨1 2 ¹ 2 ¸¹ © © 2 2 i j and rc s 2 2 rc s rc s 2 16 9 25 25 23. r s 1 1 2 2 Ts 0 The curve is a line. K 3 si j rc s i and rc s Ts rc s Tc s 0 K s k 5 rc s Tc s Tc s § s · § s · 2 cos¨ ¸i 2 sin ¨ ¸j © 5¹ © 5¹ 1 rc s 0 K 1 2 2 1 § s · § s · k sin ¨ cos¨ ¸i ¸j 5 5 5 © 5¹ © 5¹ 2 2 § s · § s · i sin ¨ j cos¨ ¸ 5 5 © 5 ¸¹ © 5¹ Tc s 2 5 1 Tc s 0 The curve is a line. © 2010 Brooks/Cole, Cengage Learning Section 12.5 24. r s § 4¨¨ sin © 2s 5 2s cos 5 Ts rc s 4 sin 5 Tc s 4 25 5 cos 2s K 4 25 Tc s 2s 4 i cos 5 5 2s 4 i 5 25 5 2s 4ti 2tj 25. r t vt § 2s · ¸i 4¨¨ cos 5 ¸¹ © 2s 5 2s sin 5 Arc Length and Curvature 2s · 3s ¸j k 5 ¸¹ 5 2s 3 j k 5 5 5 sin 2s 2s j 5 2 10 s 25s ti 28. r t 4i 2 j 1 3 t j 9 vt 1 i t2j 3 v2 i 0 at 2 tj 3 (The curve is a line.) a2 4 j 3 Tt 1 i t2j 3 t4 1 9 T2 3i 4 j 5 N2 4i 3j 5 1 2i j 5 Tt Tc t 0 Tc t K 26. r t rc t t 2i j vt 2ti Tt i Tc t 0 K 27. r t Tc t 0 rc t 1 ti j t K 1 j t2 vt i v1 i j rc t at 2 j t3 §S · rc¨ ¸ ©2¹ a1 2j Tt Nt N1 K 1 i j 2 aN v 2 2 2 i t2j 45 25 9 36 125 1 cos 2 t 1 §S · 0, sin t , a¨ ¸ ©2¹ 1 1, 0 §S · N¨ ¸ ©2¹ 0, 1 aN v 2 1 1 0, 1 1, cos t 1 cos 2 t §S · T¨ ¸ ©2¹ K 5 3 9 t4 §S · 1, 0 , rc¨ ¸ ©2¹ Tt 12 16 9 3i t 2 j 1, cos t , rc t t 2i j t4 1 1 t , sin t at 1 4 j, v 2 2 aN v 2 29. r t t4 1 137 1 © 2010 Brooks/Cole, Cengage Learning 138 Chapter 12 S 5 cos t , 4 sin t , t 30. r t 5 cos t , y t xt K = Vector-Valued Functions rc t 2 aZ sin Z t i bZ cos Z t j 4 sin t a sin Z t i b cos Z t j Tt xcycc ycxcc ª xc ¬ a cos Z t i b sin Z t j 34. r t 3 a 2 sin 2 Z t b 2 cos 2 Z t 2 32 yc º ¼ Tc t ab 2Z cos Z t i a 2bZ sin Z t j ª¬a 2 sin 2 Z t b 2 cos 2 Z t º¼ 5 sin t 4 sin t 4 cos t 5 cos t ª¬25 sin 2 t 16 cos 2 t º¼ 20 ª¬25 sin 2 t 16 cos 2 t º¼ rc t 20 ª25 3 4 16 1 4 ¬ 32 º ¼ 8S sin 2S ti 8S cos 2S tj 2S cos 2S ti 2S sin 2S tj rc t Tt Tc t K Tc t 2S 8S rc t K 2S sin S ti S cos S tj 4 sin 2 S t cos 2 S t 32 1 cos Z t at Nt vt 2 2 4a 1 cos Z t cos Z t Z t sin Z t , sin Z t Z t cos Z t 36. r t From Exercise 43, Section 12.4, we have: aN 2 sin S ti cos S tj 4 sin 2 S t cos 2 S t K Z 3t at Nt v 2 Z 3t Z 4t 2 1 Zt 2S cos S ti 4S sin S tj 4 sin 2 S t cos 2 S t 2S 4 sin 2 S t cos 2 S t Tc t rc t 32 S 4 sin 2 S t cos 2 S t 32 37. r t rc t Tt Tc t aZ sin Z ti aZ cos Z tj sin Z ti cos Z tj Tc t Z cos Z ti Z sin Z tj Tc t Z rc t aZ K t2 k 2 ti t 2 j i 2tj tk i 2tj tk 1 5t 2 5ti 2 j k 1 5t 2 a cos Z ti a sin Z tj Tt K aZ 2 2 § aZ 2 · ¨ ¸ 1 cos Z t © 2¹ 2a 2Z 2 1 cos Z t 2 cos S ti sin S tj S 2 From Exercise 44, Section 12.4, we have: 1 4 4 sin 2 S t cos 2 S t rc t Z a 2 sin 2 Z t b 2 cos 2 Z t a Z t sin Z t , a 1 cos Z t 2 33. r t rc t ª¬a sin Z t b 2 cos 2 Z t º¼ aN Tc t rc t abZ a 2 sin 2 Z t b 2 cos 2 Z t 2 35. r t sin 2 S ti cos 2tj 32. r t 160 91 8281 4 cos 2S ti 4 sin 2S tj Tt K K 32 Tc t ab §S · K¨ ¸ ©3¹ 31. r t 32 32 32 Tc t 5 1 5t 2 rc t 1 5t 5 2 1 5t 2 32 1 a © 2010 Brooks/Cole, Cengage Learning Section 12.5 1 2 t k 2 2t 2i tj 38. r t rc t 39. r t 4ti 3 cos tj 3 sin tk rc t 4i 3 sin tj 3 cos tk Tt 1 >4i 3 sin tj 3 cos tk@ 5 Tc t 1 >3 cos tj 3 sin tk@ 5 4ti j tk 4ti j tk Tt 1 17t 2 4i 17tj k Tc t 1 17t 2 32 K K Tc t 289t 2 17 rc t 1 17t 1 17t 2 32 2 Arc Length and Curvature 12 Tc t rc t 35 5 139 3 25 17 1 17t 2 32 e 2t i e 2t cos tj e 2t sin tk 40. r t rc t 2e 2t i 2e 2t cos t e 2t sin t j 2e2t sin t e 2t cos t k e 2t ª¬2i 2 cos t sin t j 2 sin t cos t k º¼ 12 e 2t >9@ e 2t ª¬4 4 cos 2 t 4 cos t sin t sin 2 t 4 sin 2 t 4 sin t cos t cos 2 t º¼ rc t Tt rc t rc t Tc t 1 1 § 2 · §2 · ¨ sin t cos t ¸ j ¨ cos t sin t ¸k 3 3 © 3 ¹ ©3 ¹ 12 2 1 1 §2 · §2 · i ¨ cos t sin t ¸ j ¨ sin t cos t ¸k 3 3 3 3 3 © ¹ © ¹ 12 ª§ 4 1 4 1 4 · §4 ·º 2 2 2 2 «¨ 9 sin t 9 cos t 9 sin t cos t ¸ ¨ 9 cos t 9 sin t 9 cos t sin t ¸» ¹ © ¹¼ ¬© Tc t K 5 3 3e 2t Tc t rc t x 3t , xc y 2t 2 , yc K 5 9e 3, xcc 2 4t , ycc 4 34 0 2 32 yc º ¼ ª9 4t 2 º ¬ ¼ 12 1, K At t 1 43. r t ti t 2 j t3 k , P 2, 4, 2 t 4 rc t i 2tj 3 2 t k 4 rc 2 i 4 j 3k , rc 2 rcc t 2j rcc 2 2 j 3k 0 xcycc ycxcc ª xc ¬ 9 16 32 x e , xc e , xcc e y 4t , yc 4, ycc 0 K t t xcycc ycxcc ª xc ¬ 2 2 32 yc º ¼ 2 26 32 12 125 3 tk 2 i et i 4tj, P 1, 0 t 42. r t 5 3 2t 3ti 2t 2 j, P 3, 2 t 41. r t 3e 2t 0 rc 2 u rc 2 j k 6i 3 j 2k 1 4 3 0 2 3 t 04 1 16 32 4 173 2 rc 2 u rcc 2 49 rc u rcc rc 3 7 263 2 K 7 7 26 676 © 2010 Brooks/Cole, Cengage Learning 140 Chapter 12 44. r t Vector-Valued Functions et cos ti et sin tj et k , P 1, 0, 1 t rc t et cos t et sin t i et sin t et cos t j et k rc t cos 2 t 2 cos t sin t sin 2 t sin 2 t 2 sin t cos t cos 2 t 1 et Tt 1 ª cos t sin t i sin t cos t j k º¼ 3¬ Tc t 1 ª¬ sin t cos t i cos t sin t jº¼ 3 rc 0 i j k rc 0 45. y Tc 0 2 rc 0 46. y 49. y 0, K ycc 4 48. y yc ycc K 1 K 0, K 0, and the radius of curvature is ycc 4 cos 2 x At x 2S , y 1 K 50. y 4 ª1 4 2 º ¬ ¼ 32 4 | 0.057 173 2 4 2x , x x 1 4 , yc 1 x2 8 , ycc 1 x3 K 1 K 1, yc 4 ª¬1 02 º¼ 0, ycc 4 4 32 1 4 e3 x , x 0 3e3 x , ycc 0, y 9e 3 x 1, yc 9 3, ycc 9 9 103 2 2 32 ª¬1 3 º¼ 10 10 9 2 51. y 8 ycc ª1 yc 2 º ¬ ¼ yc At x 173 2 | 17.523 radius of curvature 4 2 2 sin 2 x 0, and the radius of curvature is 1 2S cos 2 x, x yc K 2 x 2 3, x 4x 1 K 2 3 mx b yc K 2 3 3x 2 Because ycc undefined. 47. y 3 3 Because ycc undefined. 3et 3 1 i j Tc 0 3 Tc 0 K 0 yc 8 32 1 4 53 2 radius of curvature 8 32 8 53 2 ycc At x a2 x2 , x 0 x a x2 2 a2 a2 x2 32 0: yc 0 ycc 1 a K 1 K 1a 1 0 2 32 1 a a radius of curvature © 2010 Brooks/Cole, Cengage Learning Section 12.5 3 16 x 2 4 9 x 16 y 52. y yc At x ycc x3 , x 53. y yc 3 16 32 8, yc 12, ycc 145 At x 57. y 1, n t 2 K n n 1 xn 2 1, yc 1, y 1 K 3 8 x 1 , yc x 1 , ycc x2 2 9 64 n n 1 n n 1 2 x3 2 at 1, 2 32 1 02 1 2. Because the tangent line is Radius of curvature n, ycc 2 (b) The circles have different radii since the curvature is 1 different and r . K 32 n 1 ycc 10 8 3 32 2 3· § Equation: x 2 ¨ y ¸ 8 © ¹ 12 12 nx 8 3 83 r 6x yc 72 27 § 3· Center: ¨ 0, ¸ © 8¹ 145 145 12 xn , x 3 0 K 2 ª1 12 º ¬ ¼ 54. y K 2 2 32 1 K 0: yc ycc 12 K x2 3 16 radius of curvature 3 2, y 2 72 1 x 2 At x 3 16 1 0 3x 2 , ycc At x x 3 ycc 3 16 1 K 24 x 2 0 K 2 yc 0: yc 141 4x2 x 3 56. (a) y 2 ª9 16 yc º ¬ ¼ 16 y ycc Arc Length and Curvature horizontal at 1, 2 , the normal line is vertical. The center of the circle is 1 2 unit above the point 1, 2 at 1, 5 2 . 2 32 ª¬1 n º¼ Circle: x 1 §S · 55. (a) Point on circle: ¨ , 1¸ ©2 ¹ 2 5· § ¨y ¸ 2¹ © 2 1 4 4 §S · Center: ¨ , 0 ¸ ©2 ¹ (1, 2) −6 6 2 S· § Equation: ¨ x ¸ y 2 2¹ © 1 −4 (b) The circles have different radii because the curvature 1 is different and r . K © 2010 Brooks/Cole, Cengage Learning 142 Chapter 12 ln x, 58. y Vector-Valued Functions 1 x 1 yc , x yc 1 1, 1 K 1 1 yc 1 K 2 32 2 2 The slope of the tangent line at 1, 0 is yc 1 x 1 2 1 x 0 y 2 2 2 x 1 x 1 2x2 4 x 2 8 2 x 2x 3 0 2 x 3 x 1 0 2 x 3 (1, 0) 1 x 9 −3 ex , y yc ex , ycc yc 0 2. 3 and y K 32 2 x 1 2 x 1 2 8 1 1 2 2 1 K ,r 1 0 or x 2 0 and 3 (0, 1) 2 −1 2 x 1. π B A The slope of the normal line is 1. x or y x 1 −2π The center of the circle is on the normal line 2 2 units away from the point 0, 1 . y 62. 4 0 x 2 1 y 2 x2 x2 x 3 2 2 B 8 A −4 2 4 x r2 −2 x 4 2 6 −3 −4 Because the circle is above the curve, x 2 and y 3. 63. y x 1 2 3, yc 2 x 1 , ycc 2 (0, 1) −6 Center of circle: 2, 3 Equation of circle: x 2 3 0 2 y 3 2 8 2 K 1 ª¬2 x 1 º¼ 2 2 32 (a) K is maximum when x (b) lim K x of 4 3 2 units π The slope of the tangent line at 0, 1 is yc 0 Equation of normal line: y 1 x y 61. 2 2 1. 2 4· § Equation of circle: x 2 ¨ y ¸ 3¹ © 1 23 2 2 Because the circle is above the curve, x 4 y . 3 § 4· Center of circle: ¨ 0, ¸ −3 © 3¹ ex 1 1 12 y 2 2 1 K 2 x 0 1, ycc 0 2 1 Center of circle: 3, 2 59. y §1 · ¨ y¸ ©3 ¹ −5 Because the circle is below the curve, x Equation of circle: x 3 2 1 x 3 or x 2 11 1 ,r 2 32 The center of the circle is on the normal line § 1· away from the point ¨1, ¸. © 3¹ 2 2 8 2 2 § 1· The slope of the tangent line at ¨1, ¸ is yc 1 © 3¹ The slope of the normal line is 1. 1 Equation of normal line: y x 1 or y 3 1. The center of the circle is on the normal line 2 2 units away from the point 1, 0 . 1 x 2 1, ycc 1 K The slope of the normal line is 1. Equation of normal line: y 1 x 2 , ycc yc 1 1 , r 23 2 2 32 1 3 x , x 3 60. y 1 2 ycc x 1 ycc 1 ª1 4 x 1 2 º ¬ ¼ 32 1 or at the vertex 1, 3 . 0 © 2010 Brooks/Cole, Cengage Learning 3 Section 12.5 64. y 3x 2 , ycc x 3 , yc 6x 67. y 32 1 9x4 K § 1 , (a) K is maximum at ¨ 4 © 45 (b) lim K · § 1 , ¸, ¨ 4 3 45 ¹ © 45 1 4 1 · ¸. 4 453 ¹ 2 1 3 x , ycc 3 x 2 3 , yc 2 x 4 3 9 32 (b) lim K 0 1 , yc x x of x1 3 9 x 2 3 4 K 1 , ycc x2 32 68. y K 2 . Assume x ! 0. x3 2 x3 ycc 2 32 ª1 yc º ¬ ¼ 1 1 x4 dK dx x4 1 x4 1 K 1 . 2 ycc ex ycc ex 2 32 ª1 yc º ¬ ¼ 1 e2 x 32 e x 1 2e 2 x 1 e2 x 52 0 e2 x 1 x 2 K has maximum curvature at x 52 (b) lim K x of 1 §1· ln¨ ¸ 2 © 2¹ 1 ln 2 2 1 ln 2. 2 0 0 x of 69. y e x , yc (a) 1 2e 2 x 32 (a) K has a maximum at x 1 and x 1 by symmetry . (b) lim K 32 0 2 x3 32 6x2 1 x4 dK dx x 1 2 52 x2 1 x of 6 2 3 ¬ª1 4 9 x ¼º 32 2 x 2 1 (b) lim K 2 9 x 4 3 x ª1 1 x 2 º ¬ ¼ (a) K has a maximum when x (a) K o f as x o 0. No maximum 66. y 1 x2 1 x 2 dK dx 0 x of K 1 , ycc x ln x, yc 143 6x K 65. y Arc Length and Curvature sinh x, yc cosh x, ycc sinh x sinh x ª1 cosh x 2 º ¬ ¼ 32 (a) By symmetry, consider x t 0, so sinh x 2 32 ª1 cosh x º ¬ ¼ Kc cosh x sinh x sinh x: 3 2 1 cosh x 2 12 2 sinh x cosh x 2 3 ª1 cosh x º ¬ ¼ Setting K c 0: ª1 cosh x 2 º cosh x ¬ ¼ 1 cosh x 2 1 1 sinh 2 x sinh 2 x x Also, x sinh x 2 3 sinh x 3 cosh x 2 3 sinh 2 x 1 arcsinh 1 | 0.8814, Maximum arcsinh 1 Maximum curvature at r arcsinh 1 , 1 (b) lim K x of 0 © 2010 Brooks/Cole, Cengage Learning 144 Chapter 12 Vector-Valued Functions cosh x, yc 70. y cosh x K ª¬1 sinh xº¼ 32 ª¬cosh xº¼ 2 2 sinh x cosh 3 x (b) lim K cosh x cosh x 2 (a) K c 1 cosh 2 x 32 0 when x 74. y 3 x 2 , ycc cos x, ycc sin x 6 x b ³a (b) Plane: K 6 x ª¬1 9 x 4 º¼ 32 Space: K Curvature is 0 at x 3 x 1 72. y 0: 0, 1 . 3 x 1 , ycc 6 x 1 6 x 1 ycc K 2 32 0 at x 4 32 ª1 y ' º ¬ ¼ cos x, yc ª1 9 x 1 º ¬ ¼ sin x, ycc 1. 77. K S 32 2 dt b ³a rc t dt Tc s Tc t rc t u rcc t rc t rc t 3 ycc ª1 yc 2 º ¬ ¼ 32 0, so K ycc . 4 Yes, for example, y cos x x has a curvature of 0 at its relative minimum 0, 0 . The curvature is positive at any cos x ª1 yc 2 º ¬ ¼ zc t At the smooth relative extremum yc ycc K dT dS 2 76. The curve is a line. Curvature is 0 at 1, 3 . 73. y yc t Answers will vary 2 3, yc 2 xc t nS . nS : nS , 0 Curvature is 0 for x 0, Maximum sin x 0 for x 32 1 cos 2 x 75. (a) s 1 x 3 , yc K x sin x, yc K 0 x of 71. y sinh x, ycc 1 sin 2 x 32 0 for other point on the curve. KS . 2 §S · Curvature is 0 at ¨ KS , 0 ¸. 2 © ¹ ti t 2 j 78. r t (a) dx dt s 1, dy dt 2 ³0 2t 1 2 2³0 1 4t 2 dt 1ª 4 17 ln 4 4¬ x 2 , yc (b) Let y At t 0, x >1 0@ 32 At t K 2t 1 1ª 2t 1 4t 2 ln 2t 2 2 ¬« 2 1 4t 2 º Theorem 8.2 ¼» 0 17 º | 4.647 ¼ 2 x, ycc 0, y 1 4t 2 2t dt u 0, yc 2 0, ycc 2, K 2 2 1, x 1, y 2 2 32 ª1 2 º ¬ ¼ At t 2, x 2, y K >1 16@ 2 32 1, yc 2, ycc 2 2 | 0.179 53 2 4, yc 4 ycc 2 2 | 0.0285 173 2 (c) As t changes from 0 to 2, the curvature decreases. © 2010 Brooks/Cole, Cengage Learning Section 12.5 79. Endpoints of the major axis: r 2, 0 Arc Length and Curvature x4 x2 81. f x Endpoints of the minor axis: 0, r1 16 x 6 16 x 4 4 x 2 1 4 0 (b) For x x 4y yc 4 y 2 x2 16 y 2 16 y 3 12 y 4 2 1 4 y3 32 16 y 2 x 2 32 16 16 3x 2 32 2 1· 5 § x2 ¨ y ¸ . 2 4 © ¹ To graph these circles, use r 2 and y2 x , y2c x 2 At P, y1c 0 a b 2 x , y1cc 2 x 2 ab and y2c 0 2 2a 4 , y2cc x 2 2 0 2 3 1 . 2 2 82. y Because the curves have a common tangent at P , 1 1 y1c 0 y2c 0 or ab . So, y1c 0 . Because the 2 2 curves have the same curvature at P, K1 0 K2 0 . (a) ª1 y 0 1 «¬ º »¼ ª1 y 0 2 ¬« º ¼» (b) V ª1 1 2 2 º ¬ ¼ (c) yc 32 1 1 r or a r . In order that the curves 2 4 intersect at only one point, the parabola y must be concave downward. So, 1 1 4 and b 2. a y2 2a 4 2 1 x 2 x and y2 4 x x 2 K 4 y −2 x 2 § 58 5 x8 5 · ¸ dx 4 4 ¹ 6 2 5 2 35 x , ycc x 5 25 6 25 x 2 5 32 4 6 5º ª «¬1 25 x »¼ 6 5 ³ 0 2S x¨© 4 6 5º ª 25 x 2 5 «1 x » 25 ¬ ¼ y2 P −4 2 (rotated about y-axis) 32 So, 2a y1 3 2 1 2 2 32 −2 x ª1 1 2 2 º ¬ ¼ y2cc 0 K2 0 3 z 2a 2 32 −3 4 2 K1 0 0. At 1, 0 , the 1 85 x ,0 d x d 5 4 4 y1cc 0 1 . 4 y equations. So, the point P is origin. ax b x , y1c ¹ 1 1 1 5 r x 2 and y r x2 . 2 4 2 4 (c) The curvature tends to be greatest near the extrema of f, and K decreases as x o rf. f and K, however, do not have the same critical numbers. 5 Critical numbers of f : 2 | r0.7071 x 0, r 2 −3 Critical numbers of K: x 0, r0.7647, r0.4082 −2 x x 2 You observe that 0, 0 is a solution point to both y1 2 5 5. f 1 1, K 2 5 1 . K 2 Using the graph of f, you see that the center of 2 § 1· curvature is ¨ 0, ¸. So, f © 2¹ 0. ax b x , y2 1 . Using the symmetry of 2 circle of curvature has radius So, because 2 d x d 2, K is largest when x smallest when x For x 16 32 0. At 0, 0 , the circle © 4 y x 2 y ª1 x 4 y 2 º ¬ ¼ 16 32 the graph of f , you obtain x 2 §¨ y 1 ·¸ 2 1 4 y 3 K 2. f 0 0, K of curvature has radius 4 y 1 x 4 yc 16 y 2 ycc 80. y1 2 6x2 1 (a) K x2 4 y2 2 x 8 yyc 145 4 y1 32 125S 53 5 | 114.6 cm3 9 6 25 x 2 5 1 5 0 0 (d) No, the curvature approaches f as x o 0. So, any spherical object will hit the sides of the goblet before touching the bottom 0, 0 . −4 © 2010 Brooks/Cole, Cengage Learning 146 Chapter 12 Vector-Valued Functions 83. (a) Imagine dropping the circle x 2 y k 2 16 2 into the parabola y x . The circle will drop to the point where the tangents to the circle and parabola are equal. x 2 and x 2 y k y 2 16 x 2 x 2 k 0 and yc Taking derivatives, 2 x 2 y k yc y k yc So, x yk 2 16 2 x. So, y x . y k x yc 15 10 2x x 2 x y k 1 1 . 2 2 x2 k x2 k x So, −10 −5 5 10 2 § 1· x2 ¨ ¸ 16 x 2 15.75. © 2¹ 1 Finally, k x2 16.25, and the center of the circle is 16.25 units from the vertex of 2 the parabola. Because the radius of the circle is 4, the circle is 12.25 units from the vertex. x2 x2 k 2 x 2 has a curvature of K y 2 or z (b) In 2-space, the parabola z the largest sphere that will touch the vertex has radius 84. s c K y 1 3 x 3 yc x2 ycc 2x K 1 . 2 2x 1 x4 When x 32 1 2 c 1: K s 1 4 30 At x 1K 2 at 0, 0 . The radius of 3 , K 2 s 4 2c c 3 ª¬1 81 16 º¼ § 3· ¨ ¸ © 2¹ 2c 2 c K 32 30 2 4 | 0.201 30 4 K 2 | 56.27 mi h © 2010 Brooks/Cole, Cengage Learning Section 12.5 f x . Let D , E be the center of curvature. The radius of curvature is 85. P x0 , y0 point on curve y yc Arc Length and Curvature f c x . Slope of normal line at x0 , y0 is 147 1 . K 1 . f c x0 1 x x0 c f x0 Equation of normal line: y y0 D , E is on the normal line: f c x0 E y0 2 x0 , y0 lies on the circle: x0 D y0 E D x0 2 Equation 1 §1· ¨ ¸ ©K¹ 2 ª « 1 f c x0 « f cc x0 « ¬ 2 2 3 2º » » » ¼ Equation 2 Substituting Equation 1 into Equation 2: 2 ¬ª f c x0 E y0 º¼ y0 E E y0 2 §1· ¨ ¸ ©K¹ 2 2 y 1 f c x0 ª1 f c x0 º ¬ ¼ 2 f cc x0 2 3 2 P ( x0, y0) 1 K (␣ ,  ) 2 2 E y0 2 ª1 f c x0 º ¬ ¼ 2 f cc x0 x When f cc x0 ! 0, E y0 ! 0, and if f cc x0 0, then E y0 0. So E y0 E z ex , f c x 1 fc 0 f cc 0 D, E z z e x , 0, 1 2 x, ycc 2, 3 § 1· 1, ¨1, ¸ © 2¹ 2 2 1 § · ¨1 2, 2 ¸ 2 © ¹ x 2 , yc 2 x, ycc 1 fc 0 f cc 0 2 D, E f cc x 0 2, 1 2 1 fc1 f cc 1 (c) y y0 z 2 x2 , yc 2 D, E 2 x0 f c x0 z. f x (b) y 1 f c x0 f cc x0 y0 Similarly, D 86. (a) y 2 1 f c x0 f cc x0 § ¨ 1, © 5· ¸ 2¹ 2, 0, 0 1 2 1· § ¨ 0, 0 ¸ 2¹ © § 1· ¨ 0, ¸ © 2¹ © 2010 Brooks/Cole, Cengage Learning 148 Chapter 12 87. r T Vector-Valued Functions r cos T i r sin T j f T cos T i f T sin T j xT f T cos T yT f T sin T xc T f T sin T f c T cos T yc T f T cos T f c T sin T xcc T f T cos T f c T sin T f c T sin T f cc T cos T f T cos T 2 f c T sin T f cc T cos T ycc T f T sin T f c T cos T f c T cos T f cc T sin T f T sin T 2 f c T cos T f cc T sin T ª xc ¬ 2 2 yc º ¼ rc cos T r cc sin T 2 2 rc K ª rc ¬ (b) r T rc 1 r cc 0 2 rc K ªf 2 T fc T «¬ rr cc r 2 2 2 ª rc ¬ 2 32 º »¼ ªr 2 r c 2 º ¬ ¼ 2 32 r 2º 32 2 3 r2º ¼ 32 2 3 1 sin T 8 1 sin T ªcos 2 T 1 sin T º ¬ ¼ ¼ rr cc r 2 2 2 cos 2 T 1 sin T sin T 1 sin T 3 3 2 2 1 sin T 2 T2 1 T2 32 a sin T (c) r rc a cos T r a sin T 2 rc K 2 ª rc ¬ (d) r eT rc eT r cc eT 2 rc K 2 ª rc ¬ rr cc r 2 2 r 2º r 2 2 2 2 ¬ªa cos T a sin T ¼º ¼ rr cc r 2 2 2a 2 cos 2 T a 2 sin 2 T a 2 sin 2 T 32 2º 32 ¼ 2e 2T 2e 2T 3 2a 2 a3 2 ,a ! 0 a 1 2eT 32 e aT , a ! 0 rc ae aT r cc a 2e aT 2 rc K 32 r 2 rr cc 2 r c 1 sin T 88. (a) r 89. r f 2 T f T f cc T 2 f c T xcycc ycxcc K 2 2 ª rc ¬ rr cc r 2 2 r 2º 32 ¼ 2a 2e 2 aT a 2e 2 aT e 2 aT 2 2 aT ª¬a e e 2 aT 3 2 º¼ 1 e aT a2 1 (a) As T o f, K o 0. (b) As a o f, K o 0. © 2010 Brooks/Cole, Cengage Learning Section 12.5 90. At the pole, r 2 rc K 2 ª rc ¬ 0. rr cc r 2 r 2º 4 sin 2T rc 8 cos 2T 2 rc rc 32 ¼ 2 rc 3 3t 2 , xcc t 1 2 t , yc t 2 yt 149 6t t , ycc t 1 3t 2 1 t 6t 2 rc 0 At the pole: K rc 2 K 91. r 92. r t 3 , xc t 94. x t 2 Arc Length and Curvature 2 8 ª 3t 2 «¬ 2 32 2 t º »¼ 3t 2 1 4 t 3 3 9t 1 2 32 t 9t 1 2 32 K o 0 as t o rf 6 cos 3T 5 18 sin 3T At the pole, T S 6 §S · , r c¨ ¸ ©6¹ 18, 0 and K 93. x yc ycc 2 2 18 rc S 6 f t,y dy dx 1 . 9 gt dy dt dx dt d ª gc t « dt ¬« f c t dx dt f c t g cc 95. x T a T sin T yT a 1 cos T xc T a 1 cos T yc T a sin T xcc T a sin T ycc T a cos T xc T ycc T yc T xcc T K ª xc T ¬ gc t fc t 2 a 2 sin 2 T º ¼ 32 cos T 1 1 a >2 2 cos T @3 2 1 1 cos T 1 cos t 0 a 2 2 >1 cos T @3 2 t g c t f cc t 2 f c t g cc t g c t f cc t ª¬ f c t º¼ ¬ª f c t ¼º ycc 2 32 1 §T · csc¨ ¸ 4a ©2¹ 1 2a 2 2 cos T 3 Minimum: f c t g cc t g c t f cc t 3 1 4a T S K o f as T o 0 Maximum: none 2 32 ª1 yc º ¬ ¼ ª § gc t · º «1 ¨ ¸ » « © fc t ¹ » ¬ ¼ f c t g cc t g c t f cc t ª¬ f c t º¼ ­° ª f c t º ¬ ¼ ® ª¬ f c t °¯ 32 a 2 1 cos T cos T a 2 sin 2 T º » ¼» 2 2 yc T º ¼ 2 ªa 2 1 cos T ¬ ¬ª f c t ¼º fc t K 4 −4 3 f c t g cc t g c t f cc t 2 3 ª¬ g c t º¼ ½° ¾ 2 º¼ °¿ 2 ¬ª f c t ¼º ¬ª g c t ¼º 2 32 96. (a) r t 3t 2i 3t t 3 j vt 6ti 3 3t 2 j ds dt vt K 3 1 t2 , d 2s dt 2 6t 2 2 3 1 t2 aT d 2s dt 2 aN § ds · K¨ ¸ © dt ¹ 6t 2 2 31 t 2 2 9 1 t2 2 6 © 2010 Brooks/Cole, Cengage Learning 150 Chapter 12 (b) r t Vector-Valued Functions 1 2 t k 2 ti t 2 j vt i 2tj tk ds dt vt d 2s dt 2 at 5t 98. F 5t 2 1 vt uat aT aN j k 1 2t t 0 1 2 99. y 5 3 d 2s dt 2 5t 2 1 32 5t cosh x sinh x ycc e x e x 2 cosh x K 5 5t 2 1 32 5t 2 1 3327.5 lb 2 e x e x 2 e x e x 2 5t 1 § ds · K¨ ¸ © dt ¹ 2 2 yc 2 2 § ds · mK ¨ ¸ © dt ¹ maN j 2k rc t u rcc t rc t 2 § 6400 lb ·§ 1 ·§ 35 5280 ft · ¸ ¨ ¸¨ 2 ¸¨ © 32 ft sec ¹© 250 ft ¹© 3600 sec ¹ 94864 | 2108.1 lb 45 2j k i § ds · mK ¨ ¸ © dt ¹ maN § 5500 lb ·§ 1 ·§ 30 5280 ft · ¸ ¨ ¸¨ 2 ¸¨ © 32 ft sec ¹© 100 ft ¹© 3600 sec ¹ 5t 2 1 rc t u rcc t K 97. F cosh x cosh x 2 32 ª1 sinh x º ¬ ¼ 2 cosh x 32 1 cosh 2 x 1 y2 5 5t 1 2 100. (a) K (b) T t dT ds Tc s d T dt , by the Chain Rule dt ds d T dt ds dt Tc t Tc t vt rc t rc t rc t rc t ds dt rc t ds Tt dt rcc t § d 2s · ds ¨ 2 ¸T t Tc t dt © dt ¹ 2 § ds ·§ d 2 s · § ds · ¨ ¸¨ 2 ¸ ª¬T t u T t º¼ ¨ ¸ ª¬T t u Tc t º¼ dt dt © ¹© © dt ¹ ¹ rc t u rcc t Because T t u T t 0 and ds dt rc t , you have: rc t u rcc t rc t 2 ª¬T t u Tc t º¼ rc t u rcc t rc t 2 T t u Tc t So, (c) K rc t u rcc t rc t 3 rc t u rcc t rc t 3 rc t 2 Tt Tc t rc t 2 1 K rc t from (a ) K. rc t u rcc t rc t rc t 2 vt uat vt rc t 2 at Nt rc t 2 © 2010 Brooks/Cole, Cengage Learning Section 12.5 Arc Length and Curvature 151 101. False 102. False 1 radius Curvature 103. True 104. True § ds · K¨ ¸ © dt ¹ aN x t i y t j z t k. Then r 105. Let r § dr · r¨ ¸ © dt ¹ 106. F 2 r 2 ^ a ` §d· ¨ ¸ r u rc © dt ¹ 1 2 xc t i yc t j zc t k. Then, º 2 x t xc t 2 y t yc t 2 z t zc t » ¼ GmM r r3 GM 3 r r Because r is a constant multiple of a, they are parallel. Because a d ªr º dt «¬ r »¼ 2 2 2 2 ª1 2 2 2 ª¬ x t º¼ ª¬ y t º¼ ª¬ z t º¼ « ª¬ x t º¼ ª¬ y t º¼ ª¬ z t º¼ 2 ¬ x t xc t y t yc t z t zc t r rc. ma ma 107. Let r 2 ª¬ x t º¼ ª¬ y t º¼ ª¬ z t º¼ and r c rc u rc r u rcc 00 rcc is parallel to r, r u rcc 0. Also, 0. So, r u rc is a constant vector which we will denote by L. xi yj zk where x, y, and z are function of t, and r r . rrc r ª¬ r rc r º¼ rrc r dr dt r2 r2 r 2rc r r c r using Exercise 105 r3 x 2 y 2 z 2 xci ycj zck xxc yyc zzc xi yj zk r3 1ª xcy 2 xcz 2 xyyc xzzc i x 2 yc z 2 yc xxcy zzcy j x 2 zc y 2 zc xxcz yycz k ¼º r3 ¬ i j k 1 1 c c c c c yz y z xz x z xy xcy ^>r u rc@ u r` r3 r3 x y z 108. d ª rc rº uL » dt «¬ GM r¼ 1 1 >rc u 0 rcc u L@ 3 ^>r u rc@ u r` GM r º 1 ª 1 § GMr · 0 ¨ 3 ¸ u >r u rc@» 3 ^>r u rc@ u r` GM «¬ © r ¹ ¼ r 1 r 3 u >r u rc@ 3 ^>r u rc@ u r` r r 1 ^>r u rc@ u r >r u rc@ u r` 0 r3 § rc · §r· So, ¨ ¸ u L ¨ ¸ is a constant vector which we will denote by e. © GM ¹ ©r¹ © 2010 Brooks/Cole, Cengage Learning 152 Chapter 12 Vector-Valued Functions 109. From Exercise 106, you have concluded that planetary motion is planar. Assume that the planet moves in the xy-plane with the sum at the origin. From Exercise 108, you have §r · GM ¨ e ¸. ©r ¹ rc u L Because rc u L and r are both perpendicular to L, so is e. So, e lies in the xy-plane. Situate the coordinate system so that e lies along the positive x-axis and T is the angle between e and r. Let e e . Then r e r e cos T re cos T . Also, LL 2 L r u rc L y r rc u L ª r ·º § r «GM ¨ e ¸» r ¹¼ © ¬ r rº ª GM «r e r »¼ ¬ GM >re cos T r @. So, L 2 GM 1 e cos T Planet Sun r θ x e r and the planetary motion is a conic section. Because the planet returns to its initial position periodically, the conic is an ellipse. 110. r u rc L r cos T i sin T j Let: r rc dT § dr ¨ dt © dt r sin T i cos T j Then: r u rc dr dT · ¸ dT dt ¹ i j k r cos T r sin T 0 r sin T dT dt r cos T dT dt 0 r2 dT k and L dt r u rc r2 dT . dt 1 E 2 r dT 2 ³D 111. A So, dA dt dA dT dT dt 1 2 dT r 2 dt 1 L 2 and r sweeps out area at a constant rate. 112. Let P denote the period. Then P dA ³0 A dt dt 1 L P. 2 Also, the area of an ellipse is S ab where 2a and 2b are the lengths of the major and minor axes. S ab P P2 1 L P 2 2S ab L 4S 2 a 2 2 a c2 L 2 4S 2 a 2 2 a 1 e2 L 2 4S 2 a 4 § ed · ¨ ¸ L 2 © a ¹ 4S 2ed 3 a L 2 4S 2 L 2 L 2 GM a3 4S 2 3 a GM Ka 3 © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 12 153 Review Exercises for Chapter 12 tan t i j t k 1. r (t ) (a) Domain: t z S (b) Continuous for all t z S 2 (b) Continuous for all t ! 0 nS , n an integer 2t 1 i t 2 j t k 4. r t (a) Domain: f, f 1 jk t 4 ti 2. r (t ) (a) Domain: 0, f nS , n an integer 2 In t i t j t k 3. r (t ) (b) Continuous for all t (a) Domain: [0, 4) and 4, f (b) Continuous except at t 2t 1 i t 2 j 5. r t i (a) r 0 (b) r 2 4 t 2k 2k 3 i 4 j 2 (c) r c 1 2c 1 i c 1 j c 1k 2 (d) r 1 't r 1 ª¬2 1 't 1º¼ i 1 't j 2't i 't 2 2't j 3 't k 3 i j 3 't 3k 3 k 3i j 6. (a) r 0 §S · (b) r¨ ¸ ©2¹ S k 2 (c) r s S 3 cos s S i 1 sin s S j s S k (d) r S 't r S 3 cos(S 't i 1 sin S 't j S 't k ) 3 i j S k 3 cos 't 3 i sin 't 't k S cos t , S sin t 7. r t S cos t , y x y z 4 S sin t 2 S 2 , circle x2 y2 i t j t2k 9. r t 1 x −4 − 2 −1 1 2 4 2 x 1 y t z t2 z 1 y2 −2 2 −4 y t 2 i 3t j t 3 k 10. r t t 2, t 2 1 8. r t 1 x z x t 2 t y t2 1 x2 4 2 x 2 1, parabola 2 y −4 4 2 x 3 2 2 4 y −2 −4 1 x −1 −1 1 2 3 4 5 −2 © 2010 Brooks/Cole, Cengage Learning 154 Chapter 12 Vector-Valued Functions i sin t j k 11. r t 1, y x sin t , z 16. One possible answer is: z 1 3 r1 t 4t i, 0 d t d 1 r2 t 4 cos t i 4 sin t j, 0 d t d r3 t 4 t j, 0 d t d 4 2 1 −2 1 1 2 y 2 S 2 3 x 2 cos t i t j 2 sin t k 12. r t 2 cos t , y x 17. The vector joining the points is 7, 4, 10 . One path is x2 z 2 t, z z 2 7t , 3 4t , 8 10t . rt 3 2 sin t 18. The x- and y-components are 2 cos t and 2 sin t. At 4 2 x 3S , 2 t 2π y the staircase has made t i ln t j 13. r t 1 2 t k 2 3 of a revolution and is 2 meters 4 high. So, one answer is z 2 cos t i 2 sin t j rt 3 2 x2 y 2 , x y 19. z 1 1 1 t, y x y 2 2 0, t z x 2t 2 5 t i t j + 2t 2 k rt 3 t , z 4 t k. 3S x −3 2 1 ti 2 14. r t tj 1 2 3 y 3 1 3 t k 4 x 20. x 2 z 2 z x 6 t, y 4, x y t, z 0, t x z r 4 t2 5 4 rt ti t j 4 t2 k rt ti t j 4 t2 k 3 2 −3 x −2 1 1 −1 −1 2 3 1 2 −2 3 −3 y y 21. lim t i t o 4 r1 t 3t i 4t j, 0 d t d 1 r2 t 3 i 4 t j, 0 d t d 4 r3 t 3 t i, 0 d t d 3 3t i t 1 j, u t (a) rc t 3i j (b) rcc t 0 (c) r t u t 4 tj+ k § sin2t · i e t j et k ¸ 22. lim¨ t o 0© t ¹ t i t2 j 3t 2 t 2 t 1 Dt ª¬r t u t º¼ 3 5 15. One possible answer is: 23. r t 4 x 4i k 2 cos 2t · § ¨ lim ¸i j k © t o0 1 ¹ 2i j k 2 3 t k 3 t 3 2t 2 3t 2 4t © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 12 (d) u t 2r t 5t i t 2 2t 2 j Dt ª¬u t 2r t º¼ (e) 155 2 3 t k 3 5 i 2t 2 j 2t 2 k 10t 2 2t 1 rt 10t 1 Dt ª¬ r t º¼ 10t 2 2t 1 2 4 t t 3 i 2t 4 j 3t 3 t 2 t k 3 §8 3 2· 3 2 Dt ª¬r t u u t º¼ ¨ t 2t ¸ i 8t j 9t 2t 1 k 3 © ¹ (f ) r t u u t sin t i cos t j t k , u t 24. r t (a) rc t cos t i sin t j k (b) rcc t sin t i cos t j (c) r t u t 2 Dt ª¬r t u t º¼ 0 §1 · sin t i cos t j ¨ 2t ¸k ©t ¹ (d) u t 2r t § 1 · cos t i sin t j ¨ 2 2 ¸k © t ¹ Dt ª¬u t 2r t º¼ (e) rt 1 t2 t Dt ª¬ r t º¼ (f ) r t u u t 1 sin t i cos t j k t 1 t2 §1 · §1 · ¨ cos t t cos t ¸i ¨ sin t t sin t ¸ j ©t ¹ ©t ¹ Dt ¬ªr t u u t º¼ 1 1 § 1 · §1 · ¨ sin t 2 cos t t sin t cos t ¸i ¨ cos t 2 sin t t cos t sin t ¸ j t t t t © ¹ © ¹ 25. x t and y t are increasing functions at t t0 , and z t is a decreasing function at t t0. 26. The graph of u is parallel to the yz-plane. 27. ³ cos t i cos t j dt 28. ³ ln t i t ln t j k dt 29. ³ cos ti sin tj t k dt 30. ³ tj t 2k u i tj tk dt 31. 2 ³ 2 sin t i t sin t cos t j C t ln t t i ³ t2 1 2 ln t j t k C 4 1 t 2 dt ³ ª¬ t 2 1ª t 1 t 2 ln t 2 ¬« t 3 i t 2 j t k º¼ dt 2 3t i 2t 2 j t 3 k dt ª 3t 2 2t 3 t4 º j k» « i 3 4 ¼ 2 ¬ 2 1 t2 º C ¼» § t3 t4 · t3 t2 ¨ ¸i j k C 4¹ 3 2 ©3 32 j 3 © 2010 Brooks/Cole, Cengage Learning 156 Chapter 12 Vector-Valued Functions t j t sin t k dt 2 et 2 i 3t 2 j k dt 1 t 3 i arcsin t j t 2 k dt ³0 33. ³0 34. ª2 3 2 « 3 t j sin t t cos t ¬ 1 32. ³ 1 35. r t ³ 2 ª¬2et 2 i t 3 j t k º¼ 0 2t i et j e t k dt rt t 2 1 i + et 2 j e t 4 k i 3j 5k C 4t i t 3 j t k rc t vt 4 i 3t 2 j k v 16 9t 4 1 Speed t3 k C 3 rt § t3 · ln sec t tan t i ln cos t j ¨ 3¸k 3 © ¹ t i 5t j 2t 2 k rt 38. 17 9t 4 6t j at C vt 1 i 5 j 4t k 2 t Speed v 1 25 16t 2 4t at rc t 3k 1 i 4k 4t 3 2 cos3 t , sin 3 t , 3t rc t 3 cos 2 t sin t , 3 sin 2 t cos t , 3 9 cos 4 t sin 2 t 9 sin 4 t cos 2 t 9 vt at 2 k 3 rt 37. i 2 j 4k r0 vt t3 º k» 3 ¼ 1 sec t i tan t j t 2 k dt ln sec t tan t i ln cos t j 39. r t 1 1 t2 j t 2 i et j e t k C jk C ³ 2 j sin 1 cos 1 k 3 2e 2 i 8 j 2 k ªt 4 « i t arcsin t ¬4 r0 36. r t 1 º k» ¼0 vc t 3 cos 2 t sin 2 t cos 2 t sin 2 t 1 3 cos 2 t sin 2 t 1 6 cos t sin 2 t 3 cos 2 t cos t , 6 sin t cos 2 t 3 sin 2 t sin t , 0 3 cos t 2 sin 2 t cos 2 t , 3 sin t 2 cos 2 t sin 2 t , 0 t , tan t , et 40. r t rc t 1, sec 2 t , et vt 1 sec 4 t e 2t vt rcc t 0, 2 sec 2 t tan t , et at rc t 1 1 , 2t , t 3 2 rc 4 1, 8, Because r 4 x t, y r t0 0.1 4 3 sinh t , cos h t , 2 rc 0 0, 1, 2 direction numbers Because r 0 3, y 2 1 t. 2 r 4.1 | 0.1, 16.8, 2.05 2t. r 0.1 | 3, 0.1, 0.2 v0 cos T t , v0 sin T t 1 direction numbers 2 16 8t , z 3, 0, 0 , the parametric equations are t, z r t0 0.1 43. r t 0, 16, 2 , the parametric equations are 0 rc t x 1 ln t 3 , t 2 , t , t0 2 41. r t 3 cosh t , sinh t , 2t , t0 42. r t 1 2 gt 2 42 3 t , 42t 16t 2 42t Range 16t 2 t 0, § 21 · 42 3 ¨ ¸ ©8¹ 21 8 441 3 | 190.96 ft 4 © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 12 16t 2 6 44. y 16 6 Range x v0 2 sin 2T 9.8 19 1 4t i 2 3t j 48. r t 4i 3 j vt v ª¬ 20 cos 30q t º¼ i ª¬ 20 sin 30q t 4.9t º¼ j 2 at 5 0 1 4i 3 j 5 N t does not exist. Tt aT 0 Maximum height | 5.1 m; Range | 35.3 m ª¬ 20 cos 45q t º¼ i ¬ª 20 sin 45q t 4.9t 2 ¼º j 0 a N does not exist. 49. r t ti tj vt i 1 j 2 t 20 vt at 0 0 a N does not exist 45 (b) r t 1 i 3 j 10 (The curve is a line) 20 0 10 0 aT 1 ª º ª¬ v0 cos T t º¼ i « v0 sin T t 9.8 t 2 » j 2 ¬ ¼ (a) r t v N t is not defined 95 v0 | 38.06 m/sec 46. r t i 3 j Tt 9.8 95 sin 40q v0 2 vt at 8 6 | 6.532 ft/sec 3 v0 2 t i 3t j 47. r t 6 4 § 6· v0 ¨¨ ¸¸ v0 © 4 ¹ v0t 4 x 45. 0 t 157 45 4t 1 2 t 1 j 4t t 0 Maximum height | 10.2 m; Range | 40.8 m (c) r t i 12 t j Tt ª¬ 20 cos 60q t º¼ i ª¬ 20 sin 60q t 4.9t 2 º¼ j Nt 20 aT 0 45 0 aN 4t 1 2 t 2 ti j 4t 1 i 2 tj 4t 1 1 4t t 4t 1 1 2t 4t 1 Maximum height | 15.3 m; Range | 35.3 m (Note that 45q gives the longest range) © 2010 Brooks/Cole, Cengage Learning 158 Chapter 12 Vector-Valued Functions 2 j t 1 2t 1i 50. r t 2 2i vt 2 vt t 1 2 t 1 4 t 1 2 t 1 vt j 1 2j k at 3 i 2t j t k 1 5t 2 5t i 2 j k j Nt 2 t 1 i j Tt 1 5t 2 v Tt 4 at 1 2 t k 2 i 2t j t k ti t2 j 53. r t 4 t 1 1 5 1 5t 2 5t aT 1 5t 2 2 i t 1 j Nt t 1 4 t 1 3 4t 1 aN = t 1 3 vt et i e t j § ¨t 1 © 1 t 1 4 1 ¸· ¹ 2t 4 1 t2 2 k t3 at t rS 3 t cos t i t sin t j rc t t sin t cos t i t cos t sin t j t sin t cos t 2 t cos t sin t 2 rcc t Tt vt vt t cos t 2 sin t i t sin t 2 cos t j t2 1 t cos t sin t i t sin t cos t j at Tt at Nt x S 3 3j S 3, S 3 k. Point: 1, 3 2 sin t i 2 cos t j k 3i j k 1 When t t 1 rc t 2, x 2, y t2, z t, y 2t3 3 16 . 3 4, z i 2t j 2t 2 k Direction numbers when t x S 3t 3 t, z 3 t, y t i t 2 j 23 t 3 k , x 56. r t 2 t2 1 2 t 2 i rc S 3 t sin t cos t i t cos t sin t j t 2t 4 1 Direction numbers: 3, 1, 1 t2 1 at 2 2 cos t i 2 sin t j tk , t 55. r t e 2t e 2t speed 2t 4 1 4 t3 aN e 2t e2t 2 rc t 2 aT e 2t e 2t aN 2t 4 1 2 e 2 t e 2 t aT i j 2t 2k Nt e2t e 2t e t i et j Nt 2t 4 1 t ei e j Tt t2i t2 j k Tt et i e t j t Nt vt e 2t e 2t vt vt 4 4 1 5t 2 1 t 1 i tj k t 1 i j 2k t 54. r t vt et i e t j vt 1 2 t 1 51. r t 52. r t 4 t 1 5 5 1 5t 2 4 aT at 5 aN 1 t 2, y 4t 4, z 2, a 8t 1, b 4, c 8 16 3 t2 1 © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 12 rc t 10 2S ³0 s 2t i 3t j, 0 d t d 5 rc t 10 sin t i 10 cos t j rc t 58. Factor of 4 59. r t 10 cos t i 10 sin t j 62. r t 9.56 u 104 | 4.58 mi/sec 4000 550 GM r 57. v b ³a rc t 20S 10 dt 2 i 3j s y 5 ³0 dt 5 ª º ¬ 13 t ¼ 0 4 9 dt 8 6 4 2 5 13 y x −8 −6 −4 −2 2 x 2 4 6 8 10 12 14 −4 −6 −8 −10 −12 −14 −16 3t i 2t j 4t k , 0 d t d 3 63. r t rc t (10, − 15) t i 2t k , 0 d t d 3 rc t 3 i 2 j 4 k b ³a s 2 60. r t b rc t rc t 3 ³0 2t i 2k ³a 3 ³0 dt 2 4 6 8 −4 −6 −8 (0, 0) −4 − 2 s 159 4t 2 4 dt 3 ªln «¬ t2 1 t t ln 10 3 3 10 | 11.3053 29 dt t 2 1º »¼ 0 3 29 (0, 0, 0) 2 2 4 6 8 x z 9 4 16 dt (−9, 6, 12) z 12 10 8 6 4 2 3 ³0 dt y 10 6 t i t 2 j 2t k , 0 d t d 2 64. r t 5 4 rc t 3 i 2t j 2 k , rc t 5 4t 2 2 (0, 0, 0) −2 1 (9, 0, 6) 1 b ³a s y 2 rc t 2 ³0 dt 5 4t 2 dt 2 21 3 4 5 5 4 ln 5 5 4 ln 105 4 5 | 6.2638 z 6 7 4 9 3 x (2, 4, 4) 2 61. r t 10 cos3 t i 10 sin 3 t j rc t 1 30 cos 2 t sin t i 30 sin 2 t cos t j 1 1 2 2 rc t 30 cos t sin t sin t cos t 4 2 4 2 30 cos t sin t s 4³ S 2 0 S 2 30 cos t sin t dt ª sin 2 t º «120 » 2 ¼0 ¬ 60 rc t b ³a s 2 rc t S 2 ³0 dt 65 dt 65 S 65 2 z π 2 2 )0, 8, π2 ) x 2 10 8 x −10 S 8 sin t , 8 cos t , 1 , rc t 10 −2 y 4 8 cos t , 8 sin t , t , 0 d t d 65. r t y −10 3 x 6 4 4 (8, 0, 0) 6 8 y © 2010 Brooks/Cole, Cengage Learning 160 Chapter 12 Vector-Valued Functions rc t s S 2 sin t t cos t , 2 cos t t sin t , t , 0 d t d 66. r t 2t sin t , 2t cos t ,1 , rc t b ³a rc t 1 ln 4 S 2 ³0 dt 2 4t 2 1 4t 2 1 dt S2 1 S 1 2 1 § 1 1· t i t j t 3 k , P¨ , 1, ¸ t 2 3 © 2 3¹ 71. r t rc t t i j t 2 k , rc 1 rcc t i 2t k , rcc 1 i S S 2 1 | 3.055 4 rc u rcc 1 i jk i 2k j k 2i j k 1 1 1 1 0 2 3t i 2t j 67. r t Line K rc u rcc rc 3 K 4 11 6 3 3 3 3 2 3 0 1 rc t 1 9t t 1 9 t i 3 j, rc t t 1 t 3 2 i 2 rcc t 4 cos t i 3 sin t j t k , P 4, 0, S t 72. r t 2 t i 3t j 68. r t rc t 4 sin t i 3 cos t j k , rc S rcc t 4 cos t i 3 sin t j, rcc S i rc u rcc j rc u rcc j k 3 3 2 t k ; rc u rcc 2 3 0 t 1 t 3 2 2 0 0 rc t u rcc t K rc t 2t i 69. r t 3/2t 3 2 3 1 9t 3 2 1 9t t3 2 rcc t j 2k i j k 2 t 2t 0 1 2 rc u rcc rc 3 32 ycc 1 K 2 i t j 2t k , rc K 32 1 2 t j t2 k 2 rc t rc u rcc yc 1 2 x 2 2 x 73. y 5t 2 4 At x 74. y 4 j 2 k , rc u rcc 20 5t 2 4 20 yc 4 5t 2 32 K 2t i 5 cos t j 5 sin t k 70. r t rc t 2 i 5 sin t j 5 cos t k , rc t rcc t 29 At x j k 2 5 sin t 5 cos t 0 5 cos t 5 sin t r 91 1 and r 173 2 173 2 17 17. 1 x 2 e 4 1 x 2 e 4 32 1 x º ª «¬1 4 e »¼ ycc ª1 yc 2 º ¬ ¼ 32 1 x2 e x 2 1 e x 2 , ycc 2 0, K 2 5 32 1 3 2 14 54 i 16 144 ª1 yc º ¬ ¼ 5 cos t j 5 sin t k rc u rcc 0 2 32 2 5 32 0 ycc 4, K 4i 4 j 12 k rc u rcc rc 3 K 3 2t 3 2 3 j k k 0 3 1 4 i 1 S 32 2 53 2 2 5 5 2 5 , 25 5 5 . 2 25i 10 sin t j 10 cos t k rc u rcc K 725 rc u rcc rc 3 725 29 32 25 29 29 29 5 29 © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 12 ln x 1 yc x 1 ycc 2 x 75. y yc ycc 32 ª1 1 x 2 º ¬ ¼ 1 23 2 1 At x 2 and r 4 2 2 ycc 2 sec 2 x tan x 3, 8 3 2 0 20a 6b 0 0 5a 3b c 0 1 a b c 1 k yc y1 ª1 yc 2 º ¬ ¼ 3 2 3 2 ª¬1 sec 4 xº¼ 4 53 2 4 5 5 symmetry, the same holds y (1, 1) 1 ,K 15 . By 8 3 5 5 3 15 x x x 8 4 8 y 2 sec 2 x tan x 54 , c b 1. at x ycc 4 1: 2 2. a sec 2 x S ª1 5ax 4 3bx 2 c 2 º «¬ »¼ Solving these 3 equations for a, b, c, you obtain yc At x 20ax 4 6bx 3 2 tan x K 20ax3 6bx 1 x2 1, K 76. y 5ax 4 3bx 2 c K ª1 yc 2 º ¬ ¼ At x ax5 bx3 cx 78. y ycc K 161 4 5 and r 25 5 5 . 4 x −1 77. The curvature changes abruptly from zero to a nonzero constant at the points B and C. 1 (− 1, − 1) −1 Problem Solving for Chapter 12 § Su2 · ¸ du , y t 2 ¹ t ³ 0 cos¨© 1. x t §St · cos¨ ¸, y c t © 2 ¹ 2 xc t a ³0 (a) s xc t 2 §St · sin ¨ ¸ © 2 ¹ 2 yc t dt yc a ³0 dt a §St2 · S t cos¨ ¸ © 2 ¹ 2 §St2 · 2§St · ¸ S t sin ¨ ¸ © 2 ¹ © 2 ¹ S t cos 2 ¨ K 1 At t (c) K a, K Sa S a. S (length) a2 3 2 1 3 2 y 1 3 yc x 3 3 2 § St2 · S t sin ¨ ¸, ycc t © 2 ¹ (b) xcc t 2. x 2 3 y 2 3 § Su2 · ¸ du 2 ¹ t ³ 0 sin¨© St 0 y1 3 Slope at P x, y . x1 3 rt cos3 t i sin 3 t j rc t 3 cos 2 t sin t i 3 sin 2 t cos t j rc t i 3 cos t sin t Tt rc t rc t Tc t sin t i cos t j cos t i sin t j Q 0, 0, 0 origin P cos3 t , sin 3 t , 0 on curve. i JJJK PQ u T D K j k cos3 t sin 3 t 0 cos t sin t 0 JJJK PQ u T T Tc t rc t cos3 t sin t sin 3 t cos t k cos t sin t 1 3 cos t sin t 1 , is three times the K distance from the origin to the tangent line. So, the radius of curvature, © 2010 Brooks/Cole, Cengage Learning 162 Chapter 12 Vector-Valued Functions 5000 400t , 3200 16t 2 3. Bomb: r1 t 5. xc T v0 cos T t , v0 sin T t 16t 2 Projectile: r2 t 1 cos T , yc T xc T 2 2 yc T 5 v0 sin T 16 25 1600 v0 sin T 400. xcc T At t 5, projectile is at 5v0 cos T . 2 T | 63.43q. 4 sin 10 Projectile will travel 5 seconds: 5 v0 sin T 16 25 1600 v0 sin T 400. t and 2 §t· §t· 16 cos 2 ¨ ¸ 16 sin 2 ¨ ¸ 2 © ¹ © 2¹ 4 sin rc sin T st ³S t 1 cos T 2 rc Horizontal position: 10, bomb is at 5000 400 10 At t 5, projectile is at v0 cos T 5. K 9000. 2 ª rc ¬ 2 sin 2 T dT Tº ª «¬4 cos 2 »¼ S 2 r2º ¼ 8 sin 2 T | 12.5q. 9 1800 | 1843.9 ft/sec cos T U 1 K s 2 9U 2 7. rt d dt 2 rt 2 3 T 2 4 sin 2 T 2 T sin 3 2 4 sin 3 T 2 3 3 cos T Combining, v0 t 2 2 sin 2 T 1 cos T cos T 1 cos T 8 sin 3 400 tan T 1800 4 cos 3 2 9000 1800. v0 sin T v0 cos T 2 2 cos T dT rr cc r 2 So, 5v0 cos T v0 cos T t ³S t T t ³ S 2 sin 2 dT At t 16. 1 cos T 6. r At 1600 feet: Bomb: 1600 t 2 s2 U 2 5000 400t , 3200 16t 2 3200 16t T 1 K So, U v0 cos T t , v0 sin T t 16t 2 2 1 200 | 447.2 ft/sec cos T 2 3 T 8 sin 3 Projectile: r2 t t 2 cos T 1 200. 4. Bomb: r1 t 4 cos cos T T· § ¨ 2 sin ¸ 2¹ © Combining, v0 2 1 cos T cos T sin T sin T K 1000. Tº ª «4 cos 2 » ¬ ¼S sin T , ycc T Horizontal position: 10, bomb is at 5000 400 10 T t T t ³ S 2 sin 2 dT st At t 400 tan T 200 4 sin 2 10 seconds. Projectile will travel 5 seconds: v0 sin T v0 cos T sin 2T 2 2 cos T 1600 t So, v0 cos T 2 1 cos T At 1600 feet: Bomb: 3200 16t 2 sin T , 0 d T d S 3 4 sin T 2 T 2 3 16 cos 2 T 2 16 sin 2 T 2 16 r t r t 2 2 rt d rt dt r t rc t r c t r t d rt dt r t rc t rt © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 12 163 x i y j position vector 8. (a) r r cos T i r sin T j r dT º dT º ª dr ª dr « dt cos T r sin T dt » i « dt sin T r cos T dt » j ¬ ¼ ¬ ¼ dr dt d 2r dt 2 a 2 ª d 2r dr dT dr dT d 2T º § dT · sin T sin T r cos T ¨ ¸ r sin T 2 » i « 2 cos T dt dt dt dt dt ¼» © dt ¹ ¬« dt 2 ª d 2r dr dT dr dT d 2T º § dT · cos T cos T r sin T ¨ ¸ r cos T 2 » « 2 sin T dt dt dt dt dt ¼» © dt ¹ ¬« dt a cos T i sin T j a ur ar 2 ª d 2r dr dT d 2T º § dT · r cos 2 T ¨ ¸ r cos T sin T 2 » « 2 cos 2 T 2 sin T cos T dt dt dt ¼» © dt ¹ ¬« dt 2 ª d 2r dr dT d 2T º § dT · « 2 sin 2 T 2 r sin 2 T ¨ ¸ r cos T sin T 2 » sin T cos T dt dt dt ¼» © dt ¹ ¬« dt a sin T i cos T j aT a uT a a u r u r a uT uT 2 d 2r § dT · r¨ ¸ 2 dt © dt ¹ 2 dr dT d 2T r 2 dr dt dt 2 ª d 2r ª dr dT d 2T º § dT · º r 2 » uT « 2 r ¨ ¸ » u r «2 dt ¼ © dt ¹ »¼ «¬ dt ¬ dt dt § St · §St · 42,000 cos¨ ¸ i 42,000sin ¨ ¸ j 12 © ¹ © 12 ¹ (b) r 42,000, r dT dt dr dt S d 2T , 12 dt 2 d 2r dt 2 0, 0 0 2 So, a §S · 42,000¨ ¸ u r © 12 ¹ Radial component: 875 2 S ur . 3 875 2 S 3 Angular component: 0 9. r t 4 cos t i 4 sin t j 3t k , t S rc t 2 4 sin t i 4 cos t j 3k , rc t rcc t 4 cos t i 4 sin t j T Tc N B At t 5 4 4 3 sin t i cos t j k 5 5 5 4 4 cos t i sin t j 5 5 cos ti sin tj 4 3 3 TuN sin t i cos t j k 5 5 5 S 2 §S · , T¨ ¸ ©2¹ §S · N¨ ¸ ©2¹ §S · B¨ ¸ ©2¹ 4 3 i k 5 5 z 6π B T N 3π B T N 4 3 2 1 4 y x j 3 4 i k 5 5 © 2010 Brooks/Cole, Cengage Learning 164 Chapter 12 Vector-Valued Functions S cos t i sin t j k , t 10. r t rc t sin t i cos t j, rc t −2 −1 y ycc −1 2 x §S · N¨ ¸ ©4¹ 2 2 i j 2 2 15 1 2 x 128 32 25 3 · § x ¸ ¨1 4096 ¹ © −2 K At the point 4,1 , K 1 constant length dB A B ds (a) T u Nc Tc u N dB dB dB So, A B and A T ds ds ds −3 3 −2 0 2 ³0 (b) Length 2 ³0 WN T u N. Using Section 11.4, exercise 66, TuN uN (c) Tc s Tc s Tc s K 0 K1 ª¬S 2 t 2 1º¼ 32 2S S S2 2 S2 1 32 | 1.04 K 2 | 0.51 (d) 5 0 d BuT B u Tc Bc u T ds B u KN W N u T KT W B. S 2 t 2 1 dt dT ds Finally, Nc s dt S S 2 t2 2 T u T u N ª¬ T N T T T Nº¼ N. dT ds K N u T u N ª¬ N N T N T Nº¼ T TuN uT rc t | 6.766 graphing utility for some scalar W . Now, KN 32 89 | 7. 120 2 T T u Nc T Tc u N BuT 1 K t cos S t , t sin S t , 0 d t d 2 13. r t d TuN ds BuN 32 r k § Tc · T u T Nc T ¨ Tc u ¸ ¨ Tc ¸¹ © (b) B 120 89 TuN dB ds dB T ds yc 2 2 2 i j 2 2 B −2 1 −1 §S · B¨ ¸ ©4¹ 11. (a) 2 §S · , T¨ ¸ 4 ©4¹ S 1 52 x 32 5 32 x 64 15 1 2 x 128 12. y 1 T sin t i cos t j Tc cos t i sin t j N cos t i sin t j B TuN k At t z 4 5 0 (e) lim K t of 0 (f ) As t o f, the graph spirals outward and the curvature decreases. 14. (a) Eliminate the parameter to see that the Ferris wheel has a radius of15 meters and is centered at 16 j. At t the friend is located at r1 0 0, j, which is the low point on the Ferris wheel. (b) If a revolution takes ' t seconds, then S t 't St 10 10 and so ' t 2S 20 seconds. The Ferris wheel makes three revolutions per minute. © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 12 (c) The initial velocity is r c2 t0 8.03 i 11.47 j. The speed is 165 8.032 11.47 2 | 14 m/sec. The angle of inclination § 11.47 · is arctan ¨ ¸ | 0.96 radians or 55q. © 8.03 ¹ (d) Although you may start with other values, t0 0 is a fine choice. The graph at the right shows two points of intersection. At t 3.15 sec the friend is near the 20 vertex of the parabola, which the object reaches when t t0 11.47 | 1.17 sec. 2 4.9 0 So, after the friend reaches the low point on the Ferris wheel, wait t0 2 sec 30 0 before throwing the object in order to allow it to be within reach. (e) The approximate time is 3.15 seconds after starting to rise from the low point on the Ferris wheel. The friend has a constant speed of r1c t 15 m/sec. The speed of the object at that time is rc2 3.15 8.032 ª¬11.47 9.8 3.15 2 º¼ 2 | 8.03 m/sec. © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 3 Functions of Several Variables Section 13.1 Introduction to Functions of Several Variables.................................167 Section 13.2 Limits and Continuity.........................................................................174 Section 13.3 Partial Derivatives ..............................................................................183 Section 13.4 Differentials ........................................................................................197 Section 13.5 Chain Rules for Functions of Several Variables ...............................203 Section 13.6 Directional Derivatives and Gradients ..............................................212 Section 13.7 Tangent Planes and Normal Lines.....................................................221 Section 13.8 Extrema of Functions of Two Variables ...........................................236 Section 13.9 Applications of Extrema of Functions of Two Variables.................246 Section 13.10 Lagrange Multipliers ..........................................................................256 Review Exercises ........................................................................................................269 Problem Solving .........................................................................................................281 © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 3 Functions of Several Variables Section 13.1 Introduction to Functions of Several Variables 1. No, it is not the graph of a function. For some values of x and y for example, x, y 0, 0 , there are 2 z-values. 2. Yes, it is the graph of a function. 3. x z 3 y xy 2 2 10 xy 3 y 2 x z 10 xy 3 y 2 x2 Yes, z is a function of x and y. z 4. xz 2 2 xy y 2 x2 y2 5. z2 1 4 9 No, z is not a function of x and y. For example, r1. x, y 0, 0 corresponds to both z 6. z x ln y 8 yz z 1 8y z 0 x ln y 8y 1 3e 2 5 (d) f 5, y 5e y (e) f x, 2 xe 2 tet ln x y 10. g x, y (b) g 0, 1 4 (c) f 30, 5 30 5 150 (d) f 5, y 5y (e) f x, 2 2x (f ) f 5, t 5t ln 0 e (d) g 1, 1 ln 1 1 e· ¸ 2¹ 404 (c) f 2, 3 4 4 36 (d) f 1, y 4 1 4 y2 3 4 y2 (e) f x, 0 4 x2 0 4 x2 4 t2 4 © 2010 Brooks/Cole, Cengage Learning 12. f x, y, z t 2 ln 3 ln e ln 2 ln 7 2 3 10 1 0 2 3 4 54 6 3 2 10 3 x y z 0 36 e 2 23 9 (d) h 5, 4, 6 (b) f 0, 1 ln 2 xy z (c) h 2, 3, 4 4 0 1 ln 2 5 (b) h 1, 0, 1 (a) f 0, 0 ln 1 § 3e · ln ¨ ¸ ©2¹ 1 ln 3 ln 2 ln e (a) h 2, 3, 9 4 x2 4 y 2 0 ln 0 1 (c) g 0, e 6 1 4 ln 1 0 (a) g 1, 0 11. h x, y, z 32 2 e 2e 1 (c) f 2, 1 (f ) g 2, 5 xy (b) f 1, 4 (f ) f t , 1 (b) f 3, 2 § (e) g ¨ e, © x ln y Yes, z is a function of x and y. 8. f x, y 5e0 (f ) f t , t 4 No, z is not a function of x and y. For example, r2. x, y 1, 0 corresponds to both z (a) f 3, 2 (a) f 5, 0 10 2 7. f x, y xe y 9. f x, y (a) f 0, 5, 4 (b) f 6, 8, 3 (c) f 4, 6, 2 (d) f 10, 4, 3 05 4 3 683 46 2 10 4 3 11 12 2 3 3 167 168 Chapter 13 13. f x, y Functions of Several Variables x sin y § S· (a) f ¨ 2, ¸ © 4¹ (b) f 3, 1 2 sin S 3 sin y § S· (d) f ¨ 4, ¸ © 2¹ 4 sin § 3· 3¨¨ ¸¸ © 2 ¹ S 3 S 3 3 2 S r 2h 14. V r , h 0 16 12 (b) g 4, 1 1 3 16 12 (c) g 4, 3 2 0 ³x 90S (b) V 5, 2 S 52 2 50S (c) V 4, 8 S 42 8 128S (d) V 6, 4 S 62 4 144S f x 'x, y f x, y 'x 2 x 'x y 2 2 x y 2 (b) f x , y 'y f x , y 'y 2 x y 'y 2 x y 2 'y 'x 2 2 (a) 3 x 'x (b) f x, y 'y f x, y 'y 3 x 2 2 y 'y 3x 2 2 y y (a) g 4, 1 ln 1 4 ln 4 (b) g 6, 3 ln 3 6 ln 2 (c) g 2, 5 ln 5 2 7 2'x 'x 2 y'y 'y 2 y x 2 y 'y, 'y z 0 'y 2 y 3x 2 2 y 'x 'y x2 y 2 6 x'x 3 'x 'x 2 6 x 3'x, 'x z 0 2'y 'y 2, 'y z 0 22. f x, y y x Range: z t 0 Range: all real numbers e xy 23. z Domain: Entire xy-plane Range: z ! 0 Domain: ln 2, 'x z 0 Domain: 21. g x, y ln y ln x ln 14 1 2 Domain: ^ x, y : x is any real number, y is any real number` 20. f x, y 9 4 3x 2 2 y f x 'x, y f x, y 'x 19. f x, y 9 2 25 4 2x y2 (a) 18. f x, y º ln t » ¼x ln 6 16 12 9 2 9 4 4 1 dt t §1 · (d) g ¨ , 7 ¸ ©2 ¹ 17. f x, y 9 4 y 16. g x, y S 32 10 (a) V 3, 10 y 2 3 y x 2 3x (a) g 4, 0 (d) g 32 , 0 4 2 2t 3 dt ª¬t 2 3t º¼ x 2 4 3 sin 1 S· § (c) f ¨ 3, ¸ 3¹ © y ³x 15. g x, y x x ! 0` x y xy Domain: ^ x, y : x z 0 and y z 0` Range: all real numbers y ^ x, y : ^ x, y : y t 0` Range: all real numbers © 2010 Brooks/Cole, Cengage Learning Section 13.1 24. z xy x y x z y` (a) View from the positive x-axis: 20, 0, 0 (b) View where x is negative, y and z are positive: 15, 10, 20 Range: all real numbers 4 x2 y2 25. f x, y (c) View from the first octant: 20, 15, 25 Domain: 4 x 2 y 2 t 0 (d) View from the line y x2 y 2 d 4 ^ x, y : x 2 y 2 d 4` Range: 0 d z d 2 4 x 4y 2 x2 4 y 2 d 4 x2 y2 d1 4 1 ­ ½ x2 y2 d 1¾ ® x, y : 4 1 ¯ ¿ Range: 0 d z d 2 32. (a) Domain: Range: 2 d z d 2 (b) z 0 when x y-axis. ^ x, y : 1 d 0 which represents points on the (c) No. When x is positive, z is negative. When x is negative, z is positive. The surface does not pass through the first octant, the octant where y is negative and x and z are positive, the octant where y is positive and x and z are negative, and the octant where x, y and z are all negative. 33. f x, y arccos x y Domain: 20, 20, 0 2 Domain: 4 x 4 y t 0 2 27. f x, y x in the xy-plane: ^ x, y : x is any real number, y is any real number` 2 26. f x, y z 4 Plane: z 5 4 3 x y d 1` 2 Range: 0 d z d S 3 2 1 1 2 3 4 y 5 § y· arcsin ¨ ¸ © x¹ 28. f x, y y ­ ½ d 1¾ Domain: ® x, y : 1 d x ¯ ¿ Range: 29. f x, y S 2 d z d S 2 x 6 2x 3y 34. f x, y z 6 Plane Domain: entire xy-plane Range: f z f ln 4 x y 4 Domain: 4 x y ! 0 x y 4 ^ x, y : y x 4` Range: all real numbers 30. f x, y ln xy 6 3 2 3 4 y x y2 35. f x, y Because the variable x is missing, the surface is a cylinder with rulings parallel to the x-axis. The generating curve is z y 2 . The domain is the entire xy-plane and the range is z t 0. z Domain: xy 6 ! 0 5 xy ! 6 ^ x, y : 169 4 x x2 y2 1 31. f x, y ^ x, y : Domain: Introduction to Functions of Several Variables 4 xy ! 6` Range: all real numbers 1 4 2 3 y x © 2010 Brooks/Cole, Cengage Learning 170 Chapter 13 36. g x, y Plane: z Functions of Several Variables 1 y 2 1 y 2 z 1 144 16 x 2 9 y 2 12 42. f x, y 1 z Semi-ellipsoid −2 −1 1 2 y 2 4 Domain: set of all points lying on or inside the ellipse −1 x § x2 · § y 2 · ¨ ¸¨ ¸ © 9 ¹ © 16 ¹ 37. z x y 2 2 Paraboloid Domain: entire xy-plane Range: z d 0 38. z 1 2 z 4 −2 4 −4 Range: 0 d z d 1 −2 2 x 2e xy 43. f x, y y 2 2 x z x2 y 2 z y 2 3 2 x 1 1 2 y 3 44. f x, y x sin y x z e x z 4 8 Because the variable y is missing, the surface is a cylinder with rulings parallel to the y-axis. The generating curve is z e x . The domain is the entire xy-plane and the range is z ! 0. −4 −4 6 4 4 x y 2 −4 4 4 y x 40. f x, y x 1 Cone Domain of f : entire xy-plane Range: z t 0 39. f x, y 1 ­xy, x t 0, y t 0 ® ¯0, else where e1 x 45. z 2 y2 Level curves: z 25 e1 x c 20 Domain of f : entire xy-plane Range: z t 0 1 x2 y2 ln c 15 x y 2 10 5 2 y2 1 ln c 2 y Circles centered at 0, 0 5 41. z y 2 x2 1 Matches (c) x z e1 x 46. z Hyperbolic paraboloid 2 y2 Level curves: Domain: entire xy-plane c Range: f z f y ln c x y 2 x 2 e1 x 2 y2 1 x2 y 2 1 ln c Hyperbolas centered at 0, 0 Matches (d) © 2010 Brooks/Cole, Cengage Learning y Section 13.1 ln y x 2 47. z re c=2 c=1 c=0 The level curves are of the form ln y x c y x y x re 2 171 y 9 x2 y 2 52. f x, y Level curves: c Introduction to Functions of Several Variables 2 x y 2 2 c 1 9 x2 y 2 c x y 2 x 9 c , circles. 2 2 2 c=3 −1 1 −1 0 is the point 0, 0 . Parabolas 53. f x, y Matches (b) y The level curves are hyperbolas of the form xy c. § x 2y · cos¨ ¸ 4 © ¹ 2 48. z xy 1 −1 Level curves: x2 2 y 2 4 4 cos 1 c cos 1 c x2 2 y 2 2 y Matches (a) x y 2 x 4 c=4 2 6 2x 3y c c=0 x x2 y2 c y 2 1· § 2 ¨x ¸ y 2 c¹ © 3 x −2 c = 10 c=8 The level curves are ellipses of the form x2 4 y 2 c 0 is the point 0, 0 . c=0 c=2 c=4 c=6 x x y2 2 x 2 c = −3 c=1 2 c=2 0 x 2 2 §1· ¨ ¸ . © 2c ¹ c= 3 c = −2 2 c= 1 c = −1 2 So, the level curves are circles passing through the origin and centered at r1 2c, 0 . 56. f x, y ln x y c y c = −2 ln x y ec x y y x ec . 57. f x, y c = − 21 6 So, the level curves are parallel lines of slope 1 passing through the fourth quadrant. c=0 c=1 c=2 c=3 c=4 y c = −1 The level curves are of the form x2 4 y 2 y 2 2 c = −1 except x 2 4 y 2 1 c = 14 c = 13 −2 The level curves are of the form c=2 −2 −1 c = 12 x x2 y2 55. f x, y 2 −2 2 −1 4 c. −2 51. z x −2 So, the level curves are hyperbolas. y The level curves are of the c or form 6 2 x 3 y 2x 3y 6 c. So, the level curves are straight lines with a slope of 23 . 1 xy . 2 c, or ln c c=4 c=3 c=2 2 The level curves are of the form e xy Level curves are parallel lines of the form x y e xy 54. f x, y Ellipses 50. f x, y 1 −1 § x2 2 y2 · cos¨ ¸ 4 © ¹ c 49. z c=6 c=5 c=4 c=3 c=2 c=1 x c = −1 c = −2 c = −3 c = −4 c = −5 c = −6 −4 c=1 c=0 c = 21 c = −1 −6 c=2 c = ± 23 x2 y 2 2 2 6 −2 −9 9 −6 © 2010 Brooks/Cole, Cengage Learning x 172 Chapter 13 58. f x, y Functions of Several Variables 65. The surface is sloped like a saddle. The graph is not unique. Any vertical translation would have the same level curves. 4 xy −6 6 One possible function is f x, y −4 8 1 x2 y2 59. g x, y 4 xy . 66. The surface could be an ellipsoid centered at 0, 1, 0 . −6 One possible function is 6 y 1 4 x2 f x, y −4 1. 10 3 sin x y 60. h x, y 2 1 ª1 0.06 1 R º 1000 « » 1 I ¬ ¼ 67. V I , R −1 1 Inflation Rate −1 Tax Rate 0 0.03 0.05 0 1790.85 1332.56 1099.43 0.28 1526.43 1135.80 937.09 0.35 1466.07 1090.90 900.04 61. The graph of a function of two variables is the set of all points x, y, z for which z f x, y and x, y is in the domain of f. The graph can be interpreted as a surface in space. Level curves are the scalar fields f x, y c, where c is a constant. 62. No, the following graphs are not hemispheres. 68. A r , t 5000e rt x2 y 2 z e z x2 y 2 Rate 5 10 15 20 x y 0.02 5525.85 6107.01 6749.29 7459.12 0.03 5809.17 6749.29 7841.56 9110.59 0.04 6107.01 7459.12 9110.59 11,127.70 0.05 6420.13 8243.61 10,585.00 13,591.41 63. f x, y Number of Year The level curves are the lines c x or y y 1 x. c These lines all pass through the origin. xy, x t 0, y t 0 64. f x, y (a) 69. f x, y, z z 25 1 20 x y z, c 1 z x y z , Plane 2 1 15 10 −2 5 −1 y 1 1 2 y 2 5 x x (b) g is a vertical translation of f three units downward. (c) g is a reflection of f in the xy-plane. (d) The graph of g is lower than the graph of f. If z f x, y is on the graph of f, then 12 z is on the graph of g. 4x y 2z c 4 4 4x y 2z z 3 2 Plane z (e) 70. f x, y, z 3 x 25 2 1 4 y 20 15 10 5 y 5 x © 2010 Brooks/Cole, Cengage Learning Section 13.1 x2 y 2 z 2 71. f x, y, z Introduction to Functions of Several Variables z c 9 9 x2 y2 z 2 5 78. V x, y 4 173 y 25 x y 2 2 c= 1 2 c= 1 3 c=1 25 4 −4 Sphere 4 x y 4 x −25 25 −4 −25 x 2 72. f x, y, z z 1 y2 4 z 1 1 x2 1 y2 4 100 x 0.6 y 0.4 f x, y 79. 5 c f 2 x, 2 y z 100 2 x 100 2 Elliptic paraboloid Vertex: 0, 0, 1 100 2 3 x 5 y 0.6 0.6 0.6 x 0.6 0.4 2y 2 2 0.4 0.4 0.6 0.4 x y 2 ª¬100 x y º¼ 0.6 0.4 4x 4 y z 2 73. f x, y, z 2 2 0 0 4x2 4 y 2 z 2 ln C a ln x 1 a ln y ln z −2 1 2 Cx a y1 a 80. z −2 Elliptic cone 2 f x, y z 2 c y 0.4 ln z ln y y 2 ln C a ln x a ln y x ln sin x z 74. f x, y, z c 0 ln C a ln x y z 1.20 xy 2 0.75 xz 2 0.75 yz 81. C 2 0 sin x z or z z y base sin x 4 x front and back 2 ends 1.20 xy 1.50 xz yz y 8 2 x § d 4· ¨ ¸ L © 4 ¹ 75. N d , L z y 2 (a) N 22, 12 § 22 4 · ¨ ¸ 12 © 4 ¹ 243 board-feet 4 3 S r 2l S r 3 82. V Sr2 3 3l 4r 2 (b) N 30, 12 76. w (a) (b) (c) (d) 77. T § 30 4 · ¨ ¸ 12 © 4 ¹ r 507 board-feet l 1 , y x x y 1 1 w 15, 9 h 10 min 15 9 6 1 1 w 15, 13 h 30 min 15 13 2 1 1 w 12, 7 h 12 min 12 7 5 1 1 w 5, 2 h 20 min 52 3 600 0.75 x 2 0.75 y 2 c = 600 c = 500 c = 400 The level curves are of the form c 600 0.75 x 0.75 y 2 600 c . 0.75 The level curves are circles centered at the origin. 83. PV kT (a) 26 2000 (b) P kT V k 300 k 520 3 520 § T · ¨ ¸ 3 ©V ¹ The level curves are of the form y 30 2 c = 300 c = 200 c = 100 c=0 c 520 § T · ¨ ¸, or V 3 ©V ¹ 520 T. 3c These are lines through the origin with slope x2 y 2 520 . 3c x − 30 30 − 30 © 2010 Brooks/Cole, Cengage Learning 174 Chapter 13 84. (a) z Functions of Several Variables 0.026 x 0.316 y 5.04 f x, y Year 2002 2003 2004 2005 2006 2007 z 35.2 39.5 43.6 49.4 53.2 61.6 Model 35.3 39.4 44.0 49.4 53.3 61.8 (b) y has the greater influence because its coefficient (0.316) is greater than x’s coefficient (0.026). 0.026 x 0.316 95 5.04 (c) f x, 95 0.026 x 35.06 This gives the shareholder’s equity in terms of net sales x, assuming total assets of y 85. (a) Highest pressure at C 95 billion . 89. False. Let (b) Lowest pressure at A f x, y 2 xy (c) Highest wind velocity at B f 1, 2 f 2, 1 , but 1 z 2. 86. Southwest 90. False. Let 87. (a) No; the level curves are uneven and sporadically spaced. f x, y 5. 5 z 2 2 f x, y . Then, f 2 x, 2 y (b) Use more colors. 88. (a) The different colors represent various amplitudes. (b) No, the level curves are uneven and sporadically spaced. 91. True 92. False. If there were a point x, y on the level curves f x, y C1 and f x, y C2 , then C1 C2 . Section 13.2 Limits and Continuity 1. lim x 1 3. x , y o 1, 0 f x, y x, L lim x , y o 1, 3 G -neighborhood about 1, 3 such that We need to show that for all H ! 0, there exist a G -neighborhood about 1, 0 such that x 1 H x 1 x 1 x 1 So, choose G 2 2 whenever x, y z 1, 3 lies in the neighborhood. y 0 d 2 x 1 From 0 G , it follows that 2 y 0 2 G. H and the limit is verified. y 3 x4 H Take G 2 yb 2 x4 2 2 x4 2 y 1 2 G y 3 d 2 x 1 G it follows that 2 y 3 2 G. H and the limit is verified. y b H whenever 0 y 1 2 G. H. Then if 0 x4 2 y 3 f x, y L G xa 2 4. Let H ! 0 be given. We need to find G ! 0 such that whenever 0 x 1 So, choose G 2. Let H ! 0 be given. We need to find G ! 0 such that f x, y L y 3 H f x, y L Whenever x, y z 1, 0 lies in the neighborhood. From 0 3 y, L We need to show that for all H ! 0, there exists a 1 f x, y L 3. f x, y y H , we have xa 2 y b 2 G . Take H. Then if 0 y b 2 xa 2 y b 2 G H , we have H y b H. H x 4 H. © 2010 Brooks/Cole, Cengage Learning Section 13.2 5. 6. 7. 8. 9. lim ¬ª f x, y g x, y º¼ lim ª 5 f x, y º « » «¬ g x, y »¼ x, y o a, b x, y o a, b x, y o a, b lim ª f x, y g x, y º « » f x, y »¼ ¬« 2x2 y lim x , y o 2,1 54 3 lim x, y o a, b lim x, y o a, b f x, y lim x, y o a, b 81 9 lim x, y o a, b 11. lim x , y o 1, 2 e 12 e f x, y 0 40 1 x y x2 1 lim x , y o 2, 4 20. e 2 0 2 x y lim x , y o 0, 2 43 4 14. lim x , y o 1, 2 2 4 22 1 6 5 21. lim x , y o 1,1 xy x2 y 2 arcsin 0 1 0 § x· arccos¨ ¸ © y¹ 1 xy lim x , y o 0,1 S arccos 0 1 2 lim x , y , z o 1, 3, 4 x y z x d S y 13 4 2 2 Continuous for x y z t 0 22. 0 lim x , y , z o 2,1, 0 xe yz 2 e1 0 2 Continuous everywhere 23. 1 2 1 2 1 3 24. Continuous for all x z y. 15. arcsin xy 1 xy lim x , y o 0,1 Continuous for all y z 0 x y x y 7 4 Continuous for xy z 1, y z 0, 0 d Continuous everywhere 13. 12 1 Continuous everywhere 12. 43 g x, y 19. Continuous everywhere xy 1 Continuous for xy z 1, xy d 1 x 4y 1 lim x , y o 0, 0 175 20 3 Continuous everywhere 10. 43 g x, y ª ºª º f x, y »« lim g x, y » «¬ x , ylim o a, b x , y o a , b ¼¬ ¼ ¬ª f x, y g x, y ¼º x, y o a, b f x, y ª º f x, y » 5« lim ¬ x, y o a, b ¼ lim g x, y lim x, y o a, b lim x, y o a , b Limits and Continuity 1 2 25. Continuous except at 0, 0 lim x , y o 1,1 lim xy 1 1 xy x , y o 1, 1 x2 y 1 xy 2 11 11 0 1 11 1 2 1 does not exist x y Because the denominator x y approaches 0 as lim x , y o 0, 0 x, y o 0, 0 . 16. lim x , y o 1,1 1 11 x x y 2 2 26. Continuous for x y ! 0 17. lim x , y o S 4, 2 y cos xy 2 cos lim x , y o 0, 0 1 does not exist because the denominator x2 y2 xy approaches 0 as x, y o 0, 0 . S 2 0 27. lim x , y o 2, 2 x2 y 2 x y Continuous everywhere lim x y x y x y lim x y x , y o 2, 2 x , y o 2, 2 18. lim x , y o 2S , 4 sin x y sin 2S 4 Continuous for all y z 0 1 28. lim x , y o 0, 0 x4 4 y 4 x2 2 y 2 lim x , y o 0, 0 lim x , y o 0, 0 4 x2 2 y2 x2 2 y2 x2 2 y 2 x2 2 y2 0 © 2010 Brooks/Cole, Cengage Learning 176 29. Chapter 13 Functions of Several Variables x y x y lim x , y o 0, 0 34. negative values of x and y. lim x , y o 2,1 x y 1 x y 1 x y 1 x y 1 x y 1 lim 35. The limit does not exist because along the path x 0, y 0, you have x y 1 lim x , y , z o 0, 0, 0 x y 1 lim x , y o 2,1 xy yz xz x2 y 2 z 2 lim 0, 0, z o 0, 0, 0 whereas along the path x x y 1 x , y o 2,1 ln x 2 y 2 does not exist because ln x 2 y 2 o f as x, y o 0, 0 . does not exist because you can’t approach 0, 0 from 30. lim x , y o 0, 0 lim 2 x , y , z o 0, 0, 0 0 z , you have y xy yz xz x2 y2 z 2 0 z2 lim x , x , x o 0, 0, 0 x2 x2 x2 x2 x2 x2 1 31. The limit does not exist because along the line y you have lim x , y o 0, 0 x y x2 y lim x , 0 o 0, 0 x x2 lim x , 0 o 0, 0 0 36. The limit does not exist because along the path y z 0, you have 1 x lim x , y , z o 0, 0, 0 which does not exist. xy yz 2 xz 2 x2 y2 z 2 However, along the path z 32. The limit does not exist because along the line x y you have lim x , y o 0, 0 x x2 y2 lim x , x o 0, 0 x x2 x2 lim lim x , x o 0, 0 x , y , z o 0, 0, 0 x . 0 0, x xy yz 2 xz 2 x2 y2 z 2 33. lim x , y o 0, 0 37. 0 1 1 0 x2 0 y, you have lim x , x , 0 o 0, 0, 0 x2 x x2 2 1 2 Because the denominator is 0, the limit does not exist. x2 2 x 1 y2 1 lim x , 0, 0 o 0, 0, 0 0 lim x , y o 0, 0 e xy 1 Continuous everywhere 38. lim x , y o 0, 0 ª cos x 2 y 2 «1 x2 y 2 «¬ º » »¼ f The limit does not exist. Continuous except at 0, 0 39. f x, y xy x2 y2 Continuous except at 0, 0 Path: y 0 x, y 1, 0 f x, y Path: y 0 0.5, 0 0 0.1, 0 0 0.01, 0 0 0.001, 0 0 x x, y 1, 1 f x, y 1 2 0.5, 0.5 1 2 0.1, 0.1 1 2 0.01, 0.01 1 2 The limit does not exist because along the path y along the path y 0.001, 0.001 1 2 0 the function equals 0, whereas x the function equals 12 . © 2010 Brooks/Cole, Cengage Learning Section 13.2 40. f x, y Limits and Continuity 177 y x2 y2 Continuous except at 0, 0 Path: y x x, y 1, 1 f x, y 1 2 Path: y 0.5, 0.5 0.1, 0.1 1 0.01, 0.01 5 50 500 0 x, y 1, 0 f x, y 0 0.5, 0 0 0.1, 0 0.01, 0 0 0.001, 0 0 0 The limit does not exist because along the path y to infinity. 41. f x, y 0.001, 0.001 0 the function equals 0, whereas along the path y x the function tends xy 2 x2 y4 Continuous except at 0, 0 Path: x y2 x, y 1, 1 f x, y 12 Path: x 0.25, 0.5 12 0.01, 0.1 0.0001, 0.01 12 12 0.000001, 0.001 12 y2 1, 1 x, y 0.25, 0.5 1 2 f x, y 0.01, 0.1 1 2 1 2 0.0001, 0.01 0.000001, 0.001 1 2 1 2 y 2 the function equals 12 , whereas along the path x The limit does not exist because along the path x y 2 the function equals 12 . 42. f x, y 2x y2 2x2 y Continuous except at 0, 0 Path: y 0 x, y 1, 0 f x, y Path: y 1 0.25, 0 4 0.01, 0 100 0.001, 0 1000 0.000001, 0 1,000,000 x x, y 1, 1 f x, y 1 3 0.25, 0.25 1.17 0.01, 0.01 1.95 The limit does not exist because along the y tends to 2. 0.001, 0.001 1.995 0.0001, 0.0001 2.0 0 the function tends to infinity, whereas along the line y x the function © 2010 Brooks/Cole, Cengage Learning 178 43. Chapter 13 lim x , y o 0, 0 Functions of Several Variables x4 y4 x2 y 2 x2 y 2 x2 y 2 lim x2 y 2 lim x2 y2 x , y o 0, 0 x , y o 0, 0 0 So, f is continuous everywhere, whereas g is continuous everywhere except at 0, 0 . g has a removable discontinuity at 0, 0 . 44. lim x , y o 0, 0 4 x4 y4 2x2 y2 2x2 y2 2x2 y 2 lim 2x2 y2 x , y o 0, 0 lim x , y o 0, 0 2x2 y 2 0 So, g is continuous everywhere, whereas f is continuous everywhere except 0, 0 . f has a removable discontinuity at 0, 0 . 45. lim x , y o 0, 0 So, 4x2 y2 x2 y 2 lim x , y o 0, 0 51. 0 f x, y lim g x, y x , y o 0, 0 5 xy x2 2 y2 lim x , y o 0, 0 Does not exist. Use the paths x 0. 0 and x y. z f is continuous at 0, 0 , whereas g is not continuous at 2 0, 0 . −3 −3 46. lim x , y o 0, 0 f x, y lim x , y o 0, 0 lim x , y o 0, 0 § x 2 2 xy 2 y 2 · ¨ ¸ x2 y 2 © ¹ § 2 xy 2 · ¨1 2 ¸ x y2 ¹ © 3 y 3 −2 x 1 (same limit for g) So, f is not continuous at 0, 0 , whereas g is continuous 52. at 0, 0 . 47. lim x , y o 0, 0 sin x sin y 0 6 xy x2 y 2 1 lim x , y o 0, 0 0 z z 4 −4 2 y −4 −2 x 2 48. lim x , y o 0, 0 1 1 sin cos x x 4 z −2 4 y −4 x 2 Does not exist 53. 4 6 x lim x , y o 0, 0 xy 2 2 x y2 lim r o0 r cos T r 2 sin 2 T r2 lim r cos T sin 2 T 6 r o0 y 0 2 49. lim x , y o 0, 0 x y x4 2 y2 z 54. 2 Does not exist. Use the x2. paths x 0 and y lim x , y o 0, 0 2 −2 lim x y x2 y x , y o 0, 0 r o0 r 3 cos3 T sin 3 T r2 lim r cos3 T sin 3 T 0 y 2 50. lim r o0 x 2 x3 y 3 x2 y 2 55. lim x , y o 0, 0 x2 y2 x y2 2 lim r o0 r 4 cos 2 T sin 2 T r2 lim r 2 cos 2 T sin 2 T 2 z r o0 0 18 Does not exist 4 x 4 y © 2010 Brooks/Cole, Cengage Learning Section 13.2 r cos T , y 56. x x2 y 2 lim x , y o 0, 0 57. 58. 59. lim sin x2 y2 x , y o 0, 0 lim x , y o 0, 0 61. x 2 y 2 lim lim x , y o 0, 0 cos 0 1 lim sin r sin 0 0 r o0 x2 y2 sin sin x 2 y 2 x y 2 lim r o 0 x y2 2 sin r r sin r 2 r o0 r2 lim 2 1 lim r o0 2r cos r 2 2r lim cos r 2 r o0 1 r2 1 cos x 2 y 2 lim x2 y 2 1 cos r 2 r2 x o0 0 r2 x 2 y 2 ln x 2 y 2 lim r 2 ln r 2 r o0 By L’Hôpital’s Rule, lim 2r 2 ln r r o 0 lim r o 0 2 ln r 1 r2 x y z 2 lim 2r 2 ln r r o 0 lim r o 0 2r 2 r 3 lim r 2 r o 0 2 2 For x 2 z y 2 , let z Continuous except at 0, 0, 0 lim z o0 z 2 x y2 4 Continuous for x 2 y 2 z 4. 65. f x, y, z 69. f t sin z e ey 2x 3y t 2 , g x, y f g x, y f 2x 3 y 2x 3y 2 Continuous everywhere f t 70. xy sin z 67. For xy z 0, the function is clearly continuous. For xy z 0, let z sin z z o0 z 1 x Continuous everywhere lim sin z z x 2 y 2 . Then implies that f is continuous for all x, y. Continuous everywhere 66. f x, y, z 0 68. For x 2 z y 2 , the function is clearly continuous. 1 63. f x, y, z 64. f x, y, z 0 r x , y o 0, 0 62. x 2 y 2 lim cos r 2 r o0 x2 y2 lim r cos 2 T sin 2 T r o0 r 179 r 2 cos 2 T sin 2 T r, x2 y2 r 2 cos 2 T sin 2 T r o0 x2 y2 cos x 2 y 2 x , y o 0, 0 x2 y 2 lim lim x , y o 0, 0 lim 60. r sin T , Limits and Continuity g x, y f g x, y 1 t x2 y 2 f x2 y 2 xy. Then 1 x2 y 2 Continuous except at (0, 0) 1 implies that f is continuous for all x, y. 71. f t 1 , g x, y t f g x, y 2x 3y f 2x 3y Continuous for all y z 1 2x 3 y 2 x 3 © 2010 Brooks/Cole, Cengage Learning 180 Chapter 13 Functions of Several Variables 1 , g x, y 1t 72. f t x2 y2 f x2 y 2 f g x, y 1 1 x2 y 2 Continuous for x 2 y 2 z 1 73. f x, y x2 4 y f x 'x, y f x, y (a) lim 'x o 0 'x (b) lim 'y o 0 74. f x, y f x, y 'y f x, y 'y ª x 'x lim ¬ 4 yº x 2 4 y ¼ 'x 'x o 0 ª x 2 4 y 'y º¼ x 2 4 y lim ¬ 'y o 0 'y 'y o 0 ª x 'x lim ¬ 2 'x o 0 2 y 2 º x2 y 2 ¼ 'x 'x o 0 f x, y 'y f x, y (b) lim 'y o 0 'y ª x 2 y 'y 2 º x 2 y 2 ¼ lim ¬ 'y o 0 'y f x, y 'y f x, y (b) lim 'y o 0 'y x 'x x y y lim 'x o 0 'x x x y 'y y lim 'y o 0 'y lim (b) By symmetry, lim 'y o 0 2 x'x 'x 'x 2 lim 2 y'y 'y 'y 2 lim 'x o 0 'y o 0 lim 'x o 0 1 y xy xy x'y y 'y y'y lim 'y o 0 lim 4 4 'y o 0 lim 2 x 'x 2x lim 2 y 'y 2y 'x o 0 'y o 0 1 y lim 'y o 0 x'y y 'y y'y lim 'y o 0 x y 'y y x y2 1 x y 2 x y x 'x y x 'x y x y 'x lim 'x o 0 'x x 'x y x y 'x f x, y 'y f x, y 'y lim 'x o 0 1 x 'x y x y 1 x y 2 . 3x xy 2 y (a) lim f x 'x, y f x, y 'x (b) lim f x, y 'y f x, y 'y 'y o 0 'x y lim 'x o 0 'x 1 1 x 'x y x y lim 'x o 0 'x 'x o 0 'x o 0 4'y 'y 2x 1 x y f x 'x, y f x, y (a) lim 'x o 0 'x 77. f x, y lim lim 2 x 'x 'x o 0 x y f x 'x, y f x, y (a) lim 'x o 0 'x 76. f x, y 2 x'x 'x 'x x2 y 2 f x 'x, y f x, y (a) lim 'x o 0 'x 75. f x, y 2 lim 3 x 'x x 'x y 2 y 3 x xy 2 y 'x 3'x y'x lim lim 3 y 3 y 'x o 0 'x o 0 'x 3x x y 'y 2 y 'y 3 x xy 2 y lim 'y o 0 'y lim 'x o 0 lim 'y o 0 x'y 2'y 'y lim x 2 'y o 0 x2 © 2010 Brooks/Cole, Cengage Learning Section 13.2 (a) lim f x 'x, y f x, y 'x (b) lim f x, y 'y f x, y 'y 'y o 0 181 y y 1 78. f x, y 'x o 0 Limits and Continuity y y 1 'x lim 'x o 0 lim y 'y y y 1 32 y 'y 32 32 12 0 y 3 2 y1 2 'y 'y o 0 12 y 'y y 'y y y1 2 lim 'y o 0 'y o 0 'y 'y 3 1 2 1 1 2 y y LcHôpital's Rule 2 2 3y 1 2 y lim 79. True. Assuming f x, 0 exists for x z 0. 83. xy . x y2 80. False. Let f x, y lim x , y o 0, 0 x2 y 2 xy (a) Along y 2 See Exercise 39. lim x , ax o 0, 0 ax: x 2 ax x ax ­°ln x y , x, y z 0, 0 . ® 0, y 0 x °̄0, 2 81. False. Let f x, y 2 2 lim x2 1 a2 ax 2 x o0 1 a2 ,a z 0 a If a 82. True 0, then y 0 and the limit does not exist. (b) Along y 2 x : x2 x2 lim x , x 2 o 0, 0 x x2 2 1 x2 x o0 x lim Limit does not exist. (c) No, the limit does not exist. Different paths result in different limits. 84. f x, y (a) y x2 y x y2 4 ax: f x, ax If a z 0, (b) y lim x , x2 lim x , ax o 0, 0 x 2 : f x, x 2 x4 2x4 x 2 ax x ax 4 ax x2 a2 2 ax x2 a2 0. x2 x2 x4 x2 2 x4 2x4 1 2 (c) No, the limit does not exist. f approaches different numbers along different paths. 85. lim x , y , z o 0, 0, 0 xyz x2 y 2 z 2 lim U o 0 U sin I cos T U sin I sin T U cos I U2 lim U ª¬sin 2 I cos T sin T cos I º¼ U o 0 86. lim x , y , z o 0, 0, 0 ª º 1 tan 1 « 2 2 2» ¬x y z ¼ ª1º lim tan 1 « 2 » ¬U ¼ U o 0 0 S 2 © 2010 Brooks/Cole, Cengage Learning 182 Chapter 13 Functions of Several Variables 87. As x, y o 0, 1 , x 2 1 o 1 and x 2 y 1 So, 88. lim x , y o 0,1 lim x , y o 0, 0 ª x2 1 º » tan 1 « 2 2 «¬ x y 1 »¼ 0 lim Because 0 2 lim xa 2 r 2 cos 2 T r 2 sin 2 T r2 lim r 2 ¬ªcos T sin T cos 2 T sin 2 T ¼º L1 , then for H 2 ! 0, there corresponds G 1 ! 0 such that f x, y L1 H 2 whenever f x, y 2 G 1. L2 , then for H 2 ! 0, there corresponds G 2 ! 0 such that g x, y L2 H 2 whenever g x, y y b 2 G 2. Let G be the smaller of G1 and G 2 . By the triangle inequality, whenever f x, y g x, y L1 L2 So, lim x, y o a, b 0 r o0 0. y b x, y o a, b o 0. . r o0 x, y o a, b xa 2 lim r cos T r sin T f x, y So, define f 0, 0 89. Because S 2 x a 2 y b 2 G , we have f x, y L1 g x, y L2 d f x, y L1 g x, y L2 ¬ª f x, y g x, y º¼ H 2 H 2 H. L1 L2 . 90. Given that f x, y is continuous, then lim x, y o a, b f x, y f a, b 0, which means that for each H ! 0, there corresponds a G ! 0 such that f x, y f a, b H whenever 0 xa Let H 2 f a, b y b 2 G. 2, then f x, y 0 for every point in the corresponding G neighborhood because f x, y f a , b f a, b 2 f a, b 2 f x, y f a , b f a, b 2 3 1 f a, b f x, y f a, b 0. 2 2 91. See the definition on page 899. Show that the value of lim x , y o x0 , y 0 f x, y is not the same for two different paths to x0 , y0 . 92. See the definition on page 902. 93. (a) True (b) False. The convergence along one path does not imply convergence along all paths. (c) False. Let f x, y ª x2 4« «¬ x 2 2 2 2 2 y 3 º » . 2 y 3 »¼ (d) True 94. (a) No. The existence of f 2, 3 has no bearing on the existence of the limit as x, y o 2, 3 . (b) No, f 2, 3 can equal any number, or not even be defined. © 2010 Brooks/Cole, Cengage Learning Section 13.3 Partial Derivatives 183 Section 13.3 Partial Derivatives 1. f x 4, 1 0 15. z wz wx wz wy 2. f y 1, 2 0 3. f y 4, 1 ! 0 4. f x 1, 1 0 16. z 5. No, y only occurs in the numerator. 6. Yes, x occurs in both the numerator and denominator. 7. Yes, x occurs in both the numerator and denominator. 8. No, y only occurs in the numerator. 2x 5 y 3 9. f x, y f x x, y 2 f y x, y 5 x 2y 4 2 10. f x, y f x x, y 2x f y x, y 4 y 11. f x, y x2 y3 f x x, y 2 xy 3 f y x, y 3x 2 y 2 12. f x, y 4 x3 y 2 2 f x x, y 12 x 2 y 2 f y x, y 8 x3 y 3 z 13. wz wx wz wy 14. z wz wx wz wy x y x 2 4 xy 3 y 2 2x 4 y 4 x 6 y y 3 2 xy 2 1 wz wx 2 y 2 wz wy 3 y 2 4 xy 17. z wz wx wz wy 18. z e xy ye xy xe xy ex y wz wx 1 x e y wz wy x x e y2 19. z wz wx wz wy 20. z x y2 x 4y 2 x 2e 2 y ye y x ye yx 1 ye yx ª¬ yx 2 º¼ wz wy ey wz wx wz wy 22. z x y 2 xe 2 y y2 y e x2 1 ln x 2 y2 y wz wx 21. z y 1 x 2e 2 y y 2 e xy x x y 1 y ye x x y· § e y x ¨1 ¸ x¹ © x ln x ln y 1 x ln 1 y xy 1 ln xy 2 wz wx 1 y 2 xy 1 2x wz wy 1 x 2 xy 1 2y © 2010 Brooks/Cole, Cengage Learning 184 Chapter 13 Functions of Several Variables ln x 2 y 2 30. f x, y wz wx 2x x y2 wf wx 1 2 x y3 2 1 2 wz wy 2y x2 y 2 wf wy 1 2 x y3 2 1 2 23. z 24. z 2 x y x y ln ln x y ln x y 1 1 x y x y 2 y x y x y wz wy 1 1 x y x y 2x x y x y wz wx wz wy 25. z 3y x 2y x wz wx 2x 3 y2 2 2y x x3 3 y 3 x2 y wz wy x2 6y 2 y2 x 12 y 3 x3 2 xy 2 26. f x, y wz wx wz wy x 2 y 2 y xy 2 x x y 2 x y 2 f y x, y x y 2 x xy 2 y 2 x y 2 e y3 x2 y 2 2 x2 y 2 wz wx wz wy 2 35. x2 y 2 hx x, y 2 xe h y x, y 2 ye z wz wx wz wy x2 y 2 x2 y2 3y2 2 2 x y3 y sin xy x sin xy cos x 2 y 2 cos x 2 y 2 sec 2 2 x y sec 2 2 x y sin 5 x cos 5 y 34. z 2 x3 xy 2 2 2 2 2x y3 tan 2 x y 33. z xy x2 y2 f x x, y 27. h x, y wz wx wz wy 2 3y2 1 sin x 2 y 32. z 2 2 cos xy 31. z wz wx 2 x y3 5 cos 5 x cos 5 y 5 sin 5 x sin 5 y e y sin xy ye y cos xy e y sin xy xe y cos x e y x cos xy sin xy 28. g x, y ln x2 y2 1 ln x 2 y 2 2 g x x, y 1 2x 2 x2 y 2 x x y2 g y x, y 1 2y 2 x2 y2 y x2 y 2 36. wz wx wz wy 2 37. 29. f x, y x2 y 2 f x x, y 1 2 x y2 2 1 2 f y x, y 1 2 x y2 2 1 2 2x 2y z x x y 2 2 y z wz wx wz wy cos x 2 y 2 2 x sin x 2 y 2 2 y sin x 2 y 2 sinh 2 x 3 y 2 cosh 2 x 3 y 3 cosh 2 x 3 y x2 y2 © 2010 Brooks/Cole, Cengage Learning Section 13.3 38. z wz wx wz wy 39. cosh xy 2 f x 'x, y f x, y 'x 3 x 'x 2 y 3 x 2 y lim 'x o 0 'x 3'x lim 3 'x o 0 'x wf wx 'x o 0 wf wy 'y o 0 lim 2 xy sinh xy 2 y ³x f x, y t 2 1 dt y ªt 3 º « t» ¬3 ¼x f x x, y x2 1 f y x, y y2 1 § y3 · § x3 · y¸ ¨ x¸ ¨ © 3 ¹ ©3 ¹ 1 x2 ³x y 2t 1 dt ³y x 2t 1 dt y 2t 1 dt ³x y 2t 1 dt ³x y ³x f x x, y 2 f x x, y 2 >2t@xy 2 dt x 2 2 xy y 2 42. f x, y x y lim 'x o 0 lim 'x o 0 lim 'x o 0 wf wy 2'y 'y 2 x 'x 2 x 2 2 x y 'y y 'y 'y 2 lim 2 x 'x 2 y 'x o 0 x 2 2 xy y 2 2x y lim 2 x 2 y 'y 2 y x 'y o 0 x y 43. f x, y wf wx lim f x 'x , y f x , y 'x wf wy 'y o 0 3 x 2 y 'y 3 x 2 y 'y 2 2 x 'x y y 2 x 2 2 xy y 2 'x o 0 'x f x, y 'y f x, y lim 'y o 0 'y lim lim 2 y 2x 'x o 0 lim f x, y 'y f x, y 'y 'y o 0 wf wx lim lim 'y o 0 >You could also use the Second Fundamental Theorem of Calculus.@ 40. f x, y 185 3x 2 y 41. f x, y y 2 sinh xy 2 Partial Derivatives lim 'y o 0 f x 'x, y f x, y 'x x 'x y 'x x 'x y 'x x y x y x 'x y x 'x y f x, y 'y f x, y 'y lim 'y o 0 lim 'y o 0 lim 'y o 0 x y x y lim 'x o 0 x y 'y 'y x y 'y 'y 1 x y 'y 1 x 'x y x y 2 1 x y x y x y x y 'y x y 'y x y 2 x y x y 1 x y © 2010 Brooks/Cole, Cengage Learning 186 Chapter 13 Functions of Several Variables 1 x y 44. f x, y wf wx f x 'x, y f x, y lim 'x o 0 'x 1 1 x 'x y x y lim 'x o 0 'x wf wy f x, y 'y f x, y lim 'y o 0 'y 1 1 x y ' x y lim 'y o 0 'y 45. f x, y f x x, y e y sin x f x x, y e x f x x, y cos y e x cos y §S S · 50. f x, y f x x, y 0. cos 2 x y f y x, y S· §S 2 sin ¨ ¸ 2 3¹ © 1. sin 2 x y §S S· sin ¨ ¸ 3¹ ©2 1 . 2 51. f x, y sin xy f y x, y 2 y x2 y2 x x2 y2 1 4 arccos xy y 1 x2 y 2 x 1 x2 y 2 xy x y y x y xy x y S 4 cos S 2 0. f y x, y 2 2 cos S 2 At 2, 2 : f y 2, 2 0. x y y2 x y 2 2 1 4 x x y xy x cos xy § S· § S· At ¨ 2, ¸, f y ¨ 2, ¸ 4 © ¹ © 4¹ § y· ¨ 2 ¸ © x ¹ 1 §1· ¨ ¸ 1 y 2 x2 © x ¹ At 2, 2 : f x 2, 2 y cos xy § S· § S· At ¨ 2, ¸, f x ¨ 2, ¸ © 4¹ © 4¹ x y At 1, 1 , f y is undefined. f x x, y f x x, y 1 At 1, 1 , f x is undefined. 2 sin 2 x y §S S · 2 x y 1 4 1. At ¨ , ¸, f y ¨ , ¸ ©4 3¹ ©4 3¹ 48. f x, y 1 1 y 2 x2 At 2, 2 : f y 2, 2 e x sin y 1 y x 0. §S S · §S S · At ¨ , ¸, f x ¨ , ¸ 4 3 © ¹ ©4 3¹ f y x, y arctan At 2, 2 : f x 2, 2 f y x, y At 0, 0 , f y 0, 0 47. f x, y f x x, y 1. e y sin x At 0, 0 , f x 0, 0 f y x, y 1 x y 'y x y e y cos x At S , 0 , f y S , 0 46. f x, y lim 'y o 0 49. f x, y At S , 0 , f x S , 0 f y x, y 1 x 'x y x y lim 'x o 0 x2 x y 2 1 4 © 2010 Brooks/Cole, Cengage Learning Section 13.3 2 xy 52. f x, y 4 x2 5 y 2 4x2 5 y 2 10 93 2 At 1, 1 , f x 1, 1 wz wx 32 10 . 27 4x 5 y2 2 x2 4 wz wx 22 9 x2 y2 , y 57. z 32 At 1, 1 , f y 1, 1 hx x, y wz wy 2 4 59. 2 y At 2, 1 : hy 2, 1 2 49 x 2 y 2 , x 2, 2, 3, 6 60. 45 y 2 Intersecting curve: z y 45 y 2 At 2, 3, 6 : 18 1 wz wy 2x h y x, y 4 wz wy 3 45 9 1 2 61. z x=2 10 18 3 2 4 z 1, 1, 3, 0 40 9 y2 2 3 6 4 4 x H x, y , z sin x 2 y 3 z H x x, y , z cos x 2 y 3 z H y x, y , z 2 cos x 2 y 3 z H z x, y , z 3 cos x 2 y 3z f x, y , z 3 x 2 y 5 xyz 10 yz 2 f x x, y , z 6 xy 5 yz f y x, y , z 3 x 2 5 xz 10 z 2 f z x, y , z 5 xy 20 yz w x2 y2 z 2 ww wx x y2 z2 ww wy x y2 z2 ww wz x2 y2 z 2 x 2 y 2 z 8 x 8 y 62. w ww wx ww wy ww wz y x 2 y At 1, 3, 0 : At 2, 1 : hx 2, 1 y=3 18 x 9x2 y 2 , x 58. z x2 y 2 54. h x, y y 9x2 9 Intersecting curve: z At 1, 1 : g y 1, 1 4 160 wz At 1, 3, 0 : wx 2 y g y x, y wz wy wz wx 2 At 1, 1 : g x 1, 1 55. z 8 . 27 2 x g x x, y 4 x z 4 x2 y 2 53. g x, y 4 3, 1, 3, 0 Intersecting curve: z 8 93 2 20 2x At 2, 1, 8 : 8 x3 f y x, y 187 z 1, 2, 1, 8 Intersecting curve: z 10 y 3 f x x, y x2 4 y2 , y 56. z Partial Derivatives 7 xz x y 7 xz x y x y 7 z 7 xz x y 2 1 7 yz x y 2 7 xz x y 2 7x x y © 2010 Brooks/Cole, Cengage Learning y 188 Chapter 13 63. F x, y, z 68. Fy x, y, z y x2 y 2 z 2 f x 3, 1, 1 Fz x, y, z z x2 y 2 z 2 f y x, y , z 1 G x, y , z x 1 x2 y2 z 2 3 x yz f x x, y , z 3 x 2 yz 2 f y x, y , z f y 1, 1, 1 f z x, y , z f z 1, 1, 1 3 2 x z 67. f x x, y , z z cos x y 2 xy 3 2 yz f x 2, 1, 2 4 4 f y x, y , z 3x y 2 xz 3 z f y 2, 1, 2 12 8 6 f x x, y , z 0 2 2 2 f x 1, 2, 1 f y x, y , z 2 xy 3 y 4 3 7 f y 1, 2, 1 f z x, y , z f x x, y , z 1 yz f z 1, 2, 1 f z x, y , z f z 1, 1, 1 2 S 0 2 z cos x y 4 cos S 0 2 sin x y sin S 1 2 3x 2 y 2 2 z 2 x yz f y 1, 1, 1 x y z 2 3 f x, y , z f y x, y , z xy 2 f x x, y , z f x 1, 1, 1 4 cos § S · f z ¨ 0, , 4 ¸ © 2 ¹ 2 x3 yz x y 2 xyz 3 yz f z 2, 1, 2 z sin x y f z x, y , z 1 2 1 3 f x, y , z § S · f y ¨ 0, , 4 ¸ © 2 ¹ 3 f x, y , z f z x, y , z 3 9 f y x, y , z 70. 66. x y z § S · f x ¨ 0, , 4 ¸ 2 © ¹ 2 f x, y , z f x 1, 1, 1 69. 32 x y z 2 2 x 2 xz 93 2 32 3 x y z 0 xy 32 z Gz x, y , z 2 x y z y 2 yz x y z 11 0 32 x y z x xy f z 3, 1, 1 1 x2 y2 z 2 2 x y z f z x, y , z 32 y G y x, y , z x y z y xy f y 3, 1, 1 1 x2 y2 z 2 1 x2 y2 z 2 xy x y z f x, y , z f x x, y , z 2 Gx x , y , z 65. 1 ln x 2 y 2 z 2 2 x2 y2 z 2 ln x x y2 z2 Fx x, y, z 64. Functions of Several Variables 6x 3x 2 3x 2 y 2 2 z 2 3x 2 y 2 2 z 2 6 2 342 2y 3 5 2 3x y 2 z 2 3x y 2 2 z 2 2 3x 2 y 2 2 z 2 3x 2 y 2 2 z 2 2 2 2 5 3 5 5 y 2 2 5 5 4 z 2 5 2 z 2 5 5 1 x y2 z 71. z 3 xy 2 w2 z wywx 1 wz wx 3y2 , w2 z wx 2 0, x yz 2 wz wy 6 xy, w2 z wy 2 6 x, w2 z wxwy 6y 6y 1 © 2010 Brooks/Cole, Cengage Learning Section 13.3 x2 3 y2 72. z 73. 2 x, wz wy w2 z 6 y, 2 wy wz wx w2 z wx 2 w2 z wywx wz wy 74. z wz wx wz wx 0 w2 z wx 2 w2 z wywx 2 wz wy 2 w2z wy 2 2 w2 z wxwy 2 x 6 y 2 w2 z wxwy w2 z 6, wxwy z 0 2x 2 y w2 z wxwy w2z wy 2 w2 z wywx x 2 xy 3 y 6 z 2, 2 w2z wy 2 wz wx w2 z wx 2 w2 z wywx wz wy 75. w2 z wx 2 wz wx z 76. So, 77. x 4 3x 2 y 2 y 4 4 x 6 xy 2 12 x 6 y 2 3 2 12 xy w2 z wywx x y 2 2 x x2 y 2 w2 z wx 2 x2 y2 w2 z wywx x2 y2 wz wy x y y2 32 xy 32 y 2 w2z wy 2 x2 y2 w2 z wxwy x2 y2 2 1 x y 2 1 x y 1 y x 1 x y 2 w2 z . wxwy e x tan y w2 z wywx e x sec 2 y wz wy e x sec 2 y wz wx w2 z wx 2 w2 z wywx wz wy w2z wy 2 w2 z wxwy 2 1 x y w2 z wx 2 z 2 1 x y e x tan y w2 z wxwy 78. wz wx 6 x 2 12 y 2 12 xy 1 x y e x tan y w2z wy 2 189 ln x y z 6 x 2 y 4 y 3 Partial Derivatives 2e x sec 2 y tan y e x sec 2 y 2 xe y 3 ye x 2e y 3 ye x 3 ye x 2e y 3 ye x 2 xe y 3e x 2 xe y 2e y 3e x x2 32 xy 32 © 2010 Brooks/Cole, Cengage Learning 190 Chapter 13 Functions of Several Variables cos xy 79. z wz wx x sin xy, w2 z wxwy x y 85. f x x, y 1 y , f y x, y x2 y x2 y2 y y x 2 2 2 fx 2 x 2x 2 0 y 4y 2 4x y 2 4, you Solving for x in the second equation, x 2 4 y. x2 y2 0 f y x, y x 2y 2 0 0 y x 2 2 2x 2 64 y y 0 or y 4 31 3 x 0 or x 1 § 16 · ¨ ¸ 4 © 32 3 ¹ y2 x2 2 2x y 2 2 § 4 4 · Points: 0, 0 , ¨ 2 3 , 1 3 ¸ 3 ¹ ©3 2 2x 0 3 x 6 0 x 2, 2 87. f x x, y 2x y ex 2 xy y 2 f y x, y x 2 y ex 2 xy y 2 2x y Point: 2, 2 0 y x 2 2 x 2x y 5 0 x 2 y 1 0 y x 2 2x 5 1 0 0 2 x 0 x 0 y 0 Point: 0, 0 0 2x 5 0 3x 9 0 x 3, 1 88. f x x, y 2x x2 y 2 1 0 x 0 f y x, y 2y x2 y2 1 0 y 0 Points: 0, 0 Point: 3, 1 fy 12 x 3 y 2 0 3x 2 3 y 12 x x x2 y 2 81. f x x, y 83. f x x, y 1 y2 x 0: 9 x 2 12 y fy 3y4 2 x y 2x y 5 0 2 2 f y x, y 1 x y2 9 x 2 12 y, f y x, y obtain 3 y 2 4 x2 y2 82. f x x, y 1 0 and 1 and x x2 2 2 xy 2x y 2 1 y x2 1 x y2 2 x2 y2 1 §1· ¨ ¸ 1 y 2 x2 © x ¹ x y y4 y 86. f x x, y y 2y 2 x y w2 z wxwy 0: fy 2 2 2 0 Points: 1, 1 2 x y w2z wy 2 0, y y 2 wz wy fx 0 x x 2 cos xy 2 xy 2 w z wywx 2x Point: 0, 0 w2 z wy 2 1 § y· ¨ ¸ 1 y 2 x2 © x2 ¹ 2 0 y x arctan w2 z wx 2 y 0 y x 2 2x fx wz wx y 2x y xy cos xy sin xy z 0 x 2 y f y x, y y 2 cos xy yx cos xy sin xy wz wy 80. w z wx 2 y sin xy, w2 z wywx 2x y 84. f x x, y 2 2 x 4 y 4, f y x, y 0: 2 x 4 y 4x 2 y 4 x 2 y 16 4 16 Solving for x and y, x 6 and y 4. © 2010 Brooks/Cole, Cengage Learning Section 13.3 89. x sec y z wz wx wz wx 0 w2 z wywx w2 z wx 2 sec y tan y wz wy w z wy 2 x sec y sec2 y tan 2 y w2 z wxwy sec y tan y w2 z So, wywx w2z wy 2 w2 z wxwy There are no points for which z x wz wx z y , because 92. 25 x y 2 25 x y 2 2 32 w2 z wx 2 32 w2 z wywx xy 25 x y 2 wz wy 2 y 25 x y 2 w2z wy 2 wz wy 2 x 2 25 25 x y 2 w2 z wxwy 2 w2z wy 2 32 xy 25 x y 2 0 if x y 2 wz wy z wz wx 2 y 2 25 w2 z wywx 2 x2 x2 y 2 4 xy 2 x2 y2 2y x2 y 2 2 y 2 x2 2 x2 y2 4 xy 2 x2 y2 There are no points for which z x x w2 z wx 2 wz wx 0 y 2 x2 x x2 y 2 x4 4x2 y 2 y4 w2 z wxwy sec y z 0. 25 x 2 y 2 90. z wz wy w2 z wxwy 32 93. y x y xy 0. y2 2 x y x y 2 2 y2 x y 3 x y 2 2 y y 2 2 x y 1 x y x x y xy x y 2 xy 4 x y x2 2 x y 2 2 x2 x y 3 x y 2 2x x2 2 x y x y f x, y , z xyz f x x, y , z yz f y x, y , z xz f yy x, y, z 0 f xy x, y, z z f yx x, y, z z f yyx x, y, z 0 f xyy x, y, z 0 f yxy x, y, z 0 So, f xyy zy xy x y 4 There are no points for which z x 0 191 ln x ln x 2 y 2 1 2x 2 x x y2 w2 z wywx x sec y tan y 2 wz wx § · x ln ¨ 2 2¸ ©x y ¹ 91. z sec y w2 z wx 2 Partial Derivatives f yxy f yyx 2 xy x y zy 3 0. 0. © 2010 Brooks/Cole, Cengage Learning 3 192 94. Chapter 13 f x, y , z x 2 3xy 4 yz z 3 f x x, y , z 2x 3y f y x, y , z 3 x 4 z f yy x, y, z 0 f xy x, y, z 3 f yx x, y, z 3 f yyx x, y, z 0 f xyy x, y, z 0 f yxy x, y, z 0 So, f xyy 95. f x, y , z wz wx w2z wx 2 wz wy x f x x, y , z e f y x, y , z ze x cos yz f yy x, y, z z 2e x sin yz f xy x, y, z ze x cos yz f yx x, y, z ze x cos yz f yyx x, y, z z 2e x sin yz f yxy x, y, z So, f xyy f x, y , z f x x, y , z f y x, y , z f yy x, y, z f xy x, y, z f yx x, y, z f yyx x, y, z f xyy x, y, z f yxy x, y, z 2 x sin yz 2 x sin yz z e f yxy 2 z § e y e y · cos x¨ ¸ 2 © ¹ w2z wx 2 § e y e y · sin x¨ ¸ 2 © ¹ wz wy § e y e y · sin x¨ ¸ 2 © ¹ w2 z wy 2 § e y e y · sin x¨ ¸ 2 © ¹ e x sin y wz wx e x sin y 2 3 3 w2z wx 2 wz wy w2 z wy 2 4z 3 So, 12 z x y 4 12 z x y 4 0. e x cos y e x sin y w2 z w2z 2 2 wx wy 4 100. z § e y e y · x¨ ¸ 2 © ¹ e x sin y arctan 12 z x y § e y e y · sin x¨ ¸ sin 2 © ¹ z 99. 4z x y 0. wz wx 2 4z x y 00 § e y e y · sin x¨ ¸ 2 © ¹ 2 z x y 0 w2 z w2 z wx 2 wy 2 2z x y x y 5x So, f yyz . x y 0 z 98. sin yz z e 5y 0. sin yz x 5 xy w2 z w2 z 2 2 wx wy So, f yyx e z 97. w2 z wy 2 f yxy f xyy x, y, z 96. Functions of Several Variables e x sin y e x sin y 0. y x From Exercise 80, we have w2 z w2z 2 2 wx wy 2 xy x y 2 2 2 2 xy x y2 2 2 0. © 2010 Brooks/Cole, Cengage Learning Section 13.3 sin x ct z 101. wz wt c cos x ct w2 z wt 2 wz wx c 2 sin x ct cos x ct w2 z wx 2 102. wz wt w2 z wt 2 wz wx cos 4 x 4ct 16c 2 cos 4 x 4ct w2 z wt 2 c 2 16 cos 4 x 4ct z ln x ct wz wt c x ct w2 z wt 2 c 2 wz wx w z wx 2 2 w2 z wt 2 z wz wt w2 z wt 2 wz wx w2 z wx 2 w2 z So, 2 wt x ct x c x 1 t e cos c c wz wt 1 t x e sin c2 c § w2 z · c 2 ¨ 2 ¸. © wx ¹ 107. Yes. The function f x, y cos 3 x 2 y satisfies both equations. does not exist. 109. 2 w ª f x x, y, z ¼º wx ¬ 0 There are no xs in the expression. w 110. ª f x, y, z ¼º wx ¬ 1 2 c 2 x ct x c 108. A function f x, y with the given partial derivatives 1 x ct x ct So, § w2z · c2 ¨ 2 ¸ © wx ¹ § w2 z · c 2 ¨ 2 ¸. © wx ¹ e t sin w2 z wx 2 4 sin 4 x 4ct 1 t x e cos c2 c e t sin wz wt wz wx 4c sin 4 x 4ct 16 cos 4 x 4ct z 106. w2 z wx 2 103. 104. § w2z · c 2 ¨ 2 ¸. © wx ¹ x c 1 x e t sin c c wz wt So, z e t cos w2 z wx 2 sin x ct w2 z wt 2 So, wz wt wz wx 193 x c e t cos z 105. Partial Derivatives 2 § w2 z · c2 ¨ 2 ¸ © wx ¹ y2 2 y 1 z f x, y , then to find f x you consider y constant 111. If z and differentiate with respect to x. Similarly, to find f y , you consider x constant and differentiate with respect to y. sin wct sin wx wc cos wct sin wx y· § ¨ sinh ¸ z¹ © 112. z z (x0, y0, z 0 ) (x0, y0, z 0 ) w2c 2 sin wct sin wx w sin wct cos wx w2 sin wct sin wx 2§ w z· c ¨ 2 ¸. © wx ¹ 2 y x Plane: y = y0 y x Plane: x = x0 wf denotes the slope of surface in the x-direction. wx wf denotes the slope of the surface in the y-direction. wy © 2010 Brooks/Cole, Cengage Learning 194 Chapter 13 Functions of Several Variables x y 113. The plane z f x, y satisfies wf wf ! 0. 0 and wy wx 118. (a) C z wC wx 4 4 y 4 x x y 114. The plane z wC wy f x, y satisfies wf wf ! 0. ! 0 and wy wx 16 y 175 x wC º wx »¼ 80, 20 2 2 xy 175 x 205 y 1050 32 16 6 16 4 205 y x 119. IQ M , C 100 −6 115. In this case, the mixed partials are equal, f xy f x, y sin x 2 y cos x 2 y f xx x, y sin x 2 y f xy x, y 2 sin x 2 y f y x, y 2 cos x 2 y f yy x, y 4 sin x 2 y f yx x, y 2 sin x 2 y So, f xy x, y IQM 120. f x, y 200 x 0.7 y 0.3 wf wx 140 x 0.3 y 0.3 (a) f yx x, y . At x, y 200 x1 200 x2 4 x12 8 x1 x2 4 x22 wr 200 8 x1 8 x2 (a) wx1 wR 200 32 96 At x1 , x2 4, 12 , wx1 wR 200 8 x1 8 x2 (b) wx2 wR 4, 12 , 2 At x1 , x2 72. wx M C 100 , IQM 12, 10 10 C 100M 12 IQc , IQc 12, 10 C2 When the chronological age is constant, IQ increases at a rate of 10 points per mental age year. When the mental age is constant, IQ decreases at a rate of 12 points per chronological age year. f yx . See Theorem 13.3. f x x, y 237 (b) The fireplace-insert stove results in the cost wC wC increasing at a faster rate because ! . wy wx 8 116. 183 x 205 y wC º » wy ¼ 80, 20 z 1 175 4 16 117. R 72. (b) § 500 · 140¨ ¸ © 1000 ¹ wf wx 60 x 0.7 y 0.7 wf wx 0.3 1000, 500 , wf wx At x, y § y· 140¨ ¸ © x¹ 0.3 §1· 140¨ ¸ © 2¹ § x· 60¨ ¸ © y¹ 0.3 | 113.72. 0.7 1000, 500 , § 1000 · 60¨ ¸ © 500 ¹ 0.7 60 2 0.7 | 97.47. 121. An increase in either price will cause a decrease in demand. 10 122. V I, R VI I , R VI 0.03, 0.28 ª1 0.06 1 R º 1000 « » 1 I ¬ ¼ 9 ª1 0.06 1 R º ª 1 0.06 1 R º » 10,000 « » « 2 1 I »¼ 1 I ¬ ¼ «¬ 11,027.20 9 VR I , R VR 0.03, 0.28 ª1 0.06 1 R º ª 0.06 º 10,000 « » « » 1 I ¬ ¼ ¬ 1 I¼ ª 1 0.06 1 R 10,000 « 11 « 1 I ¬ ª 1 0.06 1 R 600 « 10 « 1 I ¬ 9 10 º » » ¼ º » » ¼ 653.26 The rate of inflation has the greater negative influence. © 2010 Brooks/Cole, Cengage Learning Section 13.3 123. T wT wx wT wy 500 0.6 x 2 1.5 y 2 wT 1.2 x, 2.4q m 2, 3 wx wT 3 y 9q m 2, 3 wy 0.885t 22.4h 1.20th 0.544 wA (a) 0.885 1.20h wt wA 30q, 0.80 0.885 1.20 0.80 1.845 wt wA 22.4 1.20t wh wA 30q, 0.80 22.4 1.20 30q 13.6 wh (b) The humidity has a greater effect on A because its coefficient 22.4 is larger than that of t. (a) U x 10 x y (b) U y x 6y T P V wT wP wV wP wV wT n RT xB wT PV V n n w P R R xB xB n n RT RT wP xB xB wV V V2 n n RT R wV xB xB wT P P § ·§ n ·§ n · ¨ V ¸¨ xB RT ¸¨ xB R ¸ ¨ n ¸¨ ¸ 2 ¸¨ ¸¨ V ¸¨ ¸¨ P ¸¸ R ¸¨ ¨¨ © xB ¹© ¹© ¹ n n RT RT xB xB 1 n VP RT xB 17 and U y 2, 3 (c) U x 2, 3 16. The person should consume one more unit of y because the rate of decrease of satisfaction is less for y. (d) z 1 −2 2 1 x 127. z (a) PV 195 5 x 2 xy 3 y 2 126. U 124. A 125. Partial Derivatives 2 y 0.92 x 1.03 y 0.02 wz wx wz wy 0.92 1.03 (b) As the consumption of flavored milk (x) increases, the consumption of plain light and skim milk (z) decreases. As the consumption of plain reduced-fat milk (y) decreases, the consumption of plain light and skim milk decreases. 1.2225 x 2 0.0096 y 2 71.381x 4.121y 354.65 wz (a) 2.445 x 71.381 wx w2 z 2.445 wx 2 wz 0.0192 y 4.121 wy 128. z w2 z wy 2 0.0192 § w2 z · (b) Concave downward ¨ 2 0 ¸ © wx ¹ The rate of increase of Medicare expenses z is declining with respect to worker’s compensation expenses x . § w2 z · (c) Concave upward ¨ 2 ! 0 ¸ y w © ¹ The rate of increase of Medicare expenses z is increasing with respect to public assistance expenses ( y). © 2010 Brooks/Cole, Cengage Learning 196 Chapter 13 Functions of Several Variables 129. False x y 1. Let z 130. True 131. True 132. True ­ xy x 2 y 2 ° 2 , x, y z 0, 0 ® x y2 ° 0, 0 x, y ¯0, 133. f x, y x 2 y 2 3x 2 y y 3 x3 y xy 3 2 x (a) f x x, y x2 y 2 y x4 4x2 y 2 y4 2 x 2 y 2 x3 3 xy 2 x3 y xy 3 2 y f y x, y x2 y 2 x x4 4 x2 y 2 y 4 2 (b) f x 0, 0 2 0 ª 'x º 0 ¬ ¼ lim 'x o 0 'x f y 0, 0 f 0, 'y f 0, 0 lim 'y o 0 'y 2 0 ª 'y º 0 ¬ ¼ lim 'y o 0 'y w § wf · ¨ ¸ wy © wx ¹ w § wf · ¨ ¸ wx © wy ¹ f yx 0, 0 lim 0, 0 0, 0 'y o 0 2 x2 y2 f 'x, 0 f 0, 0 lim 'x o 0 'x (c) f xy 0, 0 2 x2 y2 0 0 4 'y 'y f x 0, 'y f x 0, 0 'y lim 'y o 0 'y 2 2 lim 1 4 'x 'x f y 'x, 0 f y 0, 0 lim 'x o 0 'x lim 'x o 0 'x 2 2 1 'y o 0 'y lim 1 1 'x o 0 'x (d) f yx or f xy or both are not continuous at 0, 0 . y ³x 134. f x, y 1 t 3 dt By the Second Fundamental Theorem of Calculus, wf wx d y 1 t 3 dt dx ³ x wf wy d y dy ³ x x3 y 3 135. f x, y d x 1 t 3 dt dx ³ y 1 t 3 dt (a) f x 0, 0 1 x3 1 y3 . f y 0, 0 13 f 0 'x, 0 f 0, 0 'x 'x lim 1 'x o 0 'x f 0, 0 'y f 0, 0 lim 'y o 0 'y 'y lim 1 'y o 0 'y lim 'x o 0 (b) f x x, y and f y x, y fail to exist for y 136. f x, y x2 y2 23 For x, y z 0, 0 , f x x, y For x, y f x 0, 0 x, x z 0. 2 2 x y2 3 1 3 4x 2x 3 x y2 2 13 . 0, 0 , use the definition of partial derivative. lim 'x o 0 f 0 'x f 0, 0 'x 43 lim 'x o 0 'x 'x lim 'x 'x o 0 13 0 © 2010 Brooks/Cole, Cengage Learning Section 13.4 Differentials 197 Section 13.4 Differentials 2 x2 y3 1. z dz z 2. 11. f x, y 4 xy dx 6 x y dy 3 2 2 (a) f 2, 1 'z x 2x dx 2 dy y y (b) dz 12. f x, y 1 x2 y2 3. z dz x y 2 dx 2 x dx y dy 2 x y 2 dw 2 2y 2 x y 2 2 2 'z (b) dz x y z 3y 13. f x, y 1 3x z x y dx dy 2 z 3y z 3y z 3y 2 dz 5 5.5125 f 2.1, 1.05 f 2, 1 (b) dz cos y y sin x dx x sin y cos x dy 0.5125 2 x dx 2 y dy 0.5 16 x 2 y 2 11 f 2.1, 1.05 'z 0.05 x2 y 2 (a) f 2, 1 dz 0.05 2 0.1 3 0.05 2 2 0.1 2 1 0.05 x cos y y cos x 5. z 2 dx 3 dy f 2.1, 1.05 dy 1.05 f 2.1, 1.05 f 2, 1 (a) f 2, 1 2x 2 4. w 1 f 2.1, 1.05 x2 y 2 dz 2x 3y 10.4875 f 2.1, 1.05 f 2.1 0.5125 2 x dx 2 y dy 2 2 0.1 2 1 0.05 0.5 cos y y sin x dx x sin y cos x dy 14. f x, y §1· ¨ ¸e © 2¹ 6. z dz x2 y 2 §e 2 x¨ ¨ © x2 y2 e x2 y2 e 2 (a) f 2, 1 x2 y2 · ¸ dx ¸ ¹ § e x2 y 2 e x2 y2 · ¸ dy 2 y¨ ¨ ¸ 2 © ¹ ex 2 y2 e x y x 2 y2 x dx y dy 0.5 f 2.1, 1.05 'z (b) dz 15. f x, y f 2.1, 1.05 f 2, 1 y 1 dx dy x2 x z dz 8. w dw 9. w dw 10. w dw e x sin y 'z (b) dz e y cos x z 2 16. f x, y 2 z 3 y cos x dx 2 z 3 sin x dy 6 z 2 y sin x dz x yz sin yz 2 2 2 xyz dx x z z cos yz dy 2 2 2 2 x 2 yz y cos yz dz 0 1.05e 2.1 | 8.5745 f 2.1, 1.05 f 2, 1 1.1854 ye dx e dy x x e 2 0.1 e 2 0.05 | 1.1084 e y sin x dx e y cos x dy 2 z dz 2 z 3 y sin x 1 1 0.1 0.05 4 2 e 2 | 7.3891 f 2.1, 1.05 e x sin y dx e x cos y dy 0 ye x (a) f 2, 1 7. 0.5 (a) f 2, 1 x cos y 2 cos 1 | 1.0806 f 2.1, 1.05 2.1 cos 1.05 | 1.0449 'z f 2.1, 1.05 f 2, 1 (b) dz cos y dx x sin y dy 0.0357 cos 1 0.1 2 sin 1 0.05 | 0.0301 © 2010 Brooks/Cole, Cengage Learning 198 Chapter 13 Functions of Several Variables x 2 y, x 17. Let z 2, y 9, dx 0.01, dy 0.02. 2 xy dx x dy 2 Then: dz 2 2.01 9.02 22 9 | 2 2 9 0.01 22 0.02 x2 y2 , x 18. Let z 3, dx 5, y 0.44 0.05, dy 0.1. Then: x dz 2 5.05 dz 2 3.1 1 x2 19. Let z x2 y 2 dy 5 52 32 | y2, x 3, y 52 32 6, dx 3 0.05 52 32 0.55 | 0.094 34 0.1 0.05. Then: 0.05, dy 2 1 x 2 2x dx dy 2 y y3 2 1 3.05 5.95 y dx x2 y 2 2 2 1 32 23 1 32 | 2 0.05 0.05 | 0.012 2 6 6 63 sin x 2 y 2 , x 20. Let z sin ª 1.05 ¬ 2 1, dx y 0.05. Then: dz 0.05, dy 2 x cos x 2 y 2 dx 2 y cos x 2 y 2 dy 2 0.95 º sin 2 | 2 1 cos 12 12 0.05 2 1 cos 12 12 0.05 ¼ 21. See the definition on page 918. A 25. 22. In general, the accuracy worsens as 'x and 'y increases. 0 lh ∆h dA l dh h dl 'A 1 dl h dh lh h h dl l dh dl dh f x, y at the point 23. The tangent plane to the surface z 'A dA dA ∆A dA dA l ∆l dl dh P is a linear approximation of z. dV 'z dz | is the relative error. z z and V 26. f x, y , then 'z | dz is the propagated error, 24. If z S r 2h π r 2dh 2S rh dr S r dh 2 ΔV − dV Δh 2πrhdr Δr r S r 2h 27. V 3 ,r 4, h 8 dV 2S rh Sr2 dr dh 3 3 'V Sª r 'r 2 3¬ Sr 3 2h dr r dh Sª h 'h r 2 h º ¼ 3¬ 4S 16 dr 4 dh 3 4 'r 2 8 'h 128º ¼ 'h dV 'V 'V dV 0.1 0.1 8.3776 8.5462 0.1686 0.1 0.1 5.0265 5.0255 0.0010 0.001 0.002 0.1005 0.1006 0.0001 0.0001 0.0002 0.0034 0.0034 0.0000 'r © 2010 Brooks/Cole, Cengage Learning Section 13.4 S r r 2 h2 , r 28. S dS dr S r 2 h2 dS dh S 12 6, h 199 16 1 2 S r 2 r 2 h2 S 2r 2 h 2 r 2 h2 rh r h2 2 S S ª 2r 2 h 2 dr rh dhº ¼ r h ¬ dS 2 S 6, 16 2 292 >328 dr 96 dh@ 322.101353 S r 'r 'S Differentials r 'r 2 h 'h 2 S 6 'r 'r 'h dS 'S 'S dS 0.1 0.1 7.7951 7.8375 0.0424 0.1 0.1 4.2653 4.2562 0.0091 0.001 0.002 0.0956 0.0956 0.0000 0.0001 0.0002 0.0025 0.0025 0.0000 6 'r 2 16 'h 2 322.101353 0.92 x 1.03 y 0.02 29. z (a) dz 0.92 dx 1.03 dy (b) dz 0.92>r0.25@ 1.03>r0.25@ B0.23 r 0.2575 Maximum error: r0.4875 Relative error: 30. dz z r0.4875 | 0.081 0.92 1.9 1.03 7.5 0.02 7.2, 2.5 , dx d 0.05, dy d 0.05 x, y x x 2 y 2 dr r 8.1% x y 2 2 dx y x y 2 2 dy 7.2 7.2 2.5 2 2 dx 2.5 7.2 2.52 2 dy | 0.9447 dx 0.3280 dy dr d 1.2727 0.05 | 0.064 § y· arctan ¨ ¸ dT © x¹ T y x dx 2 dy | 0.0430 dx 0.1239 dy x2 y2 x y2 Using the worst case scenario, dx 31. V dV V 32. A dA S r 2 h dV 2 dr dh r h 1 ab sin 2 1ª 2¬ 0.05 and dy 0.05, you see that dT d 0.0083. 2S rh dr S r 2 dh 2 0.04 0.02 0.10 10% C b sin C da a sin C db ab cos C dC º¼ 1 ª4 2¬ 1 3 sin 45q r 1 12 cos 45q r0.02 º | r0.24 in.2 sin 45q r 16 16 ¼ © 2010 Brooks/Cole, Cengage Learning 200 33. Chapter 13 35.74 0.6215T 35.75v 0.16 0.4275Tv 0.16 C wC wT wC wv 0.6215 0.4275v 0.16 5.72v 0.84 0.0684Tv 0.84 wC wC 0.16 dT dv 0.6215 0.4275 23 r1 5.72 23 wT wv r1.3275 r 1.1143 r2.4418 Maximum propagated error dC 0.84 0.0684 8 23 0.84 r3 r2.4418 | r0.19 or 19% 12.6807 dC C v2 r v2 2v dv 2 dr r r dv dr 2 2 0.03 0.02 v r a 34. Functions of Several Variables da da a 0.08 8% Note: The maximum error will occur when dv and dr differ in signs. 1 bhl 2 35. (a) V T ·§ T· § ¨18 sin ¸¨18 cos ¸ 16 12 2 ¹© 2¹ © V is maximum when sin T 1 or T 31,104 sin T in.3 18 sin T ft 3 b 2 S 2. s2 sin T l 2 (b) V dV h 18 s2 s2 l cos T dT sin T dl 2 2 S· S ·§ S · 182 § S ·§ 1 · § § 1 · 182 § 18¨ sin ¸ 16 12 ¨ ¸ 16 12 ¨ cos ¸¨ ¸ ¨ sin ¸¨ ¸ 2¹ 2 2 ¹© 90 ¹ 2 © 2 ¹© 2 ¹ © © 2¹ © θ 2 18 s sin T l ds 1809 in.3 | 1.047 ft 3 36. (a) Using the Law of Cosines: a2 b 2 c 2 2bc cos A 3302 4202 2 330 420 cos 9q a | 107.3 ft. 330 ft b 2 4202 2b 420 cos T (b) a da 420 ft 1ª 2 S ·º § 330 4202 840 330 ¨ cos ¸» 2 «¬ 20 © ¹¼ 1 1 2 | >11512.79@ >r1774.79@ | r8.27 ft 2 37. P 9° 1 2 1 2 ªb 4202 840b cos T ¼º ª¬ 2b 840 cos T db 840b sin T dT º¼ 2¬ E 2 dE , E R 3% 0.03, dP 2E E2 dE 2 dR R R dP P ª 2E º E2 dE 2 dR» P « R ¬R ¼ Using the worst case scenario, dR R 4% 1 2 ª§ S · S ·§ S ·º § «¨ 2 330 840 cos 20 ¸ 6 840 330 ¨ sin 20 ¸¨ 180 ¸» ¹ © ¹© ¹¼ ¬© 0.04 ª 2E º E2 dE 2 dR» « R ¬R ¼ dE E 0.03 and dR R E2 R 0.04: 2 1 dE dR E R dP d 2 0.03 0.04 P 0.10 10%. © 2010 Brooks/Cole, Cengage Learning Section 13.4 38. 1 R 1 1 R1 R2 R R1R2 R1 R2 dR1 'R1 0.5 dR2 'R2 2 wR wR dR dR2 wR1 wR2 'R | dR When R1 39. L dL 40. R1 R2 2 15, we have 'R | 10 and R2 R12 'R1 R1 R2 152 10 15 2 0.5 2 'R2 102 10 15 2 2 0.00021 ln 100 0.75 r dL | 8.096 u 104 r 6.6 u 106 micro henrys T 2S L g dg 32.23 32.09 dL 2.48 2.50 When g 'z 0.14 ohm. ª r1 100 r1 16 º 6 0.00021« » | r6.6 u 10 100 2 ¬ ¼ ª dh dr º 0.00021« » r¼ ¬h L z 201 § 2h · 0.00021¨ ln 0.75¸ © r ¹ 0.14 0.02 wT wT dg dL wg wL 'T | dT 41. R22 Differentials 32.09 and L f x, y S g 2.50, 'T | L dg g S 32.09 S Lg dL 2.5 0.14 32.09 S 2.5 32.09 0.02 | 0.0108 seconds. x2 2x y f x 'x, y 'y f x, y 2 x 'x 'x 2 2 ' x 'y 2 x 2 2 x 'x ' x 2 x 2 'x y ' y x2 2 x y 2 x 2 'x ' y ' x ' x 0 ' y f x x, y 'x f y x, y 'y H1'x H 2'y where H1 'x and H 2 0. As 'x, 'y o 0, 0 , H1 o 0 and H 2 o 0. 42. z 'z f x, y x2 y2 f x 'x, y 'y f x, y x 2 2 x 'x ' x 2 x 'x 2 y 'y 'x 'x 'y 'y 2 y 2 2 y 'y 'y 2 x2 y 2 f x x, y 'x f y x, y 'y H1'x H 2'y where H1 'x and H 2 'y. As 'x, 'y o 0, 0 , H1 o 0 and H 2 o 0. 43. z 'z f x, y x2 y f x 'x, y 'y f x, y 2 xy 'x y 'x 2 x 2 2 x ' x 'x 2 x 2 ' y 2 x 'x ' y ' x ' y f x x, y 'x f y x, y 'y H1'x H 2'y where H1 2 y 'y x 2 y 2 2 xy 'x x 2'y y'x 'x ª2 x'x 'x º 'y ¬ ¼ y 'x and H 2 2 2 x'x 'x . As 'x, 'y o 0, 0 , H1 o 0 and H 2 o 0. © 2010 Brooks/Cole, Cengage Learning 202 44. Chapter 13 5 x 10 y y 3 f x, y z 'z Functions of Several Variables f x 'x, y 'y f x, y 5 x 5'x 10 y 10'y y 3 3 y 2 'y 3 y 'y 5 'x 3 y 2 10 'y 0 'x 3 y 'y 'y 2 'y 2 3 5 x 10 y y 3 'y f x x, y 'x f y x, y 'y H1'x H 2 'y where H1 2 0 and H 2 3 y 'y ' y . As 'x, 'y o 0, 0 , H1 o 0 and H 2 o 0. 45. f x, y ­ 3x 2 y , ° 4 2 ®x y °0, ¯ x, y z 0, 0 x, y 0, 0 0 f x 0, 0 lim 'x o 0 f 'x, 0 f 0, 0 'x 4 'x lim lim 'y o 0 f 0, 'y f 0, 0 'y 0 'x 'x o 0 0 f y 0, 0 0 'y lim 2 0 0 'y 'y o 0 So, the partial derivatives exist at 0, 0 . Along the line y x: lim x , y o 0, 0 x 2: Along the curve y f x, y lim x , y o 0, 0 lim x o0 3x3 x x2 4 3x 4 2x4 f x, y lim x o0 3x x2 1 0 3 2 f is not continuous at 0, 0 . So, f is not differentiable at 0, 0 . See Theorem 12.5 46. f x, y f x 0, 0 f y 0, 0 ­ 5x2 y , ° 3 3 ®x y °0, ¯ x, y z 0, 0 x, y 0, 0 lim f 'x, 0 f 0, 0 'x 'x o 0 lim f 0, 'y f 0, 0 'y 'y o 0 'x o 0 'y o 0 lim 00 'x 0 lim 00 'y 0 So, the partial derivatives exist at 0, 0 . Along the line y x: Along the line x 0, lim f x, y lim f x, y x , y o 0, 0 x , y o 0, 0 lim x o0 5 x3 2 x3 5 . 2 0. So, f is not continuous at 0, 0 . Therefore f is not differentiable at 0, 0 . 47. If f is differentiable at x0 , y0 , then the partial derivative f x x0 , y0 exists, which implies that f x, y0 is differentiable at x0 , y0 . If f x, y f x, 0 at x x2 0, f x, y x 2 y 2 , then x . Because x is not differentiable x y is not differentiable. 2 48. f x, y x2 y 2 1 4 (a) f 1, 2 1.05 2.12 | 2.3479 f 1.05, 2.1 (b) 'z f 1.05, 2.1 f 1, 2 2 (c) dz 5 | 2.2361 2 x x y 2 2 dx 0.1118 y x y2 2 dy 1 2 0.5 0.1 | 0.1118 5 5 The results are the same. © 2010 Brooks/Cole, Cengage Learning Section 13.5 Chain Rules for Functions of Several Variables 203 Section 13.5 Chain Rules for Functions of Several Variables 1. x2 y2 2t , y 3t ww dx ww dy 2x 2 2 y 3 wx dt wy dt 4x 6 y 8t 18t 26t w x dw dt 5. w (a) dw dt x y w 2. cos t , y x 2 dw dt et ww dx ww dy wx dt wy dt x sin t x2 y2 dw dt x sin t yet x2 y 2 6. w y x y 2 et (a) et e 2t cos 2 t e 2t (b) w S t et , y x 7. w ww dx ww dy wx wt wy dt dw dt sin y et x cos y 1 sin S t et et cos S t cos t 2 1 , sin t , z et ww dx ww dy ww dz wx dt wy dt wz dt dw dt cos 2 t sin 2 t e 2t 2e 2 t 1 e 2t 2e 2 t xy cos z arccos t § y cos z 1 x cos z 2t xy sin z ¨ © dw dt · ¸ 1t ¹ 1 2 t 2 t t t 2t t t 2 t 3 2t 3 t 3 (b) w t4, dw dt xy xz yz , x dw dt w dw dt § 1 t2 ¨ © · ¸ 1t ¹ 1 2 4t 3 4t 3 t 1, y ww dx ww dy ww dz wx dt wy dt wz dt t 2 1, z t y z x z 2t x y t 2 1 t t 1 t 2t t 1 t 2 1 (b) cos t , y t z (a) 2t sin t 2 1 2 x sin t 2 y cos t 2 z et (b) w t2 9. w dw dt 2t sin t 2 1 2 cos t sin t 2 sin t cos t 2e 2t y (a) dw dt et sin t et cos t §1· § 1 · ¨ ¸ sin t ¨ ¸ cos t © x¹ © y¹ 1 tan t cot t sin t cos t dw dt 8. w x (a) y x cos t sin t x y 1 sin x y 2t sin x y 0 x2 y 2 z 2 , x ln w t2, y 2t sin x y cos t sin t e 2t e t e t cos x y , x dw dt e 2t et et 2e 2t et x sin y 3. w 4. 2 ww dx ww dy wx dt wy dt y et x 2e 2t (b) w 2 e 2t et , y xy, x 3 2t 2 1 t 1 t2 1 t 1 t t2 1 t 2t t 1 t 2 1 2t 1 3t 2 1 3 2t 2 1 © 2010 Brooks/Cole, Cengage Learning 204 Chapter 13 Functions of Several Variables xy 2 x 2 z yz 2 , x 10. w t2, y 2t , z 2 ww dx ww dy ww dz wx dt wy dt wz dt dw (a) dt y 2 2 xz 2t 2 xy z 2 2 x 2 2 yz 0 t 2 4t 2 t 4 2 2t 4 (b) w dw dt 4t 2 4t 2 2t 4t 3 4 2 24t 3 8 6t 4 8t 24t 3 8 x1 x2 2 y1 y2 1ª 10 cos 2t 7 cos t 2¬ 2 2 6 sin 2t 4 sin t º ¼ 11. Distance fc t f t 2 10 cos 2t 7 cos t 2 6 sin 2t 4 sin t 2 1 2 ªª¬2 10 cos 2t 7 cos t 20 sin 2t 7 sin t º¼ ª¬2 6 sin 2t 4 sin t 12 cos 2t 4 cos t º¼º ¬ ¼ §S · f c¨ ¸ ©2¹ 1ª 10 2¬ 12. Distance 2 42 º ¼ 2 y2 y1 ª48 ¬ 2 et et , y dw dy ww dx wx dt wy dt dw dt et e t et e t et e t et e t d 2w dt 2 e e t t At t 4 11 2 11 29 | 2.04 29 2º ¼ 2 48t 8 2 2 2 6 15. w x2 y 2 x s t, y ww ws ww wt 1. s t 2x 1 2 y 1 2s t 2s t 2 x 1 2 y 1 1 and t ww ws 0, 17. w dw dt ww dx ww dy wx dt wy dt 2 4 2t 2t t 2 t 1 t 1 2x x2 2t 2 1 y y t 1 4t t 3 t 1 4 3t 4t 4 2 t 1 2 t 1 12t 3 12t 2 3t 4 4t 3 2 t 1 d 2w dt 2 t 1 1: d 2w dt 2 4 24 7 4 16 4 68 16 2 3 es , y 0. 1 and t 2, ww ws 6e 2 s t 6e s e t e s 6 xy 0 3 y 2 3 x 2 et 3e 2t 3e2 s et 3e3t 3e 2 s t ww 6 and 3e6 3. wt sin 2 x 3 y s t y s t 2 cos 2 x 3 y 3 cos 2 x 3 y 5 cos 2 x 3 y ww wt ww wt et 6 xy e s 3 y 2 3x 2 0 x ww ws 4 and 4t y 3 3x 2 y When s 1 4s 2s t 2s t t 1 y At t 2 x t2 x 2 º ª48t 1 ¼ ¬ 16. w 2 x2 y 14. w t d 2w dt 2 0, 3 44 When s 2 4 et e t 1 2 ww ws ww wt et e t et e t 1 1 et e t x y x y 22 2 29 1 116 2 fc1 48 8 2 2 2 6 ln x y , x 13. w ª º ¬ª¬2 10 7 º¼ 2 4 12 ¼ x2 x1 f t fc t 1 2 5 cos 5s t 2 cos 2 x 3 y 3 cos 2 x 3 y cos 2 x 3 y 4.25 When s 0 and t cos 5s t S ww 2 , ws 0 and ww wt 0. © 2010 Brooks/Cole, Cengage Learning Section 13.5 18. w x2 y2 x s cos t y s sin t ww ws yz r T, z r T , x T 2, y x z y z y 2r ww yz (a) 0 1 1 x2 x x x wr T2 z y ww yz 2T 1 1 x2 x x wT r T r T r T r T 2T 4 2 2 x cos t 2 y sin t 2s cos 2t 2 x s sin t 2 y s cos t T 2 s 2 sin 2t 2T r 2 When s S ww 3 and t 4 , 0 and ws ww wt 18. ww wr ww wT (a) (b) x 2 2 xy y 2 , x 2 x 2 y 1 2 x 2 y 1 ww wT 2 x 2 y 1 2 x 2 y 1 (a) (b) 2 4x 4 y 2r T r T r T y , x x r cos T , y r2 T T2 2 1 T2 2r 2 T3 2 4ª¬ r T r T º¼ 4x y 8T r 2 2rT T 2 2 r 2 T 2 r 2 2rT T 2 r sin T cos T r cos T sin T r2 r2 y x r sin T 2 r cos T x2 y2 x y2 arctan r sin T r cos T arctan tan T 4T 2 0 r sin T r sin T r cos T r cos T r2 r2 1 T 0 1 r cos T , y 25 5 x 2 5 y 2 , x ww wT r T r T r sin T ww wT ww wr T3 8T y x cos T 2 sin T x2 y2 x y2 22. w 2r 0 ww wr w yz x 2r 2 T 0 arctan ww wr ww wT (a) r T w 2 r T ww wr ww wr ww wT 21. w r T, y T 2 T3 (b) w 20. w 205 19. w 2 s cos 2 t 2s sin 2 t ww wt Chain Rules for Functions of Several Variables 5 x 25 5 x 5 y 2 2 5 x 25 5 x 2 5 y 2 cos T r sin T 5 y 25 5 x 5 y r sin T 2 2 sin T 5 y 25 5 x 2 5 y 2 5r cos 2 T 5r sin 2 T r cos T 25 5 x 5 y 2 2 5 r 25 5r 2 5r 2 sin 2 T cos T 5r 2 sin T cos T 25 5 x 2 5 y 2 0 © 2010 Brooks/Cole, Cengage Learning 206 Chapter 13 25 5r 2 (b) w ww wr 23. w ww ws Functions of Several Variables 5r 25 5r 2 ; ww wT s t, y xyz , x 0 s t, z st 2 yz 1 xz 1 xy t 2 s t st 2 s t st 2 s t s t t 2 ww wt yz 1 xz 1 xy 2 st 2 s 2t 2 s 2t 2 t 4 3s 2 t 2 t 4 s t st 2 s t st 2 s t s t 2 st t 2 3s 2 t 2 2 st 3 2 s 3t 2 st 3 2 s 3t 4st 3 2st s 2 2t 2 24. w ww ws x2 y 2 z 2 , x t sin s, y dy dx ww ws ze , x s t s t 2st 4 2t 4 s 2t 3 s t, z 29. ln x2 y2 x y dy dx ª¬ s t st s t st t º¼ ª¬2s 2t t º¼ te s 2 t2 2s 2 1 s t s t s t 30. ª ¬ s t st s t st sº¼ ª¬2st 2 sº¼ t2, z s2, y x cos yz , x se s2 t 2 1 2t 2 x y2 6 x2 y2 dy dx 2 xy x2 y 2 x2 y 2 y x 2 2 2 2y 2 2 cos st 2 2t 3 2 s s 2t 2 sin st 2 2t 3 2 xy 2 y x 2 y 2 cos yz 0 xz sin yz 2t xy sin yz 2 y 2 x2 2 xy 2 yx 4 4 x 2 y 3 2 y 5 6 s t 2 s t sin st 2t 3 2 27. x 2 xy y 2 x y Fx x, y Fy x, y x x2 y2 y x2 y 2 0 y 2 x2 cos yz 2 s xz sin yz 0 xy sin yz 1 2 2 Fx x, y Fy x, y s 2t 0 x 1 x2 y2 y 1 x2 y2 Fx x, y Fy x, y 4 1 ln x 2 y 2 x y 4 2 2 s 2t s 2t sin st 2 2t 3 2 s 2t 2 sin st 2 2t 3 dy dx y sec xy tan xy sec 2 xy st yze xy 1 xze xy 1 e xy s e ww wt s t y sec xy tan xy y sec2 xy x sec xy tan xy x sec 2 xy yze xy 1 xze xy 1 e xy t e s t ww ws s t, y xy e s t 26. w Fx x, y Fy x, y 2 x sin s 2 y cos s 2 z 2 st e ww wt 0 x sec xy tan xy sec 2 xy 2t sin 2 s 2t cos 2 s 4 s 2t 3 25. w 28. sec xy tan xy 5 2 x cos s 2 y t sin s 2 z t 2 2t 2 sin s cos s 2t 2 sin s cos s 2st 4 ww wt st 2 t cos s, z 31. F x, y, z x2 y 2 z 2 1 3 0 2x y 1 x 2 y 1 y 2x 1 2y x 1 Fx 2 x, Fy 2 y, Fz wz wx Fx Fz x z wz wy Fy Fz y z 2z © 2010 Brooks/Cole, Cengage Learning y x Section 13.5 xz yz xy 32. F x, y, z Fx z y Fy z x Fz x y wz wx F x Fz y z x y wz wy Fy Fz x z x y Fx x, y, z Fz x, y, z ze xz y xe xz wz wy Fy x, y, z Fz x, y, z x xe xz 2 x 2 y 2z x y z wz wy F x, y , z y Fz x, y, z 2 z 2 y 2z z y z wz (i) 1 cos y z wx 1 wz cos y z wx 0 implies sec y z . § wz · (ii) ¨1 ¸ cos y z y¹ w © wz 0 implies wy tan x y tan y z 1 1. ln y y2 2z wz (ii) wy Fy x, y, z Fz x, y, z x 2 yz y 2 y 2z Fx y w Fy x z Fz y w Fw z x ww wx Fx Fw y w z x y w z x ww wy Fy Fw x z z x x z z x ww wz Fz Fw y w z x y w z x 40. x 2 y 2 z 2 5 yw 10 w2 2 sec 2 x y Fy sec 2 x y sec 2 y z Fx 2 x, Fy Fz sec y z ww wx Fx Fw 2 x 5 y 20 w ww wy Fy Fw 5w 2 y 20 w 5 y ww wz Fz Fw 2z 5 y 20 w wz wx wz wy Fx Fz Fy Fz sec x y sec 2 y z sec x y sec y z sec 2 y z 2 2 § sec 2 x y · ¨¨ 2 1¸¸ y z sec © ¹ 36. F x, y, z e sin y z z x Fx e x sin y z Fy e x cos y z Fz e x cos y z 1 wz wx Fx Fz e sin y z 1 e x cos y x wz wy Fy Fz e x cos y z 1 e x cos y z x 2 41. F x, y, z , w x 2 y2 z y 3 2 yz xy yz wz wx s Fx 2 e xz 0 Fx x, y, z Fz x, y , z 39. F x, y, z , w 0 1 e xz wz wx 0 F x, y , z x Fz x, y, z 35. F x, y, z wz wx (i) 207 0 38. x ln y y 2 z z 2 8 wz wx 34. x sin y z e xz xy 37. F x, y, z x 2 2 yz z 2 1 33. F x, y, z Chain Rules for Functions of Several Variables 2 y 5w, Fz F x, y , z , w 2 z , Fw 5 y 20 w 2x 5 y 20 w cos xy sin yz wz 20 ww wx Fx Fw y sin xy z ww wy Fy Fw x sin xy z cos yz z ww wz Fz Fw y cos zy w z © 2010 Brooks/Cole, Cengage Learning 208 Chapter 13 42. F x, y, z , w Functions of Several Variables w x y y z 1 2 ww wx Fx Fw 1 x y 2 1 ww wy Fy Fw 1 x y 2 ww wz Fz Fw 2 1 x y 2 1 2 0 1 y z 2 1 2 2 1 x y 2 1 y z 1 y z xy 43. (a) f x, y x2 y2 § t¨ ¨ © tx ty f tx, ty 2 tx ty 2 · ¸ x y ¹¸ xy 2 tf x, y 2 Degree: 1 § y3 x¨ 2 ¨¨ 2 © x y (b) xf x x, y yf y x, y 32 · § x3 ¸ y¨ ¨¨ 2 2 ¸¸ ¹ © x y 32 · ¸ ¸¸ ¹ xy x y2 2 1 f x, y x3 3xy 2 y 3 44. (a) f x, y f tx, ty tx 3 3 tx ty Degree: 3 (b) xf x x, y yf y x, y ex 45. (a) f x, y ty 3 t 3 x3 3xy 2 y 3 t 3 f x, y x 3x 2 3 y 2 y 6 xy 3 y 2 3x3 9 xy 2 3 y 3 3 f x, y y etx ty f tx, ty 2 ex y f x, y Degree: 0 §1 · § x · x¨ e x y ¸ y ¨ 2 e x y ¸ y y © ¹ © ¹ (b) xf x x, y yf y x, y 0 x2 46. (a) f x, y x y2 2 tx 2 § t¨ ¨ © 2 tx f tx, ty ty 2 · ¸ x y ¸¹ x2 2 2 tf x, y Degree: 1 ª 3 º ª x 2 xy 2 » x2 y x« y« 3 2 « x2 y 2 » « x2 y2 ¬ ¼ ¬ (b) xf x x, y yf y x, y 47. dw dt ww dx ww dy wx dt wy dt At t 2, x dw So, dt 4, y wf dg wf dh wx dt wy dt 5 and f y 4, 3 3, f x 4, 3 5 1 7 6 47 º » x4 x2 y 2 ¼ x2 y2 3 2» 48. ww ws 7. ww wt 32 x2 x2 y 2 x2 y 2 ww wx ww wy wx ws wy ws wf wg wf wh wx ws wy ws ww wx ww wy wx wt wy wt wf wg wf wh wx wt wy wt x2 32 x2 y2 f x, y 5 3 7 5 50 5 2 7 8 66 © 2010 Brooks/Cole, Cengage Learning Section 13.5 dw dt ww dx ww dy Page 925 wx dt wy dt ww 50. ws ww wt ww wx ww wy wx ws wy ws ww wx ww wy Page 925 wx wt wy wt 49. 51. wz wx f x x, y , z f z x, y , z wz wy f y x, y , z f z x, y , z 2t , z et wf dx wf dy wf dz wx dt wy dt wz dt df dt (a) t2, y xyz , x 209 yz 2t xz 2 xy e t 4t 2e t 2t 2e t 2t 3e t (b) f df dt t 2 2t e t 2t 2e t 3 t 2t 3e t 2t 3e t 6t 2e t 2t 2e t 3 t The results are the same. S r 2h dV dt S dS dt V dV dt S dS dt § © S ¨ 2rh dr dh · r2 ¸ dt dt ¹ dr dh º ª r » 2S « 2r h dt dt ¼ ¬ 1 2 Sr h 3 1 § dr dh · S ¨ 2rh r 2 ¸ 3 © dt dt ¹ ª§ dT dt A dA dt S 12 ª¬2 36 6 12 4 º¼ 2S ª¬ 24 36 6 12 4 º¼ 1 ª S 2 12 36 6 12 3 ¬ · dr 2r ¸ r h ¹ dt r2 S «¨ r 2 h 2 ¬«© ª§ S «¨ 122 362 ¬«© ª§ T dr dh · r ¸ dt dt ¹ 4608S in.3 min 2 4 º ¼ 624S in.2 min 1536S in.3 min S r r 2 h 2 S r 2 Surface area includes base. ¬© 55. pV § © S r ¨ 2h 2S r r h S «¨12 10 56. 52. f x, y, z f x x, y f y x, y dy dx 53. V 54. Chain Rules for Functions of Several Variables 2 2 dh º » r h dt ¼» rh 2 · 2 12 ¸ 6 12 36 ¹ 144 2 2 º 12 · 36 4 » ¸ 6 144 10 ¹ 10 ¼ 2 º 4 » 12 36 ¼» 36 12 2 2 648S 144S in.2 min 10 36S 20 9 10 in.2 min 5 mRT 1 pV mR dV º 1 ª dp V p » mR «¬ dt dt ¼ 1 bh 2 T ·§ T· § ¨ x sin ¸¨ x cos ¸ 2 ¹© 2¹ © wA dx wA dT wx dt wT dt x sin T x2 sin T 2 b 2 dx x 2 dT cos T 2 dt dt S ·§ 1 · 62 § S ·§ S · § 6¨ sin ¸¨ ¸ ¨ cos ¸¨ ¸ 4 ¹© 2 ¹ 2© 4 ¹© 90 ¹ © 3 2 S 2 2 m hr | 2.566 m 2 h 2 10 x h θ 2 x © 2010 Brooks/Cole, Cengage Learning 210 57. Chapter 13 I dI dt 58. V dV dt Functions of Several Variables 1 m r12 r22 2 1 ª dr1 dr º 2r2 2 » m 2r1 2 «¬ dt dt ¼ S m ª¬ 6 2 8 2 º¼ 28m cm 2 sec r 2 rR R 2 h 3 Sª 3 «¬ 2r R h dr dR dh º r 2R h r 2 rR R 2 dt dt dt »¼ Sª ª2 15 25º¼ 10 4 ª¬15 2 25 º¼ 10 4 ª 15 ¬ 3 «¬¬ S 2 2 15 25 25 º 12 »º ¼ ¼ 19,500 3 6,500S cm3 min S dS dt S Rr ­ª ° °«¬ ¯ S ®« Rr R r 2 2 h2 R r h R r R r ­ª ° °«¬ ¯ S ®« R r h2 R r 25 15 2 2 2 º ª » dr « » « h 2 ¼ dt ¬ 25 15 25 15 102 25 15 2 2 R r h2 R r Rr 2 º » dR » h 2 ¼ dt ½ dh ° ¾ h 2 dt °¿ 25 15 ª « « ¬ R r 102 25 15 2 º »4 » 102 ¼ 25 15 25 15 2 º » 4 25 15 » 102 ¼ ª « « ¬ 10 25 15 2 º½ ° 12 »¾ »° 102 ¼¿ 320 2S cm 2 min 59. w f x, y x y u v vu ww wu ww wv ww ww wu wv 60. w ww wx ww wy ww ww wx wy ww dx ww dy wx du wy du ww dx ww dy wx dv wy dv ww ww wx wy ww ww wx wy 0 x y sin y x x y cos y x sin y x x y cos y x sin y x 0 © 2010 Brooks/Cole, Cengage Learning Section 13.5 61. w r cos T , y f x, y , x ww ww cos T sin T wx wy ww wT ww ww r sin T r cos T wx wy ww wr ww sin T wT ww ww r cos T sin T wr wT ww r wx ww wx ww r sin T wr ww cos T wT ww ww r cos 2 T r sin T cos T wx wy ww ww r sin 2 T r sin T cos T wx wy ww r cos 2 T r sin 2 T wx ww ww r cos T sin T wr wT ww ww sin T cos T First Formula wr wT r ww ww r sin T cos T r sin 2 T wx wy ww ww r sin T cos T r cos 2 T wx wy r cos T r sin T ww ww cos T wr wT r 2 1 § ww · § ww · (b) ¨ ¸ 2 ¨ ¸ r r w © ¹ © wT ¹ ww r sin 2 T r cos 2 T wy ww wy ww ww r sin T cos T wr wT ww wy ww ww cos T sin T wr wT r 2 Second Formula 2 2 2 arctan y ,x x § ww · ww ww sin T cos T ¨ ¸ cos 2 T wx wy © wy ¹ r cos T , y arctan tan T T for ww y , 2 x y wy x ww , 2 x y wr 0, 2 2 § ww · § ww · ¨ ¸ ¨ ¸ © wx ¹ © wy ¹ 2 § ww · § 1 ·§ ww · ¨ ¸ ¨ 2 ¸¨ ¸ © wr ¹ © r ¹© wT ¹ 2 § ww · § ww · So, ¨ ¸ ¨ ¸ © wx ¹ © wy ¹ 2 2 2 y2 x y 2 2 0 1 1 r2 2 2 § ww · § ww · ¨ ¸ ¨ ¸ x w © ¹ © wy ¹ 2 r sin T § r sin T · arctan ¨ ¸ © r cos T ¹ ww wx 2 § ww · ww ww § ww · § ww · 2 sin T cos T ¨ ¸ sin 2 T ¨ ¸ sin 2 T ¨ ¸ cos T 2 x x y y w w w w © ¹ © wx ¹ © ¹ 2 62. w 211 r sin T ww wr (a) Chain Rules for Functions of Several Variables 2 2 S 2 ww wT x y S 2 1 x2 2 T 2 2 1 x2 y 2 1 r2 1 r2 2 1 § ww · § ww · ¨ ¸ 2¨ ¸ . r © wT ¹ © wr ¹ © 2010 Brooks/Cole, Cengage Learning 212 Chapter 13 wu wv and wy wy wu wx 63. Given Functions of Several Variables wv , x wx wu wr wu wu cos T sin T wx wy wv wT wv wv r sin T r cos T wx wy So, wu wr r sin T . wv wv cos T sin T wy wx ª wv º wv r « cos T sin T » y x w w ¬ ¼ 1 wv . r wT wv wr wv wv cos T sin T wx wy wu wT wu wu r sin T r cos T wx wy So, r cos T and y wv wr wu wu cos T sin T wy wx ª wu º wu r « cos T sin T » wx ¬ wy ¼ 1 wu . r wT 64. Note first that wu wx wv wy wu wy wu wr x y cos T 2 sin T x y2 x y2 wv wT x y r cos T r sin T 2 x y2 x y2 So, x x2 y 2 wv wx y . x2 y2 r cos 2 T r sin 2 T r2 2 2 wu wr r 2 sin 2 T r 2 cos 2 T r2 1 1 wv . r wT r sin T cos T r sin T cos T r2 wv wr x y cos T 2 sin T x2 y2 x y2 wu wT x y r sin T 2 r cos T 2 x y x y2 So, 1 r 2 wv wr 0 r 2 sin T cos T r 2 sin T cos T r2 0 1 wu . r wT Section 13.6 Directional Derivatives and Gradients 1. f x, y v f x , y 3 x 4 xy 9 y 3 4 i j 5 5 3 4 y i 9 4x j f 1, 2 5i 5 j v v 3 4 i j 5 5 u Du f 1, 2 2. f 1, 2 u f x, y f x , y 3 x 2i 3 y 2 j f 4, 3 48i 27 j u Du f 4, 3 3 4 1 2 i j 2 x3 y 3 , v v v 2 i 2 2 j 2 f 4, 3 u 24 2 27 2 2 21 2 2 © 2010 Brooks/Cole, Cengage Learning Section 13.6 3. f x, y v xy 1 i 2 f x , y h x, y 8. yi xj h 2 xe Du f 0, 2 1 i 2 ye h 0, 0 u x2 y 2 j 0 x2 y 2 z 2 9. f x, y, z f 0, 2 u x2 y2 0 Du h 0, 0 1 3 i j 2 2 213 x2 y 2 i j h 0, 0 2i v v e v 3j f 0, 2 u Directional Derivatives and Gradients 3 i jk 3 2 xi 2 yj 2 zk f x , y , z v x y j 1 x i 2j y y f x, y 4. v f x , y f 1, 1 f 1, 1, 1 u v v Du f 1, 1, 1 j f 1, 1 u Du f 1, 1 v h § S· h¨1, ¸ © 2¹ ei u v v § S· Du h¨1, ¸ © 2¹ 6. g x, y u h x, y , z h x i 2 1 xy 2 h 2, 1, 1 j u j v v Du h 2, 1, 1 j Du g 1, 0 7. 11. v y g x, y v g g 3, 4 u Du g 3, 4 g 1, 0 u 1 12. x y 2 h x, y , z v x2 y2 h x, y, z 3i 4 j x 2 y i x y2 2 3 4 i j 5 5 v 3 4 i j v 5 5 g 3, 4 u f 1, 2, 1 u e j g 1, 0 i 3k 1 2i j k 6 v v 2 3 6 6 arccos xy 1 xy y zi x z j y xk Du f 1, 2, 1 i § S· h¨1, ¸ u © 2¹ g x , y u f 1, 2, 1 e x sin yi e x cos yj j h 4, 1, 1 u 7 25 3 2i j k f x, y, z i v 2 3 f 1, 1, 1 u xy yz xz 10. f x, y, z 1 e x sin y h x, y v 3 3 3 i j k 3 3 3 v v i j u 5. 2i 2 j 2k Du h 4, 1, 1 6 6 xyz 2, 1, 2 yzi xzj xyk i 2 j 2k v v 2 1 2 i j k 3 3 3 h 2, 1, 1 u 8 3 x arctan yz 1, 2, 1 arctan yzi xz 1 yz 2 j xy 1 yz 2 k S i 2 j 2k 4 v 1 2 1 , , v 6 6 6 h 4, 1, 1 u S 8 S 8 4 6 24 6 © 2010 Brooks/Cole, Cengage Learning 214 Chapter 13 Functions of Several Variables x2 y 2 13. f x, y u f 1 1 i j 2 2 2 xi 2 yj Du f f u 14. f x, y y x y u f cos x y 18. f x, y S i Sj 2 sin x y i sin x y j v f 2 x 2 2 y 2 2 x y Du f 3 1 i j 2 2 y x y 2 f u i x x y u f f u Du f 3y 2x y 1 f x, y 15. 2x y 2 At 0, S , Du f j 2 2 x 2x y g 3y x 1 3 i j 2 2 2 cos 2 x y i cos 2 x y j g Du g 3 cos 2 x y 2 v f u 2 xi 6 yj, f 1, 1 v v Du f 1, 1 2i 6 j 22. 3 4 i j 5 5 f 1, 1 u 6 24 5 5 6 23. 8 5 1 i jk x y z i j k. 1 3i 3 j k 19 7 19 h u 7 19 19 3x 5 y 2 1 21. f x, y 3i 4 j 4 4 5 5 3i 3 j k v v Du h 3x 1 1 2 i j 5 5 At 1, 0, 0 , h x2 3 y 2 17. f x, y v h u ey 2 4i 2 j 8k. ln x y z 20. h x, y, z 1 3 j i 2 2 e y i xe y j 1 3 y xe ey 2 2 ye z i xe z j xye z k g u Du g xe y u 2i 4 j v v u cos 2 x y 0. At 2, 4, 0 , g sin 2 x y 5 sin x y 5 xye z v 2 §2 3· ¨¨ ¸¸ cos 2 x y 2 © ¹ 16. g x, y 1 2 sin x y sin x y 5 5 1 sin x y 5 19. g x, y, z Du f 1 2 i j 5 5 v v u f x, y 3i 10 yj f 2, 1 3i 10 j g x, y 2 xe y x g x, y § 2y y ¨ e © x g 2, 0 2i 2 j z x · 2e y x ¸i 2e y x j ¹ ln x 2 y z x, y 2x 1 i 2 j x2 y x y z 2, 3 4i j © 2010 Brooks/Cole, Cengage Learning Section 13.6 cos x 2 y 2 z 24. z x , y 32. f x, y 2 x sin x 2 y 2 i 2 y sin x 2 y 2 j z 3, 4 f x , y 6 sin 25i 8 sin 25 j | 0.7941i 1.0588 j w x , y , z 6 xi 10 yj 4 zk w 1, 1, 2 6i 10 j 8k w x , y , z 33. x sec2 y z k w 4, 3, 1 tan 2i 4 sec 2 j 4 sec 2k 2 2 JJJG 27. PQ 2 2 i j, u i j 2 2 g x , y 2 xi 2 yj, g 1, 2 g u JJJG 28. PQ f 2 2 2 4i 2 j, u f u 6i 8 j 4 5 5 tan yi x sec 2 yj § S· h¨ 2, ¸ © 4¹ 17 h x, y 1 4 x tan y i 4j y cos x y y sin x y i § 3 3S · 3S i ¨¨ ¸¸ j 6 6 © ¹ § S· h¨ 0, ¸ © 3¹ 3S 2 9 6 3S 3S 2 36 36 3 2S 2 2 3S 3 6 35. g x, y i 2 5 f u Du f § S· h¨ 0, ¸ © 3¹ y f 0, 0 2 5 5 ye x i e x j g 0, 5 5i j 26 S 1 2 i S j, u i j 2 5 5 2 cos 2 x cos yi sin 2 x sin yj f S , 0 Du f ye x g x, y g 0, 5 31. 1 1 4 16 2 1 i j 5 5 e cos xi e sin xj f 1 1 i j 2 4 § S· h¨ 2, ¸ © 4¹ h x , y 3 2 12 8 5 5 2i j, u y JJJG 30. PQ 1 1 x i j 2 y 1 y 1 ¬ªcos x y y sin x y º¼ j Du f f 34. 2 1 i j 5 5 6 xi 2 yj, f 1, 4 JJJG 29. PQ 2i 4 j h x, y h x, y tan y z i x sec y z j 2 215 x y y 1 f 0, 1 x tan y z w 26. f 0, 1 3x 2 5 y 2 2 z 2 w 25. Du g Directional Derivatives and Gradients 36. 2i f u f x, y f x , y 2 5 2 5 5 x 2 2 xy 2 x 2 y i 2 xj f 1, 0 2i 2 j f 1, 0 2 2 37. g x, y ln 3 x 2 y 2 1 ln x 2 y 2 3 g x, y º 1 ª 2x 2y i 2 j 3 «¬ x 2 y 2 x y 2 »¼ g 1, 2 1§ 2 4 · ¨ i j¸ 3© 5 5 ¹ g 1, 2 2 5 15 x2 y2 z 2 f x, y , z 1 f x , y , z x y2 z2 2 xi yj zk 1 i 4 j 2k 21 f 1, 4, 2 f 1, 4, 2 2 i 2j 15 1 © 2010 Brooks/Cole, Cengage Learning 216 Chapter 13 Functions of Several Variables 1 38. w 1 x y z 2 2 1 w 1 x y z 2 w 0, 0, 0 2 3 xi yj zk w (b) 0 v 9 16 xe f x , y , z e i xze j xye k f 2, 0, 4 i 8j f 2, 0, 4 65 3 9 16 u 3 4 i j 5 5 Du f f u v i 3j v 10 u 1 i 10 y x and 3 2 § 1· § 1· ¨ ¸ cos T ¨ ¸ sin T . © 3¹ © 2¹ 3 v yz (d) For exercises 41–46, f x , y f u Du f x y 3 2 (3, 2, 1) 45. 6 y 5 1 2 5 5 1 5 11 10 60 3 j 10 11 6 10 §1· §1· ¨ ¸ i ¨ ¸ j © 3¹ © 2¹ 44. f z 3 5 v 3i 4 j yz yz 5 2 12 5 1 2 5 5 f u (c) yz 3 4 i j 5 5 Du f 33 f x, y , z 3 3i 4 j i 4 j 4k w 2, 1, 1 41. f x, y v u w 2, 1, 1 §1· 1 §1· 1 ¨ ¸ ¨ ¸ © 3¹ 2 © 2 ¹ 2 f u Du f y 2 z 2i 2 xyz 2 j 2 xy 2 zk DT f x , y § 1 · ¨ ¸i j © 2¹ u xy 2 z 2 w 40. 2 0 w 0, 0, 0 39. 43. (a) 2 1 1 9 4 f 1 13 6 9 x 46. 42. (a) DS 4 f 3, 2 §1· 2 § 1 · 2 ¨ ¸ ¨ ¸ © 3¹ 2 © 2¹ 2 (b) D2S 3 f 3, 2 § 1 ·§ 1 · § 1 · 3 ¨ ¸¨ ¸ ¨ ¸ © 3 ¹© 2 ¹ © 2 ¹ 2 (c) D4S 3 f 3, 2 3· § 1 ·§ 1 · § 1 ·§ ¨ ¸¨ ¸ ¨ ¸¨¨ ¸ © 3 ¹© 2 ¹ © 2 ¹© 2 ¸¹ 5 2 12 23 3 12 1 1 i j 3 2 1 2i 3j 13 f f f So, u 13 3i 2 j and 1 f u Du f 3, 2 23 3 12 (d) DS 6 f 3, 2 § 1 ·§ 3 · § 1 ·§ 1 · ¨ ¸¨¨ ¸ ¨ ¸¨ ¸ © 3 ¹© 2 ¸¹ © 2 ¹© 2 ¹ 32 3 12 0. f is the direction of greatest rate of change of f. So, in a direction orthogonal to f , the rate of change of f is 0. 47. (a) In the direction of the vector 4i j (b) f 1 10 2x 3y i f 1, 2 1 10 4 i 1 10 1 10 3 x 2 y j 1j 52 i 1 j 10 Same direction as in part a (c) f 2i 5 1 j, the 10 direction opposite that of the gradient © 2010 Brooks/Cole, Cengage Learning Section 13.6 48. (a) In the direction of the vector i j (b) f 1 1 1 y i 2 2 x 2 xj y 4 Directional Derivatives and Gradients 1 i 2 x xj 4y 1 1 i j 2 2 f 1, 2 8y 1 x2 y 2 50. (a) f x, y y 2 2 2 1 x2 y2 y2 4 y 4 x2 1 4 Same direction as in part a x2 3 Circle: center: 0, 2 , radius: 1 1 i j, the direction opposite that of the 2 2 (c) f 16 xy (b) f 49. f x, y x 2 y 2 , 4, 3, 7 (a) 2 1 x2 y 2 gradient f i 3 8 8x2 8 y2 1 x2 y 2 2 j 3 i 2 3, 2 z 217 y 4 x 3 y 2 f x, y u (b) Du f x, y 2 x cos T 2 y sin T 1 x 8 cos T 6 sin T Du f 4, 3 −2 −1 1 2 (c) The directional derivative of f is 0 in the direction r j. Du f (d) 12 z 8 6 4 −6 θ π 2π −4 −8 − 12 6 x y Generated by Mathematica −6 (c) Zeros: T | 2.21, 5.36 These are the angles T for which Du f 4, 3 equals zero. (d) g T 51. f x, y c 8 cos T 6 sin T Du f 4, 3 gc T 6, P f x , y 8 sin T 6 cos T 6 2x 3y 0, 0 2i 3 j 6 2x 3y Critical numbers: T | 0.64, 3.79 6 2x 3 y 0 These are the angels for which Du f 4, 3 is a f 0, 0 2i 3j maximum 0.64 and minimum 3.79 . (e) f 4, 3 2 4 i 2 3 j 64 36 10, the maximum value of Du f 4, 3 , at T | 0.64. x2 y 2 (f ) f x, y f 4, 3 7 8i 6 j is perpendicular to the level curve at 4, 3 . y 52. f x, y c x2 y2 25 f 3, 4 6i 8 j c 3, P f x , y x 2 4 6 −2 −4 3, 4 2 xi 2 yj 53. f x, y 2 −6 −4 25, P f x , y 6 4 x2 y2 xy xy 1, 3 yi xj 3 f 1, 3 3i j −6 Generated by Mathematica © 2010 Brooks/Cole, Cengage Learning 218 Chapter 13 1 ,P 2 4 2 x y2 x2 2 x2 y2 i −2 2 xy x2 y 2 2 x2 y2 2 x 0 −2 −4 57. f x, y 3x 2 2 y 2 (a) f 6 xi 4 yj (b) 4x y (a) f x, y 16i j 16i j 257 curve 3x 2 2 y 2 1 16i j is a unit vector normal to the level 257 curve 4 x y 2 y 1 f 4, 1 tangent line 1 x 1 2 3 −2 −3 58. f x, y 9x2 4 y2 (a) f 18 xi 8 yj f 2, 1 5 10 15 (b) i 2j 5 1 i 2 j is a unit vector normal to the level 5 curve x y 2 1360 4 85 1 9i 2 j is a unit vector normal to the level 85 i 2 yj f 4, 1 36i 8 j f 2, 1 x y2 (a) f x, y 1 2 2 −3 −2 −1 −10 56. f x, y 3 x −5 x 1 3x 2 (d) 16 x 22 Tangent line −15 −10 −5 1 at 1, 1 . y y (d) 3 2 y 16 x 2 y 2 13 (c) The vector 2i 3 j is tangent to the level curve. 3 Slope . 2 6 at 2, 10 . (c) The vector i 16 j is tangent to the level curve. 16 Slope 16 1 y 10 36 16 1 3i 2 j is a unit vector normal to the level 13 8 xi j f 2, 10 6i 4 j f 1, 1 2 55. f x, y 6 (4, −1) f 1, 1 1 j 2 f 1, 1 2 j 1 2 x 2 x y2 (b) y 1, 1 f x , y (b) (d) x x2 y2 54. f x, y c Functions of Several Variables 3 at 4, 1 . (c) The vector 2i j is tangent to the level curve. 1 Slope . 2 1 y 1 x 4 2 1 Tangent line y x 1 2 40 at 2, 1 . curve 9 x 2 4 y 2 (c) The vector 2i 9 j is tangent to the level curve. 9 Slope . 2 9 y 1 x2 2 9 y x 10 Tangent line 2 y (d) 4 2 x −4 4 −2 (2, −1) −4 © 2010 Brooks/Cole, Cengage Learning Section 13.6 59. See the definition, page 934. Directional Derivatives and Gradients x x2 y 2 65. T 60. Let f x, y be a function of two variables and 0q, then Du f (b) If T 90q, then Du f x y 2 wf . wx (a) If T y2 x2 T cos T i sin T j a unit vector. u h z i 2 xy x y2 2 2 j 1 7i 24 j 625 0.002 xi 0.008 yj h 500, 300 62. 2 5000 0.001x 2 0.004 y 2 66. h x, y 61. See the definition, pages 936 and 937. 2 7 24 i j 625 625 T 3, 4 wf . wy 219 5h i 2.4 j or 5i 12 j 3 67. 3 x 18 00 1671 y 5 P B 1994 A 63. The gradient vector is normal to the level curves. See Theorem 13.12. 68. The wind speed is greatest at B. 9 x 2 y 2 and 64. f x, y DT f x, y 00 18 2 x cos T 2 y sin T 69. T x, y 2 x cos T y sin T dx dt 9 x y 2 (a) f x, y 2 10 9 dy dt 4 x C1e 4t xt z 400 2 x 2 y 2 , P x0 yt 10 C1 10e4t xt yt 10, 10 2 y C2e 2t y0 C2 10e 2t (1, 2, 4) x 3 3 y2 y x (b) DS (c) DS (d) 3 4 § 2 2¨¨ © 2 f 1, 2 §1 2¨ ©2 f 1, 2 f 1, 2 2i 4 j f 1, 2 4 16 (e) f 1, 2 · 3¸ ¹ 2 1 2 3 Therefore, u 4 20 2 5 1 i 2 j 5 1 dx dt 100e 4t y2 t 10 x 100 x 2 2 y 2 , P 70. T x, y xt 2i 4 j f 1, 2 f 1, 2 Du f 1, 2 · 2 ¸¸ ¹ y2 10 dy dt 2 x C1e 2t x0 xt 4e 2t 3x 2 16 e 4t yt 3 C1 yt y u 4, 3 4 y C2e 4t y0 C2 3e 4t 3 2 x 16 5 2i j and f 1, 2 u 0. © 2010 Brooks/Cole, Cengage Learning 220 Chapter 13 Functions of Several Variables 71. (a) 72. (a) z D 500 400 300 1 2 1 x x 6 6 y 2 y (b) T x, y T 3, 5 400e x2 y 2 ¬ª x i 400e 7 ª¬3i 250 30 x 2 50 sin S y 2 (b) The graph of D 1 jº 2 ¼ would model the ocean floor. 1 jº 2 ¼ 250 30 1 50 sin (c) D 1, 0.5 There will be no change in directions perpendicular to the gradient: r i 6 j S 4 | 315.4 ft wD wD 60 x and 1, 0.5 60 wx wx wD Sy (e) and 25S cos 2 wy wD S 1, 0.5 25S cos | 55.5 4 wy (d) (c) The greatest increase is in the direction of the gradient: 3i 12 j (f ) D §S y · 60 xi 25S cos¨ ¸ j © 2 ¹ D 1, 0.5 60i 55.5 j 73. True 74. False 2 ! 1 when u Du f x, y S· S· § § ¨ cos ¸i ¨ sin ¸ j. 4¹ 4¹ © © 75. True 76. True z2 C. Then f x, y, z e x cos yi e x sin yj zk. 2 78. We cannot use Theorem 13.9 because f is not a differentiable function of x and y. So, we use the definition of directional derivatives. e x cos y 77. Let f x, y, z Du f x, y Du f 0, 0 If f 0, 0 lim t o0 f x t cos T , y t sin T f x, y t ª § t · § t ·º f «0 ¨ ¸, 0 ¨ ¸» f 0, 0 © 2¹ © 2 ¹¼ lim ¬ t o0 t 2, then Du f 0, 0 § f ¨0 lim © t 2 t o0 ,0 t ª § t ·§ t · º «4 » 1 ¨ 2 ¸¨ 2 ¸ lim « © 2 ¹© 2 ¹ » t o0 t « § t · §t · » « ¨ ¸¨ ¸ » «¬ © 2 ¹ © 2 ¹ »¼ t · ¸2 2¹ 1 ª 2t 2 º lim « 2 » t o0 t t ¬ ¼ º 1 ª 2t 2 lim « 2 2» t o0 t t ¬ ¼ lim t o0 2 which does not exist. t 0 which implies that the directional derivative exists. 79. (a) f x, y 3 xy is the composition of two continuous functions, h x, y xy and g z z1 3 , and therefore continuous by Theorem 13.2. © 2010 Brooks/Cole, Cengage Learning Section 13.7 (b) f x 0, 0 f y 0, 0 f 0 'x, 0 f 0, 0 'x lim f 0, 0 'y f 0, 0 'y 'y o 0 S cos T i sin T j, T z 0, Let u Du f 0, 0 lim t o0 2 ,S, 221 13 lim 'x o 0 Tangent Planes and Normal Lines lim 0 0 'x 'x lim 0 0 'y 'y 'x o 0 0 13 'y o 0 0 S . Then 2 f 0 t cos T , 0 t sin T f 0, 0 t 3 lim t o0 t 2 cos T sin T t 3 lim t o0 cos T sin T , does not exist. t1 3 z (c) 3 −2 −1 2 y 2 x Section 13.7 Tangent Planes and Normal Lines 1. F x, y, z 3 x 5 y 3z 15 0 3x 5 y 3z 2. F x, y , z 7. F x, y , z 15 Plane x 2 y 2 z 2 25 F x2 y 2 z 2 4x2 9 y 2 4 z 2 4. F x, y , z 5. F x, y, z F n 6. F x, y, z F n 2 3 x 4 y 12 z F F 0 F 3, 4, 5 0 n 9 16 144 x2 y2 z F x, y , z 8. 13 F F 3 4 12 i j k 13 13 13 x x y 2 2 i y x y2 2 jk 3 4 i jk 5 5 5 §3 4 · ¨ i j k¸ 5 5 2©5 ¹ 1 3i 4 j 5k 5 2 2 3i 4 j 5k 10 x y z 4 9. F x, y, z i jk 1 i jk 3 2 6 1 1 2 i j k 6 6 6 F x, y, z 0 Hyperbolic paraboloid 3i 4 j 12k , F F F 4 z 2 Elliptic cone 16 x 9 y 36 z 16 x 2 9 y 2 36 z F F n 4 4 16 0 4x2 9 y 2 2 2i 2 j 4k F 1, 1, 2 25 Sphere, radius 5, centered at origin. 3. F x, y , z 2 xi 2 yj 2 zk F 1, 1, 2 0 x2 y2 z 2 6 3 i jk 3 F x3 z 3x 2i k F 2, 1, 8 12i k F 2, 1, 8 145 n F F 1 12i k 145 © 2010 Brooks/Cole, Cengage Learning 222 Chapter 13 F x, y , z 10. Functions of Several Variables x2 y4 z F x , y , z 2 xy 4i 4 x 2 y 3 j k F 1, 2, 16 32i 32 j k F F n F x, y , z F x, y , z F x , y , z F 2, 1, 2 F F n 12. F x, y, z F 1 32i 32 j k 2049 n F 1, 1, 1 n F F F x, y , z 13. F x, y, z F 1, 4, 3 n F F F x, y , z 14. 2 § 1 · ¨ i 3 3j k ¸ 113 © 2 ¹ 1 i 6 3j 2k 113 113 i 6 3j 2k 113 4i 3 j 12k F x , y , z 2 cos x y i cos x y j k §S S 3· F ¨ , , ¸ © 3 6 2¹ x y y z 2 xz 4 2 3 sin x y z 2 F x, y , z 16. 1 4i 3j 12k 13 3 n 4i 5 j 7k 3 3 i jk 2 2 · 2 § 3 3 i j k ¸¸ ¨¨ 2 10 © 2 ¹ 1 3i 3 j 2k 10 F F 3 10 1 4i 5 j 7k 3 10 10 10 § x · ln ¨ ln x ln y z ¸ © y z¹ 1 1 1 i j k x y z y z 17. f x, y i jk 1 i jk 3 ze x 2 y2 i 2 yze x F x, y , z x2 y2 3 z Fx x, y, z 2x F 2, 2, 3 12i 12 j k 1 12i 12 j k 17 j ex 2 y2 Fy x, y, z 4 Fy 2, 1, 8 4x 2 y z 18. 2 y2 3 j 2k 2y 2 k f x, y F x, y , z 1 Fz x, y, z Fz 2, 1, 8 4 x 2 2 y 1 1z 8 3 i jk 3 3 2 y2 3i x 2 y 2 3, 2, 1, 8 Fx 2, 1, 8 2 xze x F F F F 2 xi 3 j 3z 2k F x , y , z n 1 i 3 3j k 2 x2 3 y z3 9 2 xy 3 2 z 3 i 3 x 2 y 2 2 yz j 6 xz 2 y 2 k F 1, 1, 1 sin yi x cos yj k § S · F ¨ 6, , 7 ¸ © 6 ¹ 2049 32i 32 j k 2049 11. x sin y z 4 F x, y , z 15. 1 0 2 y , 1, 2, 2 x y z x y x2 Fx x, y, z Fx 1, 2, 2 2 Fy x, y, z 1 x Fy 1, 2, 2 1 2 x 1 y 2 z 2 0 2 x y z 2 0 2x y z 2 Fz x, y, z 1 Fz 1, 2, 2 1 © 2010 Brooks/Cole, Cengage Learning Section 13.7 x2 y2 z F x, y , z x Fx x, y, z x y 2 0 3x 4 y 5 z 0 G x, y , z y x2 Gx x , y , z 1 Fz 3, 4, 5 1 4 5 0 y x2 y 2 1 y2 x2 Gx 1, 0, 0 G y x, y , z 0 G y 1, 0, 0 1x 1 y2 x2 1 Gz x , y , z 1 Gz 1, 0, 0 1 x 2 y 2 , 1, 1, 2 g x, y x2 y 2 z Gx x , y , z 2x G y x, y , z 2y Gz x , y , z 1 Gx 1, 1, 2 2 G y 1, 1, 2 2 Gz 1, 1, 2 1 2 x 1 2 y 1 1z 2 2x 2 y z 22. z x x2 y2 0 G x, y , z 0 2 x 2 2 xy y 2 , 1, 2, 1 F x, y , z x 2 2 xy y 2 z Fx x, y, z 2x 2 y Fx 1, 2, 1 2 Fy x, y, z Fy 1, 2, 1 2 x 1 2 y 2 z 1 2 x 2 y z 1 2x 2 y z 23. Fz x, y, z y arctan , 1, 0, 0 x y arctan z x g x, y 21. x y2 2 Fy 3, 4, 5 3 4 x 3 y 4 z 5 5 5 3x3 4 y 4 5z 5 y z y Fy x, y, z 2 3 5 Fx 3, 4, 5 20. 223 x 2 y 2 , 3, 4, 5 f x, y 19. Tangent Planes and Normal Lines f x, y 2 2x 3 y, 3, 1, 1 F x, y , z 2 2x 3 y z Fx x, y , z 23 , Fy x, y, z 2 x 2 y 2 Fz x, y, z Fz 1, 2, 1 1 1 0 0 1 1, 23 x 3 y 1 z 1 0 23 x y z 2 0 2 x 3 y 3z 6 Fz x, y, z 1 © 2010 Brooks/Cole, Cengage Learning 224 Chapter 13 § S · e x sin y 1 , ¨ 0, , 2 ¸ © 2 ¹ z 24. Functions of Several Variables F x, y , z e x sin y 1 z Fx x, y , z e x sin y 1 § S · Fx ¨ 0, , 2 ¸ © 2 ¹ 2x z § S · Fy ¨ 0, , 2 ¸ © 2 ¹ 2 ln x 2 y 2 , 3, 4, ln 5 H x, y , z ln x2 y 2 z x x2 y2 H x x, y , z § S · Fz ¨ 0, , 2 ¸ © 2 ¹ 0 1 1 1 ln x 2 y 2 z 2 H y x, y , z 3 25 H x 3, 4, ln 5 H y 3, 4, ln 5 3 4 x 3 y 4 z ln 5 25 25 3 x 3 4 y 4 25 z ln 5 h x, y H x, y , z 4 25 H z x, y , z 1 H z 3, 4, ln 5 1 0 25 1 ln 5 § S 2· cos y, ¨¨ 5, , ¸¸ 4 2 © ¹ cos y z H x x, y , z 0 § S 2· H x ¨¨ 5, , ¸¸ 4 2 © ¹ 0 H y x, y , z § S 2· H y ¨¨ 5, , ¸¸ 4 2 © ¹ 2§ S· § 2· ¸ ¨ y ¸ ¨¨ z 2 © 4¹ © 2 ¸¹ 0 2 y z 2 2S 2 8 2 0 4 2 y 8z 27. x 2 4 y 2 z 2 F x, y , z y x2 y2 0 3x 4 y 25 z 26. Fz x, y, z 2 h x, y 25. e x cos y Fy x, y, z sin y 2 2 H z x, y , z § S 2· H z ¨¨ 5, , ¸¸ 4 2 © ¹ 1 1 2S 4 36, 2, 2, 4 x 2 4 y 2 z 2 36 Fx x, y, z 2x Fy x, y, z Fx 2, 2, 4 4 Fy 2, 2, 4 8y 16 4 x 2 16 y 2 8 z 4 0 x 2 4 y 2 2z 4 0 x 4 y 2z Fz x, y, z 2z Fz 2, 2, 4 8 18 © 2010 Brooks/Cole, Cengage Learning Section 13.7 28. x 2 2 z 2 F x, y , z x2 y 2 2z 2 2x Fy x, y, z 2 y Fz x, y, z 4z Fx 1, 3, 2 2 Fy 1, 3, 2 6 Fz 1, 3, 2 8 2 x 1 6 y 3 8 z 2 0 x 1 3 y 3 4 z 2 0 x 3 y 4z 0 29. xy 2 3 x z 2 8, 1, 3, 2 xy 2 3 x z 2 8 Fx x, y, z y2 3 Fy x, y, z 2 xy Fz x, y, z 2 z Fx 1, 3, 2 12 Fy 1, 3, 2 6 Fz 1, 3, 2 4 12 x 1 6 y 3 4 z 2 30. x 225 y 2 , 1, 3, 2 Fx x, y, z F x, y , z Tangent Planes and Normal Lines 0 12 x 6 y 4 z 22 6x 3y 2z 11 y 2 z 3 , 4, 4, 2 F x, y , z x 2 yz 3 y Fx x, y, z 1 Fy x, y, z 2 z 3 Fz x, y, z 2 y Fx 4, 4, 2 1 Fy 4, 4, 2 1 Fz 4, 4, 2 8 x 4 1 y 4 8 z 2 0 x y 8z 16 x y 8z 31. x y z 16 9, 3, 3, 3 F x, y , z x y z 9 Fx x, y, z 1 Fy x, y, z 1 Fz x, y, z 1 Fx 3, 3, 3 1 Fy 3, 3, 3 1 Fz 3, 3, 3 1 x 3 y 3 z 3 0 x y z 9 same plane! Direction numbers: 1, 1, 1 Line: x 3 y 3 z 3 32. x 2 y 2 z 2 9, 1, 2, 2 F x, y , z x2 y2 z 2 9 Fx x, y, z 2x Fy x, y, z 2y Fz x, y, z 2z Fx 1, 2, 2 2 Fy 1, 2, 2 4 Fz 1, 2, 2 4 Direction numbers: 1, 2, 2 Plane: x 1 2 y 2 2 z 2 Line: x 1 1 y 2 2 0, x 2 y 2 z 9 z 2 2 © 2010 Brooks/Cole, Cengage Learning 226 Chapter 13 Functions of Several Variables 33. x 2 y 2 z 9, 1, 2, 4 x2 y 2 z 9 F x, y , z Fx x, y, z 2x Fy x, y, z 2y Fz x, y, z 1 Fx 1, 2, 4 2 Fy 1, 2, 4 4 Fz 1, 2, 4 1 Direction numbers: 2, 4, 1 Plane: 2 x 1 4 y 2 z 4 Line: x 1 2 y 2 4 0, 2 x 4 y z 14 z 4 1 16 x 2 y 2 , 2, 2, 8 34. z 16 x 2 y 2 z F x, y , z Fx x, y, z 2 x Fy x, y, z 2 y Fz x, y, z 1 Fx 2, 2, 8 4 Fy 2, 2, 8 4 Fz 2, 2, 8 1 4 x 2 4 y 2 z 8 0 4 x 4 y z 4x 4 y z 24 24 Direction numbers: 4, 4, 1 x 2 y 2 Line: z 8 4 4 x 2 y 2 , 3, 2, 5 35. z x2 y 2 z F x, y , z Fx x, y, z 2x Fy x, y, z 2 y Fz x, y, z 1 Fx 3, 2, 5 6 Fy 3, 2, 5 4 Fz 3, 2, 5 1 6x3 4 y 2 z 5 0 6x 4 y z 5 Direction numbers: 6, 4, 1 Line: x 3 6 36. xy z y 2 4 z 5 1 0, 2, 3, 6 F x, y , z xy z Fx x, y, z Fy x, y, z y Fx 2, 3, 6 3 Fy 2, 3, 6 Direction numbers: 3, 2, 1 Plane: 3 x 2 2 y 3 z 6 Line: 37. xyz x 2 3 y 3 2 x 2 Fz x, y, z 1 Fz 2, 3, 6 1 0, 3x 2 y z z 6 1 10, 1, 2, 5 F x, y , z xyz 10 Fx x, y, z yz Fy x, y, z xz Fz x, y, z xy Fx 1, 2, 5 10 Fy 1, 2, 5 5 Fz 1, 2, 5 2 Direction numbers: 10, 5, 2 Plane: 10 x 1 5 y 2 2 z 5 Line: 6 x 1 10 y 2 5 0, 10 x 5 y 2 z 30 z 5 2 © 2010 Brooks/Cole, Cengage Learning Section 13.7 Tangent Planes and Normal Lines 227 ye 2 xy , 0, 2, 2 38. z F x, y , z ye 2 xy z Fx x, y, z 2 y 2e2 xy Fy x, y, z Fx 0, 2, 2 8 Fy 0, 2, 2 1 2 xy e 2 xy 1 8x0 y 2 z 2 0 8x y z 0 Fz x, y, z 1 Fz 0, 2, 2 1 Direction number: 8, 1, 1 Line: x 8 y 2 1 z 2 1 y § S· arctan , ¨1, 1, ¸ x © 4¹ y F x, y , z arctan z x y Fx x, y, z Fy x, y, z x2 y2 39. z 1 S· S· § § Fx ¨1, 1, ¸ Fy ¨1, 1, ¸ 4¹ 2 4¹ © © Direction numbers: 1, 1, 2 S· § Plane: x 1 y 1 2¨ z ¸ 4¹ © Line: x 1 1 40. y ln xz 2 F x, y , z 1 S· § Fz ¨1, 1, ¸ 4¹ © 1 0, x y 2 z S 2 2, e, 2, 1 y>ln x 2 ln z@ 2 y x 2 e Fx e, 2, 1 Fy x, y, z Fy e, 2, 1 ln x 2 ln z 2 xi 2 yj i (a) F u G G 1, 1, 1 j 4 8 G x, y, z 2i 2 j 2y z 0 x 2 y 2 5 G x, y , z F x, y, z Fz x, y, z Fz e, 2, 1 1 2 x e y 2 4 z 1 e 2 x y 4z e 2 Direction numbers: , 1, 4 e x e y 2 z 1 2e 1 4 F 1, 1, 1 1 2 Fz x, y, z z S 4 2 y 1 1 Fx x, y, z 41. F x, y, z x x2 y2 x z i k i k k 2i 2 j 2k 2 2 0 1 0 1 2 i j k Direction numbers: 1, 1, 1 Line: x 1 y 1 1 z 1 © 2010 Brooks/Cole, Cengage Learning 228 Chapter 13 (b) cos T Functions of Several Variables F G F G 2 2 2 1 2 2 Not orthogonal 42. F x, y, z x2 y2 z G x, y , z 4 y z F x, y, z 2 xi 2 yj k G x , y , z j k F 2, 1, 5 4i 2 j k G 2, 1, 5 j k i (a) F u G j k 4 2 1 i 4 j 4k 0 1 1 Direction numbers: 1, 4, 4. (b) cos T 43. F x, y, z F F G F G x 2 1 y 1 4 3 21 2 3 42 x 2 z 2 25 G x, y, z 2 xi 2 zk F 3, 3, 4 G 6i 8k i (a) F u G 42 ; not orthogonal 14 y 2 z 2 25 2 yj 2 zk G 3, 3, 4 j z 5 4 6 j 8k k 48i 48 j 36k 6 0 8 12 4i 4 j 3k 0 6 8 Direction numbers: 4, 4, 3. (b) cos T F G F G x3 4 64 10 10 y 3 4 16 ; not orthogonal 25 x2 y2 z 44. F x, y, z x F x , y , z x y 2 2 G x, y , z y i x y2 2 i (a) F u G j 5i 2 j 3k G 3, 4, 5 5i 2 j 3k 2 22 k 2 34 26 i j k 5 5 5 3 5 4 5 1 5 5 x 2 y 3z j k G x, y, z 3 4 i jk 5 5 F 3, 4, 5 z 4 3 3 Direction numbers: 1, 17, 13 x 3 1 (b) cos T 45. F x, y, z F x, y, z F 3, 1, 2 y 4 17 z 5 Tangent line 13 F G F G 85 2 38 8 Not orthogonal 5 76 x 2 y 2 z 2 14 G x, y, z 2 xi 2 yj 2 zk 6i 2 j 4k G x, y, z G 3, 1, 2 x y z i jk i jk © 2010 Brooks/Cole, Cengage Learning Section 13.7 i (a) F u G j k 6 2 4 2i 10 j 8k Tangent Planes and Normal Lines 229 2>i 5 j 4k @ 1 1 1 Direction numbers: 1, 5, 4 x 3 1 Line: y 1 5 F G F G (b) cos T z 2 4 0 orthogonal x2 y2 z 46. F x, y, z F x, y, z G x, y , z 2 xi 2 yj k G x, y, z F 1, 2, 5 2i 4 j k i (a) F u G j G 1, 2, 5 i j 6k 25i 13 j 2k 6 Direction numbers: 25, 13, 2. F G F G x 1 25 y 2 13 z 5 2 0; orthogonal 3 x 2 2 y 2 z 15, 2, 2, 5 47. F x, y, z i j 6k k 2 4 1 1 1 (b) cos T x y 6 z 33 x 2 y 2 5, 2, 1, 3 50. F x, y, z F x, y, z 6 xi 4 yj k F x, y, z F 2, 2, 5 12i 8 j k F 2, 1, 3 F 2, 2, 5 k cos T 1 209 cos T 1 · ¸ | 86.03q 209 ¹ T F 2, 2, 5 § arccos¨ © T 2 xy z 3 , 2, 2, 2 F 2 yi 2 xj 3 z 2k F 2, 2, 2 12 F 2, 2, 2 176 § 3 11 · arccos¨¨ ¸¸ | 25.24q © 11 ¹ T F 2, 1, 3 k 3 11 11 F x, y, z F 1, 2, 3 cos T T 2 xi 2 yj k 3 x2 y2 6 y z F x, y, z 2 xi 2 y 6 j k 2 x 0 0, x z 0, y 0, 3, 12 3x 2 2 y 2 3x 4 y z 5 F 1, 2, 3 arccos 6x 3 i 4 y 4 j k 6x 3 0, x 1 2 4y 4 0, y 1 2 1 2 1, 2 3 1 2 12 vertex of paraboloid 52. F x, y, z z 1 21 3 3 02 32 6 3 2i 4 j k F 1, 2, 3 k 90q arccos 0 F x, y, z x 2 y 2 z , 1, 2, 3 49. F x, y, z 0 F 2, 1, 3 2 y 6 4i 4 j 12k F 2, 2, 2 k cos T 4i 2 j F x, y , z 51. 48. F x, y, z 2 xi 2 yj 2 3 1 2 4 1 5 31 4 1, 31 4 1 | 77.40q 21 © 2010 Brooks/Cole, Cengage Learning 230 Chapter 13 Functions of Several Variables x 2 xy y 2 2 x 2 y z 53. F x, y, z F x, y, z 2x y 2 i x 2 y 2 j k 2x y 2 x 2 y 2 5 xy z 55. F x, y, z F x, y, z 0 0 5y 0 5x 0 5 yi 5 xj k y 2x 2 x 2 2x 2 2 x y 3x 6 0 x 2, z 4 Point: 0, 0, 0 2 Point: 2, 2, 4 y F x, y, z 8x 4 y 8 i 4x 4 y 5 j k F x , y , z 8x 4 y 8 4x 4 y 5 0 0 y 1 x2 x 1 y2 Adding, 12 x 3 0 x 14 y 32 , and 54 § 1· 1 · § ¨ y 2 ¸i ¨ x 2 ¸ j k x ¹ y © © ¹ x4 x 1, y 1, z 3 x 2 2 y 2 3 z 2 3, 1, 1, 0 Fx x, y, z 2x Fy x, y, z 4y Fz x, y, z 6z Fx 1, 1, 0 2 Fy 1, 1, 0 4 Fz 1, 1, 0 0 2 x 1 4 y 1 0 z 0 0 2 x 4 y x 2 y 6 3 G x, y , z 1 1 z x y Point: 1, 1, 3 Point: 14 , 32 , 54 57. F x, y, z xy 56. F x, y, z 4 x 2 4 xy 2 y 2 8 x 5 y 4 z 54. F x, y, z z 0 z x 2 y 2 z 2 6 x 10 y 14, 1, 1, 0 Gx x, y , z 2x 6 G y x, y , z 2 y 10 Gz x , y , z 2z Gx 1, 1, 0 4 G y 1, 1, 0 8 Gz 1, 1, 0 0 4 x 1 8 y 1 0 z 0 4 x 8 y 12 x 2 y 0 0 3 The tangent planes are the same. 58. F x, y, z Fx x, y, z Fx 2, 3, 3 x 2 y 2 z 2 8 x 12 y 4 z 42, 2, 3, 3 2x 8 4 2 y 12 Fy x, y, z Fy 2, 3, 3 6 4 x 2 6 y 3 2 z 3 G x, y , z Fz 2, 3, 3 2z 4 2 0 4 x 6 y 2 z 20 2x 3 y z Fz x, y, z 0 10 x 2 y 2 2 z 7, 2, 3, 3 Gx x, y , z 2x G y x, y , z 2y Gz x , y , z 2 Gx 2, 3, 3 4 G y 2, 3, 3 6 Gz x , y , z 2 4x 2 6 y 3 2z 3 4 x 6 y 2 z 20 2x 3y z 0 0 10 The tangent planes are the same. © 2010 Brooks/Cole, Cengage Learning Section 13.7 2 xy 2 z , F 1, 1, 2 59. (a) F x, y, z 22 G x, y , z 231 0 8 x 5 y 8 z 13, G 1, 1, 2 2 Tangent Planes and Normal Lines 8 5 16 13 2 0 So, 1, 1, 2 lies on both surfaces. 2 y 2i 4 xyj k , F 1, 1, 2 (b) F 2i 4 j k 16 xi 10 yj 8k , G 1, 1, 2 G F G 16i 10 j 8k 2 16 4 10 1 8 0 The tangent planes are perpendicular at 1, 1, 2 . x 2 y 2 z 2 2 x 4 y 4 z 12 60. (a) F x, y, z F 1, 2, 1 0 G x, y , z 4 x 2 y 2 16 z 2 24 G 1, 2, 1 0 So, 1, 2, 1 lies on both surfaces. (b) F 2x 2 i 2 y 4 j 2z 4 k F 1, 2, 1 G 4i 8 j 2k 8 xi 2 yj 32 zk G 1, 2, 1 F G 8i 4 j 32k 32 32 64 0 The planes are perpendicular at 1, 2, 1 . x2 4 y2 z 2 9 61. F x, y, z F 2 xi 8 yj 2 zk This normal vector is parallel to the line with direction number 4, 8, 2. 4t x So, 2 x 8t y 8y 2t z 2z x 4y z 9 2 2 2 2t t t 4t 2 4t 2 t 2 9 0 t r1 There are two points on the ellipse where the tangent plane is perpendicular to the line: 2, 1, 1 t 1 2, 1, 1 62. F x, y, z F 1 t x2 4 y2 z 2 1 2 xi 8 yj 2 zk i 4j k The normal to the plane, n must be parallel to F . So, 2x t x 8y 4t y 2 z t z x2 4 y 2 z 2 t 2 t 2 t 2 t2 t2 t2 4 4 §1 1 1· Two points: ¨ , , ¸ © 2 2 2¹ t t2 1 t r1. § 1 1 1· 1 and ¨ , , ¸ t © 2 2 2¹ 1 © 2010 Brooks/Cole, Cengage Learning 232 Chapter 13 Functions of Several Variables 63. Fx x0 , y0 , z0 x x0 Fy x0 , y0 , z0 y y0 Fz x0 , y0 , z0 z z0 0 Theorem 13.13 64. For a sphere, the common object is the center of the sphere. For a right circular cylinder, the common object is the axis of the cylinder. 65. Answers will vary. 66. (a) x 2 y 2 z 2 0, 5, 13, 12 x2 y 2 z 2 F x, y , z Fx x, y, z 2x Fy x, y, z 2 y Fz x, y, z 2z Fx 5, 13, 12 10 Fy 5, 13, 12 26 Fz x, y, z 24 Direction numbers: 5, 13, 12 Plane: 5 x 5 13 y 13 12 z 12 0 5 x 13 y 12 z 0 (b) Line: x 5 5 4 xy z x2 1 y 2 1 (a) Let F x, y, z § · § · 4 y ¨ x2 1 2 x2 ¸ 4x ¨ y2 1 2 y2 ¸ i 2 jk 2 2 y 1¨¨ x 2 1 x 1¨¨ y 2 1 ¸¸ ¸¸ © ¹ © ¹ F x, y, z F 1, 1, 1 z 12 12 4 xy , 2 d x d 2, 0 d y d 3 x2 1 y2 1 f x, y 67. z y 13 13 2 4 y 1 x2 y2 1 x2 1 2 i 4x 1 y2 x2 1 y 2 1 2 jk k Direction numbers: 0, 0, 1 Line: x 1, y 1, z 1t Tangent plane: 0 x 1 0 y 1 1 z 1 4· § (b) F ¨ 1, 2, ¸ 5¹ © Plane: 0 x 1 4 3 2 5 1, y Line: x (c) 0i 2 2 4 t 5 6 4· § y 2 1¨ z ¸ 25 5 © ¹ 6 y 12 25 z 20 0 6 y 25 z 32 0 z 1 2 3 2 y −1 0 z 1 x 1 6 jk 25 jk 6 t, z 25 0 z x −2 2 −1 3 y © 2010 Brooks/Cole, Cengage Learning Section 13.7 Tangent Planes and Normal Lines 233 sin y , 3 d x d 3, 0 d y d 2S x sin y Let F x, y, z z x sin y cos y F x , y , z i jk x2 x 1 § S 1· F ¨ 2, , ¸ i k 2 2 4 © ¹ 1 Direction numbers: , 0, 1 or 1, 0, 4 4 S 1 Line: x 2 t, y ,z 4t 2 2 68. (a) f x, y S· 1· § § Tangent plane: 1 x 2 0¨ y ¸ 4¨ z ¸ 0 x 4z 4 0 2¹ 2¹ © © 9 § 2 3S 3 · i k (b) F ¨ , , ¸ 3 2 2 4 © ¹ 9 Direction numbers: , 0, 1 or 9, 0, 4 4 2 3S 3 Line: x 9t , y 4t ,z 3 2 2 2· 3S · 3· § § § Tangent plane: 9¨ x ¸ 0¨ y 0 9 x 4 z 12 ¸ 4¨ z ¸ 3¹ 2 ¹ 2¹ © © © z (c) 0 3 x 3 −3 2π y 69. f x, y 6 x2 y2 , g x, y 4 z x2 (a) F x, y, z F x, y, z F 1, 2, 4 2x y y2 6 4 1 yj k 2 2i j k 2 xi z 2x y G x, y , z G x, y, z 2i j k G 1, 2, 4 2i j k The cross product of these gradients is parallel to the curve of intersection. i j k F 1, 2, 4 u G 1, 2, 4 2 1 1 2i 4 j 2 1 1 Using direction numbers 1, 2, 0, you get x F G F G cos T 4 1 1 6 6 1 t, y 2 2t , z 4. 4 T | 48.2q 6 z (b) 8 (1, 2, 4) 6 8 y x © 2010 Brooks/Cole, Cengage Learning 234 Chapter 13 Functions of Several Variables 16 x 2 y 2 2 x 4 y 70. (a) f x, y 2 2 g x, y 1 3x 2 y 2 6 x 4 y (b) f x, y 16 x 2 y 2 2 x 4 y 32 2 x 2 2 y 2 4 x 8 y x 2 2 x 31 x 2 2 x 1 42 2 x 1 42 g x, y 3 y 2 y 2 2 3 y2 4 y 4 3 y 2 5 5 y x 2 1. Then 14 2 r 14 14 2 j, g 1, 2 f 1, 2 14 1 2 j. The normals to f and g at this point are 2 j k and 2 j k , which are orthogonal. Similarly, f 1, 2 1 g 42 y 1 5 f 3 y 2 12 y To find points of intersection, let x 2 z 1 1 3x 2 y 2 6 x 4 y 2 1 3x 2 y 2 6 x 4 y 14 2 j and g 1, 2 14 1 2 j and the normals are 2 j k and 2 j k , which are also orthogonal. (c) No, showing that the surfaces are orthogonal at 2 points does not imply that they are orthogonal at every point of intersection. 71. F x, y, z Fx x, y, z Fy x, y, z Fz x, y, z Plane: x2 y2 z2 2 2 1 2 a b c 2x a2 2y b2 2z c2 2 x0 2y 2z x x0 20 y y0 20 z z0 a2 b c x0 x y y z z 02 02 a2 b c 72. F x, y, z x02 y2 z2 02 02 2 a b c 0 1 x2 y2 z2 2 2 1 2 a b c Fx x, y, z 2x a2 Fy x, y, z 2y b2 Fz x, y, z 2 z c2 Fx x, y, z 2a 2 x Fy x, y, z 2b 2 y Fz x, y, z 2 z Plane: 2a 2 x0 x x0 2b 2 y0 y y0 2 z0 z z0 a x0 x b y0 y z0 z 2 2x 2y 2z Plane: 20 x x0 20 y y0 0 z z0 a b c2 x0 x y y z z 02 02 2 a b c a2 x2 b2 y 2 z 2 73. F x, y, z x02 y2 z2 02 02 2 a b c 0 2 a 2 x02 b 2 y02 z02 0 0 So, the plane passes through the origin. 1 © 2010 Brooks/Cole, Cengage Learning Section 13.7 § y· xf ¨ ¸ © x¹ § y· xf ¨ ¸ z © x¹ § y· § y ·§ y · f ¨ ¸ xf c¨ ¸¨ 2 ¸ © x¹ © x ¹© x ¹ y ·§ 1 · § § y· xf c¨ ¸¨ ¸ f c¨ ¸ © x ¹© x ¹ © x¹ 1 z 74. F x, y , z Fx x, y, z Fy x, y, z Fx x, y, z Tangent Planes and Normal Lines 235 § y· y § y· f ¨ ¸ f c¨ ¸ © x¹ x © x¹ Tangent plane at x0 , y0 , z0 : ª § y0 · y0 § y0 ·º §y · f c¨ ¸» x x0 f c¨ 0 ¸ y y0 z z0 «f¨ ¸ x x x 0 © 0 ¹¼ © x0 ¹ ¬ © 0¹ 0 ª § y0 · y0 § y0 ·º §y · §y · §y · §y · §y · f c¨ ¸» x x0 f ¨ 0 ¸ y0 f c¨ 0 ¸ yf c¨ 0 ¸ y0 f c¨ 0 ¸ z x0 f ¨ 0 ¸ «f¨ ¸ © x0 ¹ © x0 ¹ © x0 ¹ © x0 ¹ © x0 ¹ ¬ © x0 ¹ x0 © x0 ¹¼ 0 ª § y0 · y0 § y0 ·º §y · f c¨ ¸» x f c¨ 0 ¸ y z «f ¨ ¸ x x x 0 0 0 © ¹¼ © x0 ¹ ¬ © ¹ 0 So, the plane passes through the origin x, y, z 75. f x, y 0, 0, 0 . ex y f x x, y e x y , f y x, y e x y f xx x, y e x y , f yy x, y e x y , f xy x, y e x y (a) P1 x, y | f 0, 0 f x 0, 0 x f y 0, 0 y (b) P2 x, y | f 0, 0 f x 0, 0 x f y 0, 0 y 1 x y 1 f 2 xx 0, 0 x 2 f xy 0, 0 xy 1 f 2 yy 0, 0 y 2 (c) If x 0, P2 0, y 1 y 1 y 2 . This 2 is the second-degree Taylor polynomial for e y . If y 0, P2 x, 0 1 x 1 x 2 . This 2 is the second-degree Taylor polynomial for e x . (d) x 0 y 0 f x, y 1 P1 x, y P2 x, y 1 1 (e) 0.1 0.9048 0.9000 z P1 4 0.1 1.1052 1.1000 1.1050 0.2 0.5 0.7408 0.7000 0.7450 1 0.5 1.6487 1.5000 1.6250 76. f x, y −2 0.9050 0.2 1 y2 2 f P2 −2 0 1 x y 12 x 2 xy 2 x 1 −2 −4 2 y cos x y f x x, y sin x y , f y x, y sin x y f xx x, y cos x y , f yy x, y cos x y , f xy x, y (a) P1 x, y | f 0, 0 f x 0, 0 x f y 0, 0 y 1 (b) P2 x, y | f 0, 0 f x 0, 0 x f y 0, 0 y 1 f 2 xx 1 1 x2 2 xy cos x y 0, 0 x 2 f xy 0, 0 xy 1 f 2 yy 0, 0 y 2 1 y2 2 (c) If x 0, P2 0, y 1 1 y 2 . This 2 is the second-degree Taylor polynomial for cos y. If y 0, P2 x, 0 1 1 x 2 . This 2 is the second-degree Taylor polynomial for cos x. © 2010 Brooks/Cole, Cengage Learning 236 Chapter 13 (d) x Functions of Several Variables f x, y y P1 x, y P2 x, y 0 0 1 1 1 0 0.1 0.9950 1 0.9950 z (e) 5 5 x 0.2 0.1 0.9553 1 0.9950 0.2 0.5 0.7648 1 0.7550 1 0.5 0.0707 1 0.1250 5 y f x, y , then: 77. Given z f x, y z F x, y , z F x0 , y0 , z0 0 f x x0 , y0 i f y x0 , y0 j k F x0 , y0 , z0 k cos T F x0 , y0 , z0 k 1 2 2 ª¬ f x x0 , y0 º¼ ª¬ f y x0 , y0 º¼ 1 2 1 2 2 ª¬ f x x0 , y0 º¼ ¬ª f y x0 , y0 ¼º 1 78. Given w F x, y, z where F is differentiable at x0 , y0 , z0 and F x0 , y0 , z0 z 0, the level surface of F at x0 , y0 , z0 is of the form F x, y, z F x, y , z C G x, y , z Then G x0 , y0 , z0 C for some constant C. Let 0. F x0 , y0 , z0 where G x0 , y0 , z0 is normal to F x, y, z C 0 at x0 , y0 , z0 . So, F x0 , y0 z0 is normal to the level surface through x0 , y0 , z0 . Section 13.8 Extrema of Functions of Two Variables x 1 1. g x, y 2 y 3 2 t 0 Check: g x 2 x 1 0 x gy 2 y 3 0 y 2, g yy 2, g xy 0, d 1 Check: g x 3 2 2 0 4 ! 0 At critical point 1, 3 , d ! 0 and g xx ! 0 relative minimum at 1, 3, 0 . 2 2 d 5 0 x 3 y 2 Relative maximum: 3, 2, 5 Relative minimum: 1, 3, 0 g xx s x3 2. g x, y 2 x 3 gy 2 y 2 g xx 2, g yy d 0 y 2, g xy 2 2 0 2 0 4 ! 0 At critical point 3, 2 , d ! 0 and g xx 0 relative maximum at 3, 2, 5 . © 2010 Brooks/Cole, Cengage Learning Section 13.8 x2 y2 1 t 1 3. f x, y Extrema of Functions of Two Variables Relative minimum: 0, 0, 1 0 x x y2 1 2 y fy 0 y x2 y2 1 0 Check: f x x2 y 2 1 fy 0 25 x 2 32 f xx x2 y2 1 f yy x2 y2 1 f xy 32 At the critical point 0, 0 , f xx ! 0 and f xx f yy f xy 2 ! 0. y2 2 y2 0 x 2 0 y 0 25 y 2 ª25 x 2 ¬ 32 xy f xy 2 y 25 x 2 x2 1 f yy y2 d 5 x2 y2 1 f xx 2 Relative maximum: 2, 0, 5 x Check: f x 25 x 2 4. f x, y 237 y2º ¼ 2 25 x 2 ª25 x 2 ¬ 2 32 2 y2º ¼ 32 y2º ¼ 32 y x 2 ª25 x 2 ¬ 2 At the critical point 2, 0 , f xx 0 So, 0, 0, 1 is a relative minimum. and f xx f yy f xy 2 ! 0. So, 2, 0, 5 is a relative maximum. x2 y2 2 x 6 y 6 5. f x, y x1 2 y 3 2 4 t 4 Relative minimum: 1, 3, 4 Check: f x 2x 2 0 x 1 fy 2y 6 0 y 3 f xx 2, f yy 2, f xy 0 At the critical point 1, 3 , f xx ! 0 and f xx f yy f xy 2 ! 0. So, 1, 3, 4 is a relative minimum. x 2 y 2 10 x 12 y 64 6. f x, y x 2 10 x 25 y 2 12 y 36 25 36 64 x5 2 y 6 2 3 d 3 Relative maximum: 5, 6, 3 Check: f x 2 x 10 0 x 5 fy 2 y 12 0 y 6 f xx 2, f yy 2, f xy 0, d 2 2 0 4 ! 0 At critical point 5, 6 , d ! 0 and f xx 0 relative maximum at 5, 6, 3 . 7. f x, y 3 x 2 2 y 2 6 x 4 y 16 fx fy 6x 6 4y 4 0½ ¾x 0¿ f xx 6, f yy 4, f xy 1, y 0, d 8. f x, y 1 64 0 24 ! 0. At the critical point 1, 1 , d ! 0 and f xx ! 0 1, 1, 11 is a relative minimum. 3 x 2 2 y 2 3 x 4 y 5 fx 6 x 3 0 when x fy 4 y 4 0 when y f xx 6, f yy 4, f xy At the critical point and f xx f yy f xy So, 1 , 2 2 1 , 2 1 . 2 1. 0 1 , f xx 0 ! 0. 1, 31 is relative maximum. 4 © 2010 Brooks/Cole, Cengage Learning 238 Chapter 13 9. f x, y Functions of Several Variables x 2 5 y 2 10 x 10 y 28 fy 2 x 10 10 y 10 f xx 2, f yy fx 0½ ¾x 0¿ 1 5, y 10, f xy At the critical number 5, 1 , d ! 0 and f xx 0 5, 1, 2 is a relative maximum. 13 3x y 2 2 23 2y hy 3 x2 y 2 2 ½ 0° °° ¾x 0° ° °¿ 2x hx 2 10 ! 0. 0, d x2 y2 14. h x, y 23 0, y 0 Because h x, y t 2 for all x, y , 0, 0, 2 is a relative minimum. 10. f x, y 2 x 2 2 xy y 2 2 x 3 4 x y 15. g x, y fx fy 4x 2 y 2 2x 2 y 0 f xx 4, f yy 0½ Solving simultaneously ¾ 1 and y 1. ¿ yields x 2, f xy 2 all x, y , 0, 0, 4 is a relative maximum. 2 x y 2 16. f x, y At the critical point 1, 1 , f xx ! 0 and f xx f yy f xy 0, 0 is the only critical point. Because g x, y d 4 for Since f x, y t 2 for all x, y , the relative minima ! 0. of f consist of all points x, y satisfying x y 0. So, 1, 1, 4 is a relative minimum. 11. f x, y x 2 xy z 1 2 y2 2x y fx fy 2x y 2 0½ Solving simultaneously ¾ 4 3, y x y 1 0 ¿ yields x f xx 2, f yy 1, f xy 21 1 1, d 4 x x2 y2 1 17. z 1 ! 0. z 4 Relative minimum: 1, 0, 2 −4 Relative maximum: 1, 0, 2 x −4 At the critical point 3, 4 , d ! 0 and f xx ! 0 3, 4, 5 is a relative minimum. 12. f x, y 5 x 4 xy y 16 x 10 2 2 fx fy 10 x 4 y 16 4x 2 y 0 f xx 10, f yy 2, f xy y 4 5 0½ Solving simultaneously ¾ yields x 8 and y 16. ¿ y 3 3 yx 2 3 y 2 3 x 2 1 18. f x, y z Relative maximum: 0, 0, 1 40 Saddle points: 20 3 0, 2, 3 , r 3, 1, 3 y 3 x 4 At the critical point 8, 16 , f xx 0 x 2 4 y 2 e1 x 19. z 2 y2 z 6 and f xx f yy f xy 2 Relative minimum: 0, 0, 0 ! 0. So, 8, 16, 74 is a relative maximum. 5 Relative maxima: 0, r1, 4 −4 −4 Saddle points: r1, 0, 1 x2 y 2 13. f x, y fx fy x x2 y 2 y x2 y2 ½ 0° ° ¾x 0° ° ¿ x 4 4 e xy 20. z Saddle point: 0, 0, 1 y 0 z 100 Because f x, y t 0 for all x, y and f 0, 0 0, 0, 0, 0 is a relative minimum. x 3 3 y © 2010 Brooks/Cole, Cengage Learning y Section 13.8 80 x 80 y x 2 y 2 21. h x, y hx hy 80 2 x 80 2 y 0½ ¾x 0¿ hxx 2, hyy 2, hxy d 2 2 0 23. g x, y 40 y Extrema of Functions of Two Variables 0, 4 ! 0 xy gx gy y½ ¾x x¿ g xx 0, g yy 0 and y 0 0, g xy 1 2 At the critical point 0, 0 , g xx g yy g xy At the critical point 40, 40 , d ! 0 and 239 0. So, 0, 0, 0 is a saddle point. hxx 0 40, 40, 3200 is a relative maximum. x 2 3 xy y 2 24. h x, y x y x y 2 22. g x, y 2 gx gy 2x 1 0 ½x ¾ 2 y 1 0¿ y g xx 2, g yy 12 1 2 2, g xy 2 2 0 0, d 4 0 At the critical point 1 2, 1 2 , d 0 hxx 2, hyy 2, hxy 3 At the critical point 0, 0 , hxx hyy hxy 2 0. x 2 xy y 2 3x y 25. f x, y fx 2x y 3 fy x 2 y 1 0 0 1, y Solving simultaneously yields x d 2x 3y 0 ½Solving simultaneously ¾ 0¿ yields x 3x 2 y 0 and y 0. So, 0, 0, 0 is a saddle point. 1 2, 1 2, 0 is a saddle point. 2, f yy f xx hx hy 2, f xy 2 2 1 1. 1 2 5 0 At the critical point 1, 1 , d 0 1, 1, 1 is a saddle point. 2 xy 26. f x, y 1 4 x y2 1 2 fy 2 y 2 x3 ½° Solving by substitution yields 3 critical points: ¾ 2 x 2 y 3 °¿ 0, 0 , 1, 1 , 1, 1 f xx 6 x 2 , f yy fx 6 y 2 , f xy At 0, 0 , f xx f yy f xy At 1, 1 , f xx f yy f xy 2 2 At 1, 1 , f xx f yy f xy fy e x sin y e 0 0, 0, 1 saddle point. ! 0 and f xx 0 1, 1, 2 relative maximum. 2 ! 0 and f xx 0 1, 1, 2 relative maximum. e x sin y 27. f x, y fx 2 x cos y 0½° Because e x ! 0 for all x and sin y and cos y are never ¾ 0 °¿ both zero for a given value of y, there are no critical points. © 2010 Brooks/Cole, Cengage Learning Chapter 13 240 Functions of Several Variables §1 2 2 · 1 x 2 y 2 ¨ x y ¸e ©2 ¹ 28. f x, y 2 x 3 2 xy 2 3 x e1 x fx 0½° ¾ Solving yields the critical points 0, 0 0 °¿ 2 y2 1 x 2 y 2 fy 2 x2 y 2 y3 y e f xx 4 x 4 4 x 2 y 2 12 x 2 2 y 2 3 e1 x f yy 4 y 4 4 x 2 y 2 2 x 2 8 y 2 1 e1 x f xy 4 x3 y 4 xy 3 2 xy e1 x points r 2 y2 2 y2 2 0. So, 0, 0, e 2 is a saddle point. At the critical 2 2 2 , f xx 0 and f xx f yy f xy 2 6 2, 0 , f xx ! 0 and f xx f yy f xy ! 0. So, 0, r ! 0. So, r 4 x y t 0. z x2 y 2 29. z 2 2, e are relative maxima. At the critical 6 2, 0, e e are relative minima. f xx f yy f xy 2 35. d y z 0. 0 if x 2· § 6 · , 0 ¸¸. ¸¸, ¨¨ r 2 ¹ © 2 ¹ 2 y2 At the critical point 0, 0 , f xx f yy f xy points 0, r § , ¨¨ 0, r © 2 8 f xy 2 16 f xy 2 ! 0 f xy 2 16 4 f xy 4 Relative minimum at all points x, x , x z 0. f xx f yy f xy 2 0 if f xx and f yy have opposite 36. d z 60 signs. So, a, b, f a, b is a saddle point. For example, 40 consider f x, y x 2 y 2 and a, b 0, 0 . x3 y 3 37. f x, y 3 3 x (a) f x 3x 2 fy 3y2 2 x2 y2 30. z y x2 y2 t 0. z y 2 z 0. 0 if x 2 Relative minima at all points x, x and x, x , x z 0. 0 ½° ¾x 0°¿ 0 y Critical point: 0, 0 (b) f xx 6 x, f yy 6 y, f xy At 0, 0 , f xx f yy f xy z 2 0 0. 2 0, 0, 0 is a saddle point. 5 5 x (c) Test fails at 0, 0 . y (d) z 2 31. f xx f yy f xy 2 9 4 62 0 Insufficient information. x 2 32. f xx 0 and f xx f yy f xy 2 3 8 2 ! 0 2 f has a relative maximum at x0 , y0 y −2 1 2 −2 Saddle point (0, 0, 0) −2 33. f xx f yy f xy 2 9 6 10 0 2 f has a saddle point at x0 , y0 . 34. f xx ! 0 and f xx f yy f xy 2 25 8 102 ! 0 f has a relative minimum at x0 , y0 © 2010 Brooks/Cole, Cengage Learning Section 13.8 38. f x, y x 3 y 3 6 x 2 9 y 2 12 x 27 y 19 40. f x, y 0 °½Solving yields ¾ 2 and y 3. 0°¿ x (a) f x (a) f x 3 x 2 12 x 12 fy 3 y 2 18 y 27 6 x 12, f yy (b) f xx Extrema of Functions of Two Variables 6 y 18, f xy At 2, 3 , f xx f yy f xy 2 0 x 1 x 1 0. 4 y 2 y2 2 y2 x 1 2 32 2 32 x 1 y 2 ª x 1 2 y 2 2º ¬ ¼ 2 At 1, 2 , f xx f yy f xy −2 ½ 0° °°Solving yields ¾ x 1 and y 2. 0° ° °¿ 2 ª x 1 2 y 2 2º ¬ ¼ f xy −4 t 0 2 ª x 1 2 y 2 2º ¬ ¼ f yy (2, −3, 0) x 2 y 2 (b) f xx z 2 y2 (c) Test fails at 2, 3 . (d) y 2 x 1 fy 2, 3, 0 is a saddle point. 2 x 1 241 2 32 is undefined. 1, 2, 0 is an absolute minimum. 2 x 1 39. f x, y y 4 2 x 1 y 4 (a) f x 2 x 1 fy 2 2 t 0 (c) Test fails at 1, 2 . 0½°critical points: ¾ 0¿° 1, a and b, 4 2 y 4 z 4 2 (b) f xx 2 y 4 f yy 2 x 1 f xy 4 x 1 y 4 2 −6 −4 (1, −2, 0) 2 0. Because f x, y t 0, there are absolute minima at 1, a, 0 and b, 4, 0 . (c) Test fails at 1, a and b, 4 . x2 3 y 2 3 t 0 41. f x, y 2 ½ f and f are undefined x y 3x 1 3 °° 0 and y 0. ¾ at x 2 ° Critical point: 0, 0 3 y 1 3 °¿ (a) f x fy z 6 2 , f yy 9x4 3 (b) f xx 4 6 x Absolute minimum (b, −4, 0) −2 −4 y Absolute minimum (1, a, 0) 2 , f xy 9 y4 3 At 0, 0 , f xx f yy f xy 4 2 y 2 2 4 x At both 1, a and b, 4 , f xx f yy f xy (d) (d) 2 0 is undefined. 0, 0, 0 is an absolute minimum. (c) Test fails at 0, 0 . (d) z 6 6 x 4 2 2 4 6 y Absolute minimum (0, 0, 0) © 2010 Brooks/Cole, Cengage Learning 242 Chapter 13 Functions of Several Variables x2 y2 42. f x, y 23 ½ 4x (a) f x 3x y 2 t 0 2 13° ° f x and f y are undefined at x ¾ Critical Point: 0, 0 4y ° 13 3 x 2 y 2 °¿ fy (b) f xx f yy f xy 0, y 0. 4 x2 3 y 2 9 x2 y2 43 4 3x 2 y 2 9 x2 y2 43 8 xy 9 x y2 2 43 2 At 0, 0 , f xx f yy f xy is undefined. 0, 0, 0 is an absolute minimum. (c) Test fails at 0, 0 . (d) z 5 −4 −3 −2 x 2 4 3 1 2 3 y 4 (0, 0, 0) 2 x2 y 3 43. f x, y, z fx fy 2x 0 2 y 3 fz 2 z 1 z 1 2 t 0 ½ ° 0¾ Solving yields the critical point 0, 3, 1 . 0 °¿ Absolute minimum: 0 at 0, 3, 1 2 9 ª¬ x y 1 z 2 º¼ d 9 44. f x, y, z The absolute maximum value of f is 9, and realized at all points where x y 1 z 2 0. So, the critical points are of the form 0, a, b , c, 1, d , e, f , z where a, b, c, d , e, f are real numbers. x 2 4 xy 5, R 45. f x, y fx fy 2x 4 y 0 4 x 0½ ¾x ¿ ^ x, y : 1 d x d 4, 0 d y d 2` 4 y 0 (not in region R) Along y 0, 1 d x d 4: f x 2 5, f 1, 0 Along y 2, 1 d x d 4: f x 2 8 x 5, f c f 1, 2 y 2, f 4, 2 3 2 6, f 4, 0 2x 8 21. 1 0 x −1 11. Along x 1, 0 d y d 2: f 4 y 6, f 1, 0 Along x 4, 0 d y d 2: f 21 16 y, f 4, 0 1 2 3 4 −1 6, f 1, 2 21, f 4, 2 2. 11. So, the maximum is 4, 0, 21 and the minimum is 4, 2, 11 . © 2010 Brooks/Cole, Cengage Learning Section 13.8 46. f x, y fx fy 2x y 0 x f 0, 0 ^ x, y : x 2 xy, R 0½ ¾x ¿ Extrema of Functions of Two Variables x d 2, y d 1` y 0 y 243 2 0 Along y Thus, f 2, 1 Along y 2, f 12 , 1 6, f 1 , 2 14 and f 2, 1 6. x 2 x, f c 1 Along x 2, 1 d y d 1, f Along x 2, 1 d y d 1, f So, the maxima are f 2, 1 f x, y 2x 1 1, 2 d x d 2, f Thus, f 2, 1 47. f x, y x 2 x, f c 1, 2 d x d 2, f 4 2y f c 6 and f 2, 1 1 . 2 2 z 0. 6 and the minima are f 12 , 1 14 and f 1 , 2 1 14 . x 1, 0 d x d 1, 5 x 10 12 3 x 2 2 x 4 f x 1 2 z 0. 4 2y f c 12 3 x 2 x 1 x −1 2. and the maximum is10, the minimum is 5. On the line y f x, y 0 x 12 3 x 2 y has no critical points. On the line y f ( x) 12 . −2 2x 1 14 , f 2, 1 0 x 2 x 4, 1 d x d 2, y x 4 3 y=x+1 and the maximum is 6, the minimum is 5. On the line y f x, y 12 3 x 2 12 x 1 f x 12 x 1, 0 d x d 2, (1, 2) 2 2 x 10 y = −2x + 4 (0, 1) 1 (2, 0) and the maximum is10, the minimum is 6. 1 2 x 3 y = − 21 x + 1 Absolute maximum: 10 at 0, 1 Absolute minimum: 5 at 1, 2 48. f x, y 2x y fx 4 2x y fy 2 2 x y On the line y f x, y f x 2 0 2x y 0 2x y x 1, 0 d x d 1, 2x x 1 2 x 1 2 and the maximum is 1, the minimum is 0. On the line y f x, y f x 2 x 12 x 1 2 5 x 2 1 f x 2 x 2 x 4 2 4x 4 y 3 2 (1, 2) and the maximum is 16, the minimum is 0. On the line y f x, y 12 x 1, 0 d x d 2, 2 x 4, 1 d x d 2, 2 y = 2x 1 2 (0, 1) (2, 0) x 1 and the maximum is16, the minimum is 0. 2 3 Absolute maximum: 16 at 2, 0 Absolute Minimum: 0 at 1, 2 and along the line y 2 x. © 2010 Brooks/Cole, Cengage Learning 244 Chapter 13 49. f x, y fx fy Functions of Several Variables 3x 2 2 y 2 4 y 6x 0 x 0 4y 4 0 y 2 4, 2 d x d 2, On the line y f x, y ½ ¾ f 0, 1 1¿ f x 3 x 2 32 16 3x 2 16 and the maximum is 28, the minimum is16. On the curve y f x, y f x 3x 2 2 x 2 2 4x2 2 x4 x2 x 2 , 2 d x d 2, y (−2, 4) (2, 4) x2 2x2 1 3 and the maximum is 28, the minimum is 18 . 2 Absolute maximum: 28 at r 2, 4 1 x Absolute minimum: 2 at 0, 1 50. f x, y fx fy −2 ½ ¾ f 1, 1 1¿ 2 y 1 2 1, 1 d x d 1, On the line y f x On the curve y f x, y 1 2 x 2 xy y 2 2 2y 0 y 1 x x 2 y 2x 0 y f x, y −1 f x (−1, 1) 2x 2x 1 (1, 1) 1. x 2 , 1 d x d 1 x −1 2x 2 x x2 x2 2 1 x 4 2 x3 2 x 11 and the maximum is1, the minimum is 16 . Absolute maximum: 1 at 1, 1 and on y 0.6875 at 12 , 11 Absolute minimum: 16 51. f x, y fx fy 0½ ¾y 0¿ 1, 2 d x d 2, f y x Along y Along y d 2, y d 1` x x2 2x2 x2 x 2 2 x 1, f c 1 4 2 f x, x f ^ x, y : x x 2 2 xy y 2 , R 2x 2 y 2x 2 y 1 −1 0 2x 2 1 −2 0 x 1, f 2, 1 1, f 1, 1 0, f 2, 1 0 x 1, f 2, 1 9, f 1, 1 0, f 2, 1 9. 1, 2 d x d 2, x 2 2 x 1, f c 2x 2 Along x 2, 1 d y d 1, f Along x 2, 1 d y d 1, f So, the maxima are f 2, 1 4 4 y y2 , f c 2 y 4 z 0. 4 4 y y2, f c 9 and f 2, 1 1. 2 y 4 z 0. 9, and the minima are f x, x 0, 1 d x d 1. © 2010 Brooks/Cole, Cengage Learning Section 13.8 fx fy ^ x, y : x 2 x 2 2 xy y 2 , R 52. f x, y 2x 2 y 2x 2 y f x, x 0½ ¾y 0¿ Extrema of Functions of Two Variables 245 y 2 d 8` x x2 2x2 x2 On the boundary x 2 y 2 0 8 x 2 and y 8, we have y 2 r 8 x 2 . Thus, y f fc x2 r 2 x 8 x2 8 x2 r ª 8 x2 «¬ 1 2 8 r 2x 2 x 2 2 8 x 2 12 º »¼ 8 x2 r 4 16 4 x 2 8 x2 2 . x −4 Then, f c f 2, 2 f 2, 2 fx 4 xy ,R x 1 y2 1 fy 4 1 x2 y y2 1 x2 1 ^ x, y :0 0 x 2 f 2, 2 16 and f 2, 2 2 2 4 −2 16 and f 2, 2 So, the maxima are f 2, 2 53. f x, y r 2. 4x 2 or x 0 implies 16 −2 −4 0 16, and the minima are f x, x 0, x d 2. d x d 1, 0 d y d 1` 1 or y y 0 1 4 1 y2 x x2 1 y 2 1 2 x 0 or y 1 R x For x 0, y 0, also, and f 0, 0 For x 1, y 1, f 1, 1 0. 1 1. The absolute maximum is 1 f 1, 1 . The absolute minimum is 0 f 0, 0 . In fact, f 0, y 4 xy ,R x 1 y2 1 54. f x, y fx ^ x, y : x 2 4 1 x2 y y 1 x 1 2 2 2 0 x f x, 0 0. t 0, y t 0, x 2 y 2 d 1` 1 or y y 0 1 fy 4 1 y2 x x2 1 y2 1 2 0 y 1 or x 0 R x For x 0, y For x 1 and y For x 2 y 2 0, also, and f 0, 0 1 0. 1, the point 1, 1 is outside R. 1, f x, y Absolute maximum is 8 9 The absolute minimum is 0 f x, 1 x2 4x 1 x2 , and the maximum occurs at x 2 x2 x4 2 ,y 2 2 . 2 § 2 2· f ¨¨ , ¸¸. 2 2 © ¹ f 0, 0 . In fact, f 0, y f x, 0 0 © 2010 Brooks/Cole, Cengage Learning Chapter 13 246 Functions of Several Variables 55. In this case, the point A will be a saddle point. The xy. function could be f x, y x 2 y 2 , g x, y 60. f x, y (a) f x 56. A and B are relative extrema. C and D are saddle points. 2x 0, f y 2 y 2x 0, g y 2y gx 0 0, 0 is a critical point. 75 60 2, g yy g xx 2 x 2 d y No extrema 0 2 2 0 0 0, 0 is a saddle point. d 30 2, f xy 2, f yy (b) f xx 45 2, g xy 0 2 2 0 ! 0 0, 0 is a relative minimum. 61. False. z 58. 0 0, 0 is a critical point. z 57. x2 y 2 1 x y. Let f x, y 4 0, 0, 1 is a relative maximum, but f x 0, 0 and 3 f y 0, 0 do not exist. 2 3 x2 y 2. 62. False. Consider f x, y y 4 4 x Then f x 0, 0 Extrema at all x, y point. 63. False. Let f x, y z 59. f y 0, 0 7 6 6 x 2 y 2 (See Example 4 on page 958). 64. False. x4 2x2 y2. Let f x, y x 0, but 0, 0, 0 is a saddle 3 Relative minima: r1, 0, 1 y Saddle point: 0, 0, 0 −3 Saddle point Section 13.9 Applications of Extrema of Functions of Two Variables 2. A point on the plane is given by x, y , z x, y, 3 x y . The square of 1. A point on the plane is given by x, y , z x, y, 3 x y . The square the distance from 1, 2, 3 to this point is of the distance from 0, 0, 0 to this point is S 2 x2 y 2 3 x y . Sx 2x 2 3 x y Sy 2y 2 3 x y From the equations S x 4x 2 y 2 x 4 y S 0 and S y 0 we obtain 6 2 y 2 2 3 x y 3 x 1 2 y 2 2 y x . Sx 2 x 1 2 y x Sy 2 y 2 2 y x 0 and S y From the equation S x 6. Solving simultaneously, we have x So, the distance is x 1 12 1 2 12 1, z 1, y 3. 1. 4x 2 y 2 x 4 y 2 2 0 we obtain 2 4. Solving simultaneously, we have x 4 3, y 5 3, z 10 3. So, the distance is 2 2 §4 · §5 · §5 4· ¨ 1¸ ¨ 2 ¸ ¨ ¸ 3 3 © ¹ © ¹ ©3 3¹ 2 13 . 3 © 2010 Brooks/Cole, Cengage Learning Section 13.9 3. A point on the surface is given by x, y, z Applications of Extrema of Functions of Two Variables 247 1 2 x 2 y . The square of the distance x, y , from 2, 2, 0 to a point on the surface is given by 2 S x 2 Sx 2 x 2 2 Sy 2 y 2 2 2 y 2 0 and S y From the equations S x 1 2 So, the distance is 1 2x 2 y 0 2 2 0, we obtain 1 2 2 4. A point on the surface is given by x, y , z 5 x 2 2x 2 2y 2 2 x, y , 2 2 y 2 0½ ¾ x 0¿ 1 2 x 2 y. 1, z y 5. 7. 1 2 x 2 y . The square of the distance from 0, 0, 2 to a point on the surface is given by 2 x2 y2 2 S Sx 2x Sy 2y 22 1 2x 2 y . 1 2x 2 y 1 2x 2 y 22 1 2x 2 y 1 2x 2 y 0 and S y From the equation S x 2x 4 2 1 2x 2 y 2y 4 2 1 2x 2 y 0, we obtain x y. 4 2 0. 1 4x Using a graphing utility, x y | 0.3221. So, 2 x The minimum distance is ªx2 y 2 2 «¬ S 5. Let x, y, and z be the numbers. Because xyz Z 27 . xy S x y z 1 Sx x2 y xy 2 So, x | 0.667. 7. Let x, y, and z be the numbers and let 27, x 2 y 2 z 2 . Because x y z 27 x2 y 27 . xy x y 1 0, S y 27 xy 2 0. 2 2 Sx 2 x 2 30 x y 1 Sy 2 y 2 30 x y 1 Solving simultaneously yields x y 32, z 10, and z Px 32 y 2 2 xy 2 y 3 Py 64 xy 2 x 2 y 3 xy 2 Ignoring the solution y 32 2 x into Py 1, z xyz S 0 y 64 x 2 x 2 3 xy 64 x 2 x 2 3x 32 2 x 0 4x x 8 0. 16, and z 8. 10, 1 xy. 0. Sx x2 y 2 z 2 2x 0 and substituting 0, we have 30 30. 8. Let x, y, and z be the numbers. Because 32 x y. So, y 2 32 2 x y 0 ½° 2 x y ¾ 0°¿ x 2 y 10. 32 xy 2 x 2 y 2 xy 3 xy 2 z 8, y 30, we have x y 30 x y 2 S 27½° 3 y ¾x 27 °¿ y z 3. P So, x 12 S 6. Because x y z y 2 1 2 x 2 y º» ¼ 0, S y 1½° 4 2 ¾x y 1°¿ x x3 y 2 y x2 y3 So, x 2 x3 y 2 y z x2 y2 2y x2 y 4 x 1 x2 y2 2 x2 y3 0 y 1. © 2010 Brooks/Cole, Cengage Learning 248 Chapter 13 Functions of Several Variables C C Cx Cy 668.25 . xy xyz z 9. The volume is 668.25 § 668.25 668.25 · 0.12¨ ¸ 0.11 xy y ¹ © x 0.06 2 yz 2 xz 0.11 xy 80.19 80.19 0.11 xy x y 80.19 0.11 y 0 x2 8.19 0.11x 0 y2 Solving simultaneously, x z y x 9 and z y 8.25. 80.19 80.19 Minimum cost: 0.11 xy 9 9 $26.73 10. Let x, y, and z be the length, width, and height, respectively. Then C0 C0 1.5 xy . 2x y 1.5 xy 2 yz 2 xz and z The volume is given by C0 xy 1.5 x 2 y 2 V xyz 2x y Vx Vy y 2 2C0 3x 2 6 xy 4x y 2 x 2 2C0 3 y 2 6 xy 4x y 2 0 and Vy In solving the system Vx Substituting y x 2C0 9 x 2 . x into Vx 0, we note by the symmetry of the equations that y 0 yields 2 0, 2C0 16 x 2 11. Let a b c x. 1 3 9 x2 , x 4S abc 3 k . Then V 2C0 , y 1 3 2C0 , and z 4 S ab k a b 3 1 4 2C0 . 4 S kab a 2b ab 2 3 4S ½ 0° kb 2ab b 2 kb 2ab b 2 0 ° 3 ¾ 4S 0°ka a 2 2ab Vb ka a 2 2ab 0 °¿ 3 Solving this system simultaneously yields a b and substitution yields b Va 12. Consider the sphere given by x 2 y 2 z 2 k 3. So, the solution is a r 2 and let a vertex of the rectangular box be x, y, b c k 3. r 2 x2 y2 . Then the volume is given by V 2 x 2 y 2 r 2 x2 y 2 8 xy r 2 x2 y2 § · x 8¨ xy y r 2 x2 y2 ¸ ¨ ¸ r 2 x2 y 2 © ¹ § · y x r 2 x2 y 2 ¸ 8¨ xy Vy 2 2 2 ¨ ¸ r x y © ¹ Solving the system Vx 2 x2 y 2 r2 x2 2 y 2 r2 yields the solution x y z r 8y r x2 y 2 2 8x r x2 y2 2 r 2 2 x2 y 2 0 r 2 x2 2 y 2 0. 3. © 2010 Brooks/Cole, Cengage Learning Section 13.9 Applications of Extrema of Functions of Two Variables 249 13. Let x, y, and z be the length, width, and height, respectively and let V0 be the given volume. Then V0 V0 xy. The surface area is xyz and z § V V · 2¨ xy 0 0 ¸ x y¹ © 2 xy 2 yz 2 xz S Sx V · § 2¨ y 02 ¸ x ¹ © Sy § V · 2¨ x 02 ¸ y ¹ © ½ 0° x 2 y V0 ° ¾ 0° xy 2 V0 ° ¿ 0 0. 3 Solving simultaneously yields x 14. 3 V0 , y V0 , and z 1 ª 30 2 x 30 2 x 2 x cos T º¼ x sin T 2¬ A wA wx wA wT 30 sin T 4 x sin T 2 x sin T cos T 3 V0 . 30 x sin T 2 x 2 sin T x 2 sin T cos T 0 30 cos T 2 x 2 cos T x 2 2 cos 2 T 1 0 2 x 15 . x From wA wx 0 we have 15 2 x x cos T From wA wT § § 2 x 15 · 2 · § 2 x 15 · 2 § 2 x 15 · 2 0 we obtain 30 x¨ ¸ 2x ¨ ¸ x ¨¨ 2¨ ¸ 1¸¸ x x x ¹ © ¹ © ¹ © © ¹ 0 cos T 30 2 x 15 2 x 2 x 15 2 2 x 15 2 x2 0 3x 30 x 0 2 x 1 T 2 Then cos T 10. 60q. 5 x12 8 x2 2 2 x1 x2 42 x1 102 x2 15. R x1 , x2 Rx1 10 x1 2 x2 42 Rx2 16 x2 2 x1 102 0, 5 x1 x2 0, x1 8 x2 Solving this system yields x1 Rx1x1 10 Rx1x2 2 Rx2 x2 16 3 and x2 Rx1x1 0 and Rx1x1 Rx2 x2 Rx1x2 2 So, revenue is maximized when x1 16. P x1 , x2 0 21 51 6. ! 0 3 and x2 6. 15 x1 x2 C1 C2 15 x1 15 x2 0.02 x12 4 x1 500 0.05 x2 2 4 x2 275 Px1 0.04 x1 11 0, x1 275 Px 2 0.10 x2 11 0, x2 110 Px1x1 0.04 Px1x 2 0 Px 2 x 2 0.10 Px1x1 0 and Px1x1Px 2 x 2 Px1x 2 So, profit is maximized when x1 2 0.02 x12 0.05 x2 2 11x1 11x2 775 ! 0 275 and x2 110. © 2010 Brooks/Cole, Cengage Learning 250 Chapter 13 Functions of Several Variables 2 pq 2 pr 2qr. 17. P p, q, r p q r 1 p q. 1 implies that r 2 pq 2 p 1 p q 2q 1 p q P p, q 2 pq 2 p 2 p 2 2 pq 2q 2 pq 2q 2 wP wp 2q 2 4 p; Solving wP wp and so p 18. (a) wP wq wP wq 2 p 2 4 q 0 gives q 2 p 1 p 2q 1 1 §1 1· and P¨ , ¸ 3 © 3 3¹ q §1· §1· §1· §1· §1· 2¨ ¸ 2¨ ¸ 2¨ ¸ 2¨ ¸ 2¨ ¸ ©9¹ © 3¹ © 3¹ ©9¹ ©9¹ x ln x y ln y z ln z , x y z H Hx 1 ln x 1 ln 1 x y 0 Hy 1 ln y 1 ln 1 x y 0 ln 1 x y ln x So, ln 1 2 x ln x 1 2 x 13 ln (b) H 1 3 1 3 ln ln y x 1 3 3k Cx § 3k ¨ © Cy § 2k ¨ ¨¨ © § 3k ¨ © x 2 4 2k yx § · 2k ¨ ¸ ¨¨ x2 4 ¹ © yx 2 · § 1· ¸ 2k ¨ ¸ © 2¹ x 4¹ x x x 4 2 9x x2 x 4 y x y x 2 y So, x y 1 3 1. 3 z ln 3 y x 2 1. The distance from R to S is10 y. 1 k 10 y 2 · ¸ ¸ 1 ¸¹ 0 yx yx 2 1 1 2 0 1 3 x2 4 x 4 1 2 2 2 2 2 y x 2 ln 1 3 0 3x 2 2 yx · ¸k ¸ 1 ¸¹ 2 ln 2 . 3 y. x x yx x yx 1 3 6 9 x ln x y ln y 1 x y ln 1 x y 1 x 2 4. The distance from Q to R is 19. The distance from P to Q is C 2 pq 2 p 2q 2 p 2 2q 2 y x y x 2 2 1 1 3 1 1 3 2 2 | 0.707 km and y 2 1 2 3 3 2 6 2 3 3 2 | 1.284 km. 6 © 2010 Brooks/Cole, Cengage Learning Section 13.9 20. S d1 d 2 d3 00 2 y 2 4 y 2 dS dy 1 2 y 2 4 y 2 02 y 2 2 3 3 62 3 . 3 23 3 The sum of the distance is minimized when y 21. (a) S x, y 2 2 0 2 2 y 0 x2 y 2 | 0.845. 3 2 x 2 x 2 2 y 2 y 2 2 2 2 x4 x4 2 y 2 2 2 From the graph we see that the surface has a minimum. x x 2 x 4 (b) S x x, y 2 2 2 x2 y 2 x 2 y 2 x4 y 2 y S y x, y x2 y 2 (c) S 1, 1 (d) x2 , y2 2 y 2 d1 d 2 d3 x 0 tan T 2 251 2 2 0 when y 2 2 y 0 Applications of Extrema of Functions of Two Variables y 2 x 2 2 S x 1, 1 i S y 1, 1 j 2 10 1 1 2 2 y 2 2 y 2 2 S 2 24 20 y 2 x4 1 § 1 i ¨ 2 © 2 2 y 2 2 4 2 · ¸j 10 ¹ 8 6 4 2 2 4 6 8 y x 2 T | 186.027q 5 1 x1 S x x1 , y1 t , y1 S y x1, y1 t § 1 1 ·· § 2 t, 1 ¨ ¨1 ¸t ¸ 2 10 2¹ ¹ © © § 2 10 · § 2 5 2· 2 2 ¸¸t ¨¨1 ¸¸t 2 2 ¨¨ 5 5 5 © ¹ © ¹ § 1 1 ·· § 2 S ¨1 t, 1 ¨ ¸t ¸ 2 2¹ ¹ © 10 © § 2 10 · § 2 5 2· 2 2 ¸¸t ¨¨1 ¸¸t 2 10 ¨¨ 5 5¹ © 5 ¹ © § 2 10 · § 2 5 2· 4 2 ¸¸t ¨¨1 ¸¸t 2 10 ¨¨ 5 5¹ © 5 ¹ © Using a computer algebra system, we find that the minimum occurs when t | 1.344. So x2 , y2 | 0.05, 0.90 . (e) x3 , y3 x2 S x x2 , y2 t , y2 S y x2 , y2 t | 0.05 0.03t , 0.90 0.26t S 0.05 0.03t , 0.90 0.26t 0.05 0.03t 2 0.90 0.26t 2 2 2.05 0.03t 3.95 0.03t 2 1.10 0.26t 2 1.10 0.26t 2 Using a computer algebra system, we find that the minimum occurs when t | 1.78. So x3 , y3 | 0.10, 0.44 . x4 , y4 x3 S x x3 , y3 t , y3 S y x3 , y3 t | 0.10 0.09t , 0.44 0.01t S 0.10 0.09t , 0.45 0.01t 0.10 0.09t 2 0.45 0.01t 3.90 0.09t 2 2 1.55 0.01t 2.10 0.09t 2 1.55 0.01t 2 2 Using a computer algebra system, we find that the minimum occurs when t | 0.44. So, x4 , y4 | 0.06, 0.44 . Note: The minimum occurs at x, y 0.0555, 0.3992 (f ) S x, y points in the direction that S decreases most rapidly. You would use S x, y for maximization problems. © 2010 Brooks/Cole, Cengage Learning 252 Chapter 13 Functions of Several Variables x 4 22. (a) S 2 y2 x 1 2 y 6 2 x 12 2 y 2 2 z 30 The surface appears to have a minimum near x, y x 4 (b) S x 2 x 4 2 x 4 y 6 2 x 1 2 y 6 x 12 y 2 2 x 12 2 y 2 −2 x y 2 2 2 4 2 −4 2 4 6 2 8 y 0.258 i 0.03 j. Direction | 6.6q 1, 5 . Then S 1, 5 (c) Let x1 , y1 x 12 2 y 6 y 2 x 1 2 y Sy x 1 y 1, 5 . (d) t | 0.94, x2 | 1.24, y2 | 5.03 (e) t | 3.56, x3 | 1.24, y3 | 5.06, t | 1.04, x4 | 1.23, y4 | 5.06 Note: Minimum occurs at x, y 1.2335, 5.0694 (f ) S x, y points in the direction that S decreases most rapidly. 23. Write the equation to be maximized or minimized as a function of two variables. Set the partial derivatives equal to zero (or undefined) to obtain the critical points. Use the Second Partials Test to test for relative extrema using the critical points. Check the boundary points, too. 24. See pages 964 and 965. 25. (a) x y xy x2 2 0 0 4 0 1 0 0 2 3 6 4 ¦ xi a ¦ yi 0 36 04 3 8 02 ¦ xi yi 4 1ª 3 º 4 0» 3 «¬ 4 ¼ 3 ,b 4 2 (b) S 26. (a) 8 4 ,y 3 3 4 x 4 3 2 1 6 x y xy x2 3 0 0 9 1 1 1 1 1 1 1 1 3 2 6 9 ¦ yi 0 46 04 4 20 0 2 (b) S 2 ¦ xi 2 § 3 4 · §4 · §3 4 · ¨ 0 ¸ ¨ 1¸ ¨ 3¸ 2 3 3 2 3 © ¹ © ¹ © ¹ ¦ xi a 6 2 ¦ xi yi 4 3 ,b 10 2 6 1ª 3 º 4 0 4 «¬ 10 »¼ 2 ¦ xi 2 20 1, y §1 · §7 · § 13 · § 19 · ¨ 0 ¸ ¨ 1¸ ¨ 1¸ ¨ 2¸ © 10 ¹ © 10 ¹ © 10 ¹ © 10 ¹ 2 3 x 1 10 1 5 © 2010 Brooks/Cole, Cengage Learning Section 13.9 Applications of Extrema of Functions of Two Variables 27. (a) x y xy x2 0 4 0 0 1 3 3 1 1 1 1 1 2 0 0 4 ¦ xi ¦ yi 4 44 48 4 6 42 a 44 (b) S 2 ¦ xi yi 8 1 ª8 2 4 º¼ 4¬ 2, b 23 2 2 1 2 ¦ xi 2 4 2 6 2 x 4 4, y 00 253 2 28. (a) x y xy x2 3 0 0 9 1 0 0 1 2 0 0 4 3 1 3 9 4 1 4 16 4 2 8 16 5 2 10 25 6 2 12 ¦ xi ¦ yi 28 8 37 28 8 a 8 116 28 2 8 ¦ xi yi 72 144 1 ,b 2 2 2 37 ¦ xi 1ª 1 º 8 28 » 8 «¬ 2 ¼ 2 2 116 3 ,y 4 1 3 x 2 4 2 2 2 §3 · § 1 · §1 · §3 · §5 · §5 · §7 · §9 · ¨ 0 ¸ ¨ 0 ¸ ¨ 0 ¸ ¨ 1¸ ¨ 1¸ ¨ 2 ¸ ¨ 2 ¸ ¨ 2 ¸ ©4 ¹ © 4 ¹ ©4 ¹ ©4 ¹ ©4 ¹ ©4 ¹ ©4 ¹ ©4 ¹ (b) S 29. 0, 0 , 1, 1 , 3, 4 , 4, 2 , 5, 5 ¦ xi ¦ xi yi a 36 2 13, 46, ¦ yi ¦ xi 2 5 46 13 12 5 51 13 b 1ª 37 º 12 13 » « 5¬ 43 ¼ y 37 7 x 43 43 ¦ xi ¦ xi yi 51 7 43 37 43 9, 39, ¦ yi ¦ xi 2 3 39 9 9 a 3 35 9 2 1ª 3 º 9 9» 3 «¬ 2 ¼ 3 3 x 2 2 b y 9, 35 36 24 3 2 9 6 3 2 7 7 y = 37 x + 43 43 7 3 2 30. 1, 0 , 3, 3 , 5, 6 12, 74 86 2 2 (5, 5) (3, 4) (4, 2) −2 (1, 1) (0, 0) −1 10 6 −1 −1 © 2010 Brooks/Cole, Cengage Learning 254 Chapter 13 Functions of Several Variables 31. 0, 6 , 4, 3 , 5, 0 , 8, 4 , 10, 5 ¦ xi ¦ xi yi ¦ yi ¦ xi 2 27, 70, increases by about 2.09 million. 205 1ª º § 175 · 0 ¨ ¸ 27 » 5 «¬ © 148 ¹ ¼ b n 350 296 2 5 205 27 (b) For each one-point increase in the percent x, y 0, 5 70 27 0 a ¦ yi 37. S a, b, c 175 148 945 148 8 wS wa ¦2 xi 2 wS wb ¦2 xi wS wc 2¦ yi axi 2 bxi c n n 18 −6 yi axi 2 bxi c n n n i 1 i 1 i 1 n n n i 1 i 1 i 1 ¦ xi ¦ xi yi ¦ yi ¦ xi 2 42 275 6 275 42 31 a 1§ 29 · 42 ¸ ¨ 31 6© 53 ¹ b i 1 ¦ yi y 33. (a) y (b) or x 9 14 108 zy 2 zy 2 2 yz 2 V xyz Vy 108 z 4 yz 2 z 2 z 108 4 y 2 z 0 Vz 108 y 2 y 4 yz y 108 2 y 4 z 0. 2 and 2 y 4 z x 1.6 x 84 108 108, we obtain the solution 36 inches, y 18 inches, and z 18 inches. 39. 2, 0 , 1, 0 , 0, 1 , 1, 2 , 2, 5 80 50 (c) For each one-year increase in age, the pressure changes by approximately1.6, the slope of the line. 34. (a) Using a graphing utility, y (b) When x 1.59, y 300 x 832. 300 1.59 832 355. 35. 1.0, 32 , 1.5, 41 , 2.0, 48 , 2.5, 53 7, ¦ yi 14, b When x 108 2 y 2 z. The volume is given by −1 0 a i 1 Solving the system 4 y 2 z −1 250 ¦ xi i 1 respectively. Then the sum of the length and girth is 108 given by x 2 y 2 z 400 | 1.3365 29 425 x 53 318 ¦ xi yi 38. Let x, y, and z be the length, width, and height, 31 425 318 i 1 n n a ¦ xi b¦ xi cn 29 | 0.5472 53 2 6 400 42 n ¦ xi 2 yi i 1 n 2 6 0 i 1 n 32. 6, 4 , 1, 2 , 3, 3 , 8, 6 , 11, 8 , 13, 8 ; n 0 n a ¦ xi 3 b ¦ xi 2 c ¦ xi (10, − 5) y = − 175 x + 945 148 148 0 i 1 a ¦ xi 4 b¦ xi 3 c ¦ xi 2 (4, 3) (5, 0) (8, − 4) yi axi 2 bxi c i 1 (0, 6) −4 2 axi 2 bxi c i 1 175 945 x 148 148 y 2.09 x 60.2 36. (a) y 19, y 1.6, y 174, ¦ xi yi 322, ¦ xi ¦ xi ¦ yi ¦ xi 2 ¦ xi3 ¦ xi 4 ¦ xi yi ¦ xi 2 yi 8 8 3 , 7 (2, 5) (−1, 0) 10 (1, 2) −9 0 6 (0, 1) (−2, 0) −2 34 12 22 34a 10c a 2 0 b 12, 10a 5c 22, 10b 6 , 5 c 26 , 35 y 3 2 x 7 65 x 8 26 35 13.5 14 x 19 41.4 bushels per acre. © 2010 Brooks/Cole, Cengage Learning Section 13.9 Applications of Extrema of Functions of Two Variables 40. 4, 5 , 2, 6 , 2, 6 4, 2 ¦ xi ¦ yi ¦ xi 2 ¦ xi3 ¦ xi 4 ¦ xi yi ¦ xi 2 yi 0, 0 , 2, 15 , 4, 30 , 6, 50 , 8, 65 , 10, 70 0 8 (−2, 6) (− 4, 5) 19 ¦ xi ¦ yi ¦ xi 2 ¦ xi3 ¦ xi 4 ¦ xi yi ¦ xi 2 yi (2, 6) 40 (4, 2) −9 9 0 −4 544 12 160 544a 40c a 43. (a) 12, 40a 4c 160, 40b 245 , b 103 , c 41 , 6 y 245 x 2 19 3 x 10 230 220 1800 15,664 1670 13,500 1800a 220b 30c 220a 30b 6c 25 2 112 x y 9 (b) 14 20 541 x 56 25 14 13,500 1670 230 | 0.22 x 2 9.66 x 1.79 120 (4, 12) 29 (3, 6) 99 −5 353 (2, 2) 14 −20 70 44. (a) y 254 (b) y 254 99a 29b 9c 70 29a 9b 4c 20 1, c 1, b −1 7 (0, 0) −2 353a 99b 29c a 30 15,664a 1800b 220c 41 6 41. 0, 0 , 2, 2 , 3, 6 , 4, 12 ¦ xi ¦ yi ¦ xi 2 ¦ xi3 ¦ xi 4 ¦ xi yi ¦ xi 2 yi 255 (c) 0.075 x 5.3 0.002 x 2 0.12 x 5.1 7 x2 x 0, y 5 18 5.5 42. 0, 10 , 1, 9 , 2, 6 , 3, 0 ¦ xi ¦ yi ¦ xi 2 ¦ xi3 ¦ xi 4 ¦ xi yi ¦ xi 2 yi 11 25 (0, 10) (2, 6) (3, 0) 36 −9 −1 y 0.075 24 5.3 y 0.002 24 7.1 (billion) 2 0.12 24 5.1 | 6.8 (billion). The quadratic model is less accurate because of the negative x 2 coefficient. 21 33 33 36a 14b 6c 21 14a 6b 4c 25 54 , 9 98 24 and (1, 9) 14 98a 36b 14c a (d) For 2014, x 6 b 9 , 20 c 199 , 20 y 54 x 2 9 x 20 199 20 © 2010 Brooks/Cole, Cengage Learning 256 Chapter 13 Functions of Several Variables 45. (a) ln P 0.1499h 9.3018 (b) ln P P (c) ax b 0.1499h 9.3018 1 y e 0.1499 h 9.3018 y 1 0.0074 x 0.445 46. (a) 10,957.7e 0.1499 h 14,000 (b) −2 0.0074 x 0.445 40 24 0 −2,000 60 0 (d) Same answers (c) No. For x 1000 which seems inaccurate. y n ¦ axi 47. S a, b 70, y | 14, which is nonsense. 2 b yi i 1 n n i 1 i 1 n 2a ¦ xi 2 2b¦ xi 2¦ xi yi S a a, b i 1 n n i 1 i 1 2a ¦ xi 2nb 2¦ yi Sb a , b n S aa a, b 2¦ xi 2 Sbb a, b 2n S ab a, b 2¦ xi i 1 n i 1 S aa a, b ! 0 as long as xi z 0 for all i. (Note: If xi n § n · 4n ¦ xi 2 4¨ ¦ xi ¸ i 1 ©i 1 ¹ S aa Sbb Sab 2 d 2 0 for all i, then x 0 is the least squares regression line.) 2 2 n ª n § n · § n · º 4 «n¦ xi 2 ¨ ¦ xi ¸ » t 0 since n¦ xi 2 t ¨ ¦ xi ¸ . «¬ i 1 i 1 ©i 1 ¹ © i 1 ¹ »¼ As long as d z 0, the given values for a and b yield a minimum. Section 13.10 Lagrange Multipliers 1. Maximize f x, y 2. Maximize f x, y xy. Constraint: x y Constraint: 2 x y 10 O g f yi x j O½ y y ¾x O¿ x x y 10 x f 5, 5 5 y 4 O g f Oi j yi x j xy. y 2O x O 2x y 2O i O j 4 4O O 25 f 1, 2 y 4 1, x 1, y 2 2 12 10 Level curves 8 6 4 2 Constraint x 2 4 6 8 10 12 © 2010 Brooks/Cole, Cengage Learning Section 13.10 x2 y2. 3. Minimize f x, y Constraint: x y 4 Constraint: 2 y x 2 y ¾x 2y O¿ x y 4 x f 2, 2 2 xO i 2O j 2 xi 2 y j O½ 2x 2 y 8 0 O g f Oi O j 2 xi 2 y j 257 x2 y 2. 6. Maximize f x, y Og f Lagrange Multipliers 2x 2 xO x If x 0, then y If O 1, 2O 2 y 0 or O 1 0 and f 0, 0 2 y 0. 1 x2 2 x 2. y f Constraint 4 2 1 2, 1 1, Maximum 2 x 2 xy y. 7. Maximize f x, y x −4 Constraint: 2 x y 4 O g f Level curves −4 Constraint: 2 x 4 y 5 Og f 2O i 4O j 2 xi 2 y j 2O x 4O y 5 10O 2x 2y 2x 4 y O f 2x 1 O x 2x y 100 4 x f 25, 50 5 1, 2 1, 2 2x O½ x ° Constraint: x 2 y 2y x 2y 5 2O f 1, 2 0 3 1 x2 y O 2, x 1, y 50 3 x y 10. 6 2 xyO i x 2O j 2 xyO O x 2O O 3 ½ 2 xy °° 2 ¾3 x 1 ° x 2 °¿ § 3x · 6 x2 ¨ ¸ ©2¹ 6 x3 4 x 3 0 5 O 5 25, y O g 3i j O 2 ¾ y 2O °¿ 100 1 y O i 2j 2 xi 2 y j 2x ° ¿ 2600 Og f O 1½ ° O 1 ¾y 2 8. Minimize f x, y x x2 y2. Constraint: x 2 y 5 2 2O y f 5. Minimize f x, y O 2 2y x O 2O 5 4 1,1 2 2O i O j 2 2 y i 2x 1 j x2 y2. 4. Minimize f x, y 100 4, y 2 § 33 4 · f ¨¨ 3 4, ¸ 2 ¸¹ © 3x 2 x z 0 2 xy y 33 4 2 9 3 4 20 2 © 2010 Brooks/Cole, Cengage Learning 258 Chapter 13 Functions of Several Variables 6 x 2 y 2 is maximum when 9. Note: f x, y Constraint: x y z g x, y is maximum. Maximize g x, y 6 x2 y 2. Constraint: x y 2 2 x O½ 2 y O¿ ¾x 2 x f 1, 1 g 1, 1 2 x2 y 2. Minimize g x, y Constraint: 2 x 4 y 2y 2O ½ ¾y 4O ¿ 2x 4 y 1 2 15 10 x §3 · g ¨ , 3¸ ©2 ¹ Constraint: x y z 2y O¾x 2z ° y O °¿ x y z f 3, 3, 3 9 x xz x y z 10 O 1 2 14 O 10 y 4, y 6 16 40 36 84 28 44 x 2 3 xy y 2 . Case 1: On the circle x 2 y 2 2x 3y 3x 2 y 2 xO ½ 2 ¾x 2 yO ¿ x2 y 2 1 x 1 y2 r 2 ,y 2 § 2 2· ,r Maxima: f ¨¨ r ¸¸ 2 2 © ¹ 3 z § 2 2· Minima: f ¨¨ r , ¸ 2 ¸¹ © 2 3 y 2 Constraint: x 2 y 2 d 1 9 r 2 2 5 2 1 2 Case 2: Inside the circle xy x 3 x 1 14 O 15. Maximize or minimize f x, y xyz. Constraint: x y z f 1, 1, 1 3 5 2 27 O½ ° O ¾ yz O °¿ 10 O 10 f 4, 6 3 z 12. Maximize f x, y, z yz xz xy 10 1 2 1 2 x x2 y2 z 2. 11. Minimize f x, y , z O½ x 2 10 x y 2 14 y 28. O½ x ¾ O¿ y 15 3 ,y 2 1 3 z O x 2x y 1 3 Constraint: x y x y 15 2x §3 · f ¨ , 3¸ ©2 ¹ z 14. Minimize f x, y 2 x 10 2 y 14 1 1 x 1, 1, 1 3 3 3 f 1 y is minimum. 2x y x y z x 2 y 2 is minimum when g x, y 10. Note: f x, y O½ ° O¾x O °¿ 2x 2y 2z y x y x2 y2 z 2. 13. Minimize f x, y, z y z z 1 fx fy 2x 3 y 3x 2 y f xx 2, f yy 0½ x 0¾¿ 2, f xy Saddle point: f 0, 0 y 0 3, f xx f yy f xy 2 d 0 0 By combining these two cases, we have a maximum 5 § 2 2· of at ¨¨ r ,r ¸ and a minimum of 2 © 2 2 ¸¹ 2 2· 1 § at ¨ r ,B ¸. 2 ¸¹ 2 ¨© 2 © 2010 Brooks/Cole, Cengage Learning Section 13.10 e xy 4 . 16. Maximize or minimize f x, y Constraints: x 2 z Case 1: On the circle x 2 y 2 y 4e x 4 e xy 4 x2 y2 1 x r y2 2 2 e1 8 | 1.1331 § 2 2· Minima: f ¨¨ r ,r ¸¸ 2 2 © ¹ e 1 8 | 0.8825 0½° ¾ x 0°¿ 4 xy 4 fy x 4e f xx y 2 xy 4 , f yy e 16 At 0, 0 , f xx f yy f xy 2 Saddle point: f 0, 0 1 x y z O P½ xz O P ¾ yz O P °¿ ° 6 z 6 x 2 x y 12 y 12 x x 2 3 x· 9 § 2 12 x ¨ 3 ¸ x 2¹ 2 © 6, z 27 x 72 x 0 19. f x, y 2 y 0 O½ x O 2½ 2y O¿ y O 2¿ x y 1 x y x2 y2 1 2x ¾ 2 ¾ x y 1 2 § 1· § 1· ¨© ¸¹ ¨© ¸¹ 2 2 2 2 2 20. Minimize the square of the distance f x, y 32 subject to the constraint 2 x 3 y 0 2x Oi jk Pi jk 2y xy x 32½ ¾2x 2 z 0¿ z 6 0 2 2O ½ ¾y 3O ¿ x2 y 2 1. 3x 2 1 x 2 ,y 13 3 13 3· § 2 The point on the line is ¨ , ¸ and the desired © 13 13¹ 32 x y f 8, 16, 8 2y z x 2z 2x 3y yz x y z 2O Minimum distance: Og Ph x y z 2z ° ¾2 x ° ¿ xyz. Constraints: x y z xy P Constraint: x y 0. § 2 2· of e 1 8 at ¨¨ r ,r ¸. 2 ¸¹ © 2 yzi xz j xyk 2y f 6, 6, 0 1· §1 e xy ¨ xy ¸ 16 4¹ © Combining the two cases, we have a maximum § 2 2· ,B of e1 8 at ¨¨ r ¸¸ and a minimum 2 2 © ¹ f O P½ x 0 y x 2 xy 4 , f xy e 16 17. Maximize f x, y, z 2x 2x Case 2: Inside the circle y 4 e xy O i 2k P i j 2 xi 2 y j 2 z k § 2 2· Maxima: f ¨¨ r ,B ¸ 2 ¸¹ © 2 fx 12 Og Ph f 2 xO½° 2 ¾ x 2 yO °¿ 6 x y 1 259 x2 y2 z 2. 18. Minimize f x, y, z Constraint: x 2 y 2 d 1 xy 4 Lagrange Multipliers z 8 2 distance is d § 2· § 3· ¨© ¸¹ ¨© ¸¹ 13 13 2 13 . 13 16 1024 © 2010 Brooks/Cole, Cengage Learning 260 Chapter 13 Functions of Several Variables x2 y 2 21. f x, y Constraint: x y 2 y 2 x y §4 O· ¨ ¸ 2 © 2 ¹ 4 O 6 x 1 22. f x, y 32 1 2 2 4O x 4y 2 3 2 y2 1, y 2 x 3 y2 O 3 0 O x2 y 3 2x2 2y 2x 3 2 2 x3 O 2 16O 6 4 x3 2 x 6 17 O 4 2 x 1 2x 2x 3 O x 19 ,y 17 1 Minimum distance: 8 17 x 12 25. f x, y 2 Minimum distance: 0 2 4 17 § 19· § 8· ¨© ¸¹ ¨© ¸¹ 17 17 2 5 17 17 2 1 2 2 y 1 0 x 1, y 12 2 2 y 1 Constraint: y x 2 1 2x 11 3 4 2O x 2y 2O 2 11 2 Minimum distance: 2x 3 2 4 2O § 1· 52¨ ¸ © 2¹ 3. r 52 5 2, x Constraint: y x 2 O 2 9 distance 0, and f 0, 0 0, y 24. f x, y 3 ½ O°x ¾ °y ¿ 2 x 1 x O 2 f r 5 2, 5 2 Constraint: x 4 y 2 2y 3 If x z 0, O Minimum distance: O 2 4O 2 1 3, y 2y 2x y 0 2 xO O 2 If x O x Constraint: y x 2 4 2 x2 y 3 23. f x, y 4 ½ x ° ¾ O ° y ¿ O 2x 2 1, 2 0 2 xO O y x 1 O 2y 2 2 2x 1 2 2 x2 1 2 2 x 2x2 4 x3 2 x 1 2x2 4 x3 0 x | 0.3855 y | 1.1486 Minimum distance: f 0.3855, 1.1486 | 0.188 © 2010 Brooks/Cole, Cengage Learning Section 13.10 2 x 2 y 10 subject to the constraint x 4 26. Minimize the square of the distance f x, y 2 x 4 O °½ x ¾ 2 yO °¿ x 4 2x 2 y 10 Lagrange Multipliers y 10 y y 2 y2 261 4. 5 x 10 2 § 25 · 4 x 2 8 x 16 ¨ x 2 50 x 100 ¸ 4 © 4 ¹ 29 2 x 58 x 112 0 4 Using a graphing utility, we obtain x | 3.2572 and x | 4.7428 or by the Quadratic Formula, x 4 2 y2 58 r x 582 4 29 4 112 58 r 2 29 29 2 2 29 4 4 29 . 29 § 29 · 4 ¨1 ¸ and y 29 © ¹ Using the smaller value, we have x ª § The point on the circle is «4 ¨1 ¬« © 4r 10 29 | 1.8570. 29 29 · 10 29 º , » and the desired distance is d 29 ¸¹ 29 ¼» 2 § 16¨1 © § 10 29 · 29 · ¨ 10¸ 29 ¸¹ 29 © ¹ 2 | 8.77. The larger x-value does not yield a minimum. 27. Minimize the square of the distance x 2 f x, y , z 2 y 1 2 29. Maximize f x, y, z z 1 subject to the constraint x y z 2x 2 O½ 2 y 1 O¾ y ° x y z x2 y2 z 2 1. 1 x 2x 1 4 2z 1, y x 0 z 1 2 is d 0 1 2 01 2 2 0 4 x 0 z 2 0 3 z 16 z 16 0 3z 4 z 4 0 2 4 3 z 3. 4. 0 4 2z 2 The point on the plane is 1, 0, 0 and the desired distance 2 0 and x 2 z x2 y 2 z 2 x 2z 1 z subject to the constraints 2 xO P 2 yO y 2 zO 2 P 0 0 1 x 1 z and y O°¿ 2z 1 2 or z 4 4 at the point The maximum value of f occurs when z 28. Minimize the square of the distance x 4 f x, y , z 2 of 4, 0, 4 . y2 z2 30. Maximize f x, y, z x2 y 2 z subject to the constraint x 2 x 4 x2 y 2 y 2y x2 y 2 x ½ O z ° ° °°2 x 4 ¾ 2y ° ° ° °¿ O y O z O O 2z x2 y 2 z 0, x 0. 2, y 0, z x2 y2 z 2 0 0 2 x 2 y 2 The point on the plane is 2, 0, 2 and the desired distance is d 2 4 2 02 2 2 2 2. 1 2x y z 2y 36 and 2 x y z 2 xO 2P ½ ° 2 yO P ¾ x 2 zO P °¿ x2 y2 z 2 2 z subject to the constraints 2. 2y 36 2 z y2 5 y 2 2x y 2 2 36 30 y 20 y 32 0 15 y 2 10 y 16 0 2 5y 2 5r 265 15 Choosing the positive value for y we have the point y § 10 2 265 5 265 1 265 · , , ¨¨ ¸¸ . 15 15 3 © ¹ © 2010 Brooks/Cole, Cengage Learning 262 Chapter 13 Functions of Several Variables 31. Optimization problems that have restrictions or constraints on the values that can be used to produce the optimal solution are called contrained optimization problems. 32. See explanation at the bottom of page 971. x2 y2 z 2. 33. Minimize f x, y, z 2x O x 2y O y 2z O z x y z 3 O 2 O yz x O xyz½ 1 O xz y O xyz¾ x 1 O xy z y2z O 2 xyz O xy 2 O 3 3O 2 3 x y z O 2 xy 2 1, z 1, y 1 1 1 Minimum distance x 1 34. Minimize f x, y, z 1 2 y 2 2 2z 3 x y z 3 x 8 y 16 z 8 Constraint: g x, y, z yzO 0.12 z 0.11x xzO 0.12 y x xyO 668.25 xyz 0.12 xz 0.11yx 3 O 2 3 0.12 z 0.11x 10 3 xyz 2 2 3 3 xyzO x 2O O § 0.24· xz ¨ © x ¸¹ § 11 · x 2 ¨ x¸ © 12 ¹ 33· § f ¨ 9, 9, ¸ © 4¹ 668.25 xyz 0.12 z 0.11 y 0.12 2x 2 y 0.06 2 yz 2 xz 0.11 xy . 37. Minimize f x, y, z § 1· § 1· § 1· ¨© ¸¹ ¨© ¸¹ ¨© ¸¹ 3 3 3 xy 2 x 2 32 6 Minimum distance 32 y z 0 z 2 3O 4 5 ,z 3 x y z 2 3 2 O 4 O 6 O 2 2 2 4 ,y 3 xy 2 z. xy 2 x y 2 z 3 . 2 O 2 4 O O y 2 6 O O z 2 2y 2 3 z 32 x 2x x 3 O x 2x 1 x 2 2 x y z Constraint: g x, y, z y y2z x 2 xyz 2 z 27 Constraint: g x, y, z 3 y O xyz °¿ 27 x 3 O § O· ¨ ¸ 2 © 2¹ 2 x ° 36. Maximize P x, y, z O 2 27 xyz 1 x O 2 O Constraint: g x, y, z xyz x y z Constraint: g x, y, z x y z. 35. Minimize f x, y, z 0.12 yz 0.11xy x y 0.24 x 0.24 z z 668.25 x y 0.11x 0.12 9, z 11x 12 33 4 $26.73 © 2010 Brooks/Cole, Cengage Learning Section 13.10 38. Maximize f x, y, z yz 1.5 yO 2 zO xz 1.5 xO 2 zO xy 2 xO 2 yO 1.5 xy 2 xz 2 yz 1.5 xy 2 xz 2 yz xyz x>1.5 yO 2 zO @ y>1.5 xO 2 zO @ 2 yzO x x xz 2 xO 2 xO O x 4. § x· § x· 1.5 x¨ ¸ 2 z ¨ ¸ z © 4¹ © 4¹ 2C ,z 3 3 x 4 z 2 C x 9 C x2 2C , 3 y x 2C 4 4S abc . 3 39. Maximize f x, y, z Constraint: a b c 4S bc 3 4S ac 3 4S ab 3 (also by symmetry) y §3 · §3 · 1.5 x 2 2 x¨ x ¸ 2 x¨ x ¸ 4 © ¹ ©4 ¹ y C C 2 xzO 2 ½ ° 4S bc ¾ 3 O° °¿ O° p q r Constraint: g p, q, r K , constant 4S ac a 3 2 pq 2 pr 2qr. 41. Maximize P p, q, r ba b c K 3 2q 2r O½ 2 p 2r O¾ p 2 p 2q ° q O°¿ p q r O P 13 , 13 , 13 3 2 9 r2 and let a vertex of the rectangular box be x, y, z . Maximize V x, y, z 2x 2 y 2z Constraint: g x, y, z x2 y 2 z 2 8 yz 2 xO 4 xyz O x2 ½ 8 xz 2 yO 4 xyz 8 xy 2 zO 4 xzy O y ¾x O z 2 °¿ x2 y2 z 2 2° (a) ln x 1 ln y 1 8 xyz. ln z 1 r2 x y z (b) H 13 , 13 , 13 y and x ln x y ln y y ln z. x y z Constraint: g x, y, z 40. Consider the sphere given by x 2 y 2 z 2 1 3 2. 3 42. Maximize H x, y, z a2 1 r 1 p 3p So, ellipse is a sphere: x2 y2 z 2 263 (volume). xyz Constraint: g x, y, z Lagrange Multipliers 1 O½ ° O¾x y O °¿ 3x z 1 x 3ª¬ 13 ln 1 3 º ¼ y z 1 3 ln 3 z r2 So, the rectangular box is a cube. © 2010 Brooks/Cole, Cengage Learning 264 Chapter 13 Functions of Several Variables 43. Maximize V x, y, z 2x 2 y 2z 2x ½ O a2 ° ° 2 y ° x2 O ¾ b2 ° a 2 2z ° O° c2 ¿ 8 yz 8 xz 8 xy y2 b2 8 xyz subject to the constraint x2 y2 z2 2 2 2 a b c 1. z2 c2 3x 2 3y2 x2 y2 z2 1 2 1, 2 2 2 2 a b c a b a b c ,y ,z x 3 3 3 So, the dimensions of the box are 1, 3z 2 c2 1 2 3a 2 3b 2 3c . u u 3 3 3 44. (a) Yes. Lagrange multipliers can be used. xyz subject to the constraint x 2 y 2 z (b) Maximize V x, y, z O ½ ° 2O ¾ y yz xz z and x 2O °¿ xy 108. 2y z x 2 y 2z 108 6 y 108, y 36, y x 18 z x y 18 Volume is maximum when the dimensions are 36 u 18 u 18 inches. 5 xy 3 2 xz 2 yz xy subject to the constraint xyz 45. Minimize C x, y, z yzO ½ ° xzO ¾ x xyO °¿ 8 y 6z 8x 6 z 6x 6 y 480 xyz 4 3 y, 4 y y3 3 360 u 3 O½ O¾x ° O°¿ xy x y z y 360, z 360 u 4 3 3 4 3 3 360 360 feet. z x y xyz subject to the constraint x y z yz 3 y 46. (a) Maximize P x, y, z xz 3z 480 x Dimensions: 480. S. z S x y z S 3 § S ·§ S ·§ S · xyz d ¨ ¸¨ ¸¨ ¸, x, y, z ! 0 © 3 ¹© 3 ¹© 3 ¹ So, S3 27 S xyz d 3 x y z . xyz d 3 xyz d 3 3 © 2010 Brooks/Cole, Cengage Learning Section 13.10 Lagrange Multipliers 265 n x1 x2 x3"x n subject to the constraint (b) Maximize P ¦ xi S. i 1 x2 x3"xn O x1x3"xn O ½ ° ° ° x1x2"xn O ¾ x1 ° # ° x1x2 x3"xn 1 O°¿ x2 " x3 xn n ¦ xi S x1 x2 " x3 S n xn i 1 So, § S· § S· § S· § S· x1x2 x3"xn d ¨ ¸ ¨ ¸ ¨ ¸ "¨ ¸ , xi t 0 © n¹ © n¹ © n¹ © n¹ § S· x1x2 x3"xn d ¨ ¸ © n¹ n n x1 x2 x3"xn d S n n x1 x2 x3"xn d x1 x2 x3 " xn . n 47. Minimize A S , r 2S h 4S r 2S r S r 2h 2S rh 2S r 2 subject to the constraint S r 2 h 2S rhO ½ ¾h Dimensions: r 3 V0 V0 and h 2S 2x 0 23 V0 2S 100 x 2 y 2 subject to the constraints x 2 y 2 z 2 48. Maximize T x, y, z 2y 2r S r 2O ¿ V0 2S r 3 V0 . 50 and x z 0. 2 xO P ½ ° ¾ 2 zO P °¿ 2 yO If y z 0, then O 1 and P z 0 and y T 0, 50, 0 If y 0 then x 2 z 2 100 50 50 · 2 ¸¹ 0. 50. So, x § 50 T¨ , 0, © 2 0, z 150 2x2 100 50 4 50 and x z 50 2. 112.5 So, the maximum temperature is150. © 2010 Brooks/Cole, Cengage Learning 266 Chapter 13 Functions of Several Variables Distance , minimize T x, y Rate 49. Using the formula Time O° d12 x 2 ° ¾ O ° v1 ° ¿ y v2 d22 y 2 x y x y d12 x 2 d22 y 2 v2 a d12 x 2 y and sin T 2 Medium 1 P x Because sin T1 d22 y 2 d1 θ1 , y x d2 θ2 we have sin T1 v1 d12 x 2 v1 x d2 y or v2 2 y 2 Q a Medium 2 sin T 2 . v2 § Sl · 2h l ¨ ¸ subject to © 2¹ 50. Case 1: Minimize P l , h § Sl · the constraint lh ¨ © 8 ¸¹ 51. Maximize P x, y S 2 Sl · § ¨© h ¸¹ O 4 2 lO O l 2h A. S 2 ,1 2 l § Sl 2 · lh ¨ subject to © 8 ¸¹ Case 2: Minimize A l , h § Sl · the constraint 2h l ¨ ¸ © 2¹ h Sl 4 2h S 2 l l 2O O h l or l 2 250,000. § y· 72O ¨ ¸ © x¹ 0.75 25 x 0.75 y 0.75 72O 25 § x· 60O ¨ ¸ © y¹ 0.25 75 x 0.25 y 0.25 60O 75 § y· ¨© ¸¹ x 0.75 § y· ¨© ¸¹ x 0.25 y x y P. § 18 · 72 x 60¨ x¸ ©5 ¹ S· § ¨ A ¸O 2¹ © 100 x 0.25 y 0.75 subject to the constraint 72 x 60 y 2 1 a. ½ x v1 d22 y 2 subject to the constraint x y v2 d12 x 2 v1 § 72O · § 75 · ¨© ¸¨ ¸ 25 ¹ © 60O ¹ 18 5 18 x 5 288 x 250,000 x y l Sl ,h 2 4 l Sl 2 4 15,625 18 3125 § 15625 · P¨ , 3125¸ | 226,869 © 18 ¹ 2h h l © 2010 Brooks/Cole, Cengage Learning Section 13.10 52. Maximize P x, y 100 x 0.4 y 0.6 subject to the constraint 72 x 60 y § y· 72O ¨ ¸ © x¹ 0.6 § x· 60O ¨ ¸ © y¹ 0.4 60 x 0.4 y 0.4 § y· ¨© ¸¹ x 0.6 § y· ¨© ¸¹ x 0.4 72O 1 40 O y x 9 y 5 §9 · 72 x 60¨ x¸ ©5 ¹ constraint 100 x 72O 40 60O 60 O 125,000 9 250,000 x § 125,000 · P¨ , 2500¸ | 496,399 © 9 ¹ § y· 60 x 0.4 y 0.4 O ¨ ¸ © x¹ 0.4 § x· 40 x 0.6 y 0.6 O ¨ ¸ © y¹ 0.6 60 0.4 0.6 y x §4 · 100 x 0.6 ¨ x ¸ ©5 ¹ x y 0.75 § y· ¨© ¸¹ x 0.25 72 25O 60 75O 72 75O 25O 60 18 y 5 0.75 18 x 5 3.6 x 50,000 x 500 | 191.3124 3.6 0.75 y 3.6 x | 688.7247 C 191.3124, 688.7247 | 55,097.97 72 x 60 y subject to the constraint 100 x 0.6 y 0.4 72 § y· § y· ¨ ¸ ¨ ¸ © x¹ © x¹ § x· 75 x 0.25 y 0.25O ¨ ¸ © y¹ 0.25 60 100 x 0.25 3.6 x 2500 50,000. 0.75 y x y 54. Minimize C x, y y § y· 25 x 0.75 y 0.75O ¨ ¸ © x¹ 9 x 5 180 x 0.25 0.75 72 § y· ¨© ¸¹ x 267 72 x 60 y subject to the 53. Minimize C x, y 250,000. 40 x 0.6 y 0.6 Lagrange Multipliers 50,000. 72 60O 60 40O 3 2O 72 2O 60O 3 4 y 5 4 x 5 0.4 50,000 500 45 0.4 400 45 0.4 § 500 400 · C¨ , | $65,601.72 0.4 0.4 ¸ 45 ¹ © 45 55. (a) Maximize g D , E , O cos D cos E cos J subject to the constraint D E J sin D cos E cos J O½ cos D sin E cos J O ¾tan D cos D cos E sin J D E J §S S S· g¨ , ¸ © 3 3 3¹ ° tan E O °¿ S D E J tan J D E S. J S 3 1 8 © 2010 Brooks/Cole, Cengage Learning 268 Chapter 13 Functions of Several Variables (b) D E J S J gD E S D E cos D cos E cos S D E cos D cos E ª¬cos S cos D E sin S sin D E º¼ cos D cos E cos D E γ 3 2 56. Let r 3 3 α radius of cylinder, and h 2S rh 2S r S h2 r 2 2S r h 3 2 r 2 h subject to g r , h ªC 2 r 4 º r2 « » ¬ 2Cr ¼ 5r 4 C 2 2C 5r 4 r2 C 5 C. Cr r5 2 2C 0 10r 3 C C2 r4 2Cr h h2 r 2 C2 r4 2Cr F r C2 F cc r rh r r4 h Fc r constant surface area r 2 h2 r 2 C 2 2Crh f r, h height of cone. 2 We maximize f r , h C rh height of cylinder 5S r h volume 3 2 S r 2h V β C2 C2 5 2C C 2 5 14 45C 2 C2 5 14 2C 5r 2 5r 2 5r 2 5 r 5 So, h r 2 5 . 5 By the Second Derivative Test, this is a maximum. © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 13 269 Review Exercises for Chapter 13 1. f x, y , z x2 y z 2 y x2 z 2 2 2 1 x2 y 2 4. f x, y (a) z Elliptic paraboloid 1 z 2 −1 y 1 1 x −2 2 f x 2, y is the graph of f shifted (b) g x, y y 3 x −2 2 units back on the x-axis. The hemisphere has equation 2 x 2 4 x2 y2 4 z 2 2. f x, y, z y2 z2 4 f x, y is the graph of f reflected in (c) g x, y 0 1, z t 0. the xy-plane, and shifted 4 units upward. Elliptic cone. z (d) z z 3 2 1 1 1 3 −1 x −1 −1 y 3 −2 y 1 1 1 x x f 0, y f x, 0 1 −3 x2 y2 3. f x, y (a) 1 x2 y 2 z z ex 5. f x, y 5 2 y2 The level curves are of the form 4 ex c x2 y2. ln c −2 1 2 The level curves are circles centered at the origin. y 2 2 y2 y x f x, y 2 is a vertical translation (b) g x, y 2 c = 10 of f two units upward. c=1 f x, y z is a horizontal translation (c) g x, y x −2 2 of f two units to the right. The vertex moves −2 from 0, 0, 0 to 0, 2, 0 . Generated by Mathematica (d) z z 5 5 4 4 z = f (1, y) 6. f x, y The level curves are of the form c ln xy ec z = f (x, 1) 2 2 2 y z xy. The level curves are hyperbolas x 2 x ln xy y f 1, y z 1 2 f x, 1 c= 2 3 c= 2 c=1 c=0 −3 3 −2 © 2010 Brooks/Cole, Cengage Learning y Chapter 13 270 Functions of Several Variables x2 y2 7. f x, y 11. The level curves are of the form x2 y2 1 x2 y2 . c c 12. The level curves are hyperbolas. lim x , y o 1,1 c = 12 13. x lim x , y o 0, 0 y xe y 1 x2 2 00 1 0 0 4 1 −1 r x. Continuous except when y 1 −4 xy x2 y 2 Does not exist. c = −12 c = −2 c=2 4 1 2 xy x2 y2 Continuous except at 0, 0 . c y lim x , y o 1,1 Continuous everywhere. −4 14. Generated by Mathematica x x y 8. f x, y lim x , y o 0, 0 x2 y x y2 4 For y x2 , For y 0, The level curves are of the form c x x y y § 1 c· ¨© ¸ x. c ¹ 1 x4 o . 2 x x4 4 x2 y x y2 0 for x z 0. 4 The limit does not exist. Continuous to all x, y z 0, 0 The level curves are passing through the origin with 1c slope . c c = − 12 3 c = −1 c=−2 c = −2 x2 y x y2 4 15. f x, y e x cos y fx e x cos y fy e x sin y 1 c= 2 2 c=1 xy x y 16. f x, y 3 −3 3 c= 2 c=2 fx y x y xy x y 2 y2 x y 2 −2 x2 fy 9. f x, y e x y x2 y 2 17. z z wz wx 3 −3 2 e y e x e x , wz wy e y −3 18. 3 3 x −3 10. g x, y y 1 x y z wz wx wz wy ln x 2 y 2 1 2x x2 y 2 1 2y x2 y 2 1 z 60 5 x 5 y © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 13 xy x2 y2 19. g x, y 24. u x, t y x 2 y 2 xy 2 x gx x2 y 2 xx y 2 gy x2 y 2 2 x2 y2 c sin akx cos kt wu wx wu wt y y 2 x2 2 271 akc cos akx cos kt kc sin akx sin kt 2 25. 2 z 3 20. w x2 y 2 z 2 ww wx 1 2 x y2 z2 2 1 2 x 2x x y2 z2 2 −1 y 3 3 ww wy y x y2 z2 ww wz x y z x 2 z 2 21. f x, y , z 26. z 2 z arctan 2 wz wx y x yz 2 x y2 fy z §1· ¨ ¸ 1 y 2 x2 © x ¹ fz arctan xz x2 y 2 y x 1 1 x2 y2 z 2 1 x2 y2 z 2 wf wx 1 1 x2 y 2 z 2 2 x 1 x2 y 2 z 2 wf wy 1 x2 y 2 z 2 wf wz 1 x y2 z2 3 2 1 2 2x wz wy wu wx wu wt 2 ce n t sin nx 6x y fy x 6 y2 f xx f yy 6 12 y fx y 1 f yx 1 28. h x, y 32 hy hxx hyy 2 cne n t cos nx 2 n2 t cn e 0. 4. 3 x 2 xy 2 y 3 fx hx 32 x2 wz . At 2, 0, 0 , 1 y wy 27. f x, y 32 z 23. u x, t wz wx Slope in y-direction. y 2 2 x ln y 1 . At 2, 0, 0 , Slope in x-direction. z § y· fx ¸ 2 2 ¨ 1 y x © x2 ¹ 22. f x, y, z x 2 ln y 1 hx y sin nx hyx x x y y x y 2 x x y 2 2 y x y 3 2x x y 3 x y 2 2y x y 4 x y x y 2 2y x y x y 4 x y x y 3 x y x y 3 © 2010 Brooks/Cole, Cengage Learning 272 Chapter 13 Functions of Several Variables x sin y y cos x 29. h x, y wz wx w2 z wx 2 wz wy sin y y sin x x cos y cos x hx hy hxx hyy y cos x x sin y hx y cos y sin x hyx cos y sin x w2 z wy 2 cos x 2 y 30. g x, y So, gx sin x 2 y gy 2 sin x 2 y g xx cos x 2 y g yy 4 cos x 2 y gx y 2 cos x 2 y g yx 2 cos x 2 y 2x 2 2 y 2 w2 z w2 z 2 2 wx wy 0. x3 3 xy 2 32. z wz wx w2 z wx 2 wz wy w2 z wy 2 So, 3x 2 3 y 2 6x 6 xy 6 x w2 z w2 z 2 2 wx wy 0. y x2 y2 33. z wz wx 2 xy x y2 2 w2 z wx 2 2 ª 4 x 2 2 y « « x2 y 2 ¬ 3 x2 y w2 z wy 2 x2 y2 w2 z w2 z 2 2 wx wy 2 2 2 º » 1 x2 y x2 y 2 2 y wz wy So, x2 y2 31. z 2 2» 2y ¼ 3x 2 y 2 x2 y 2 3 x2 y2 x2 y 2 2 2 y 2 x 2 y 2 x 2 y 2 2 y x y 2 2 4 2 y 3x 2 y 2 x2 y2 3 0. e y sin x 34. z wz e y cos x wx w2 z e y sin x wx 2 wz e y sin x wy w2 z e y sin x wy 2 So, w2 z w2z 2 2 wx wy e y sin x e y sin x 0. © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 13 x sin xy wz wz dx dy wx wy z 35. dz 273 xy cos xy sin xy dx x 2 cos xy dy xy 36. z x y2 2 wz wz dx dy wx wy dz ª « « ¬« x y 2 2 x2 y 2 º » dy » ¼» x 2 y 2 x xy y x y 2 2 y3 x2 y 2 32 dx x3 x2 y2 32 dy x2 y 2 z2 37. ª x2 y2 º » dx « » « «¬ ¼» x 2 y 2 y xy x 2 x dx 2 y dy 2 z dz 5 § 1 · 12 § 1 · ¨ ¸ ¨ ¸ 13 © 2 ¹ 13 © 2 ¹ x y dx dy z z dz Percentage error: dz z 17 | 0.654 cm 26 17 26 | 0.0503 | 5% 13 38. From the accompanying figure we observe h x tan T tan T or h x wh wh dh dx dT tan T dx x sec 2 T dT. wx wT 1 11S S r ,T r Letting x 100, dx , and dT . 2 60 180 h θ x (Note that we express the measurement of the angle in radians.) The maximum error is approximately dh 39. 40. § 11S · § 1· § 11S · § S · r 100 sec 2¨ r | r0.3247 r 2.4814 | r2.81 feet. tan ¨ © 60 ¸¹ ¨© 2¸¹ © 60 ¸¹ ¨© 180¸¹ V 1 3 S r 2h dV 2 3 S rh dr 13S r 2 dh A dA S 2 5 r 18 13S 2 2 r 18 r 56 S r 16 S rS in.3 S r r 2 h2 § ¨© S · ¸¹ dr r h Sr 2 r 2 h2 S 2r 2 h 2 r h 2 41. w 2 3 2 ln x 2 y , x (a) Chain Rule: dw dt 2 2 S rh dr r h 2 2t , y 2 dh S rh r 2 h2 dh S 8 25 § 1· 29 4t ¨© r ¸¹ 8 10S § 1· ¨r ¸ 29 © 8¹ 42. u ww dx ww dy wx dt wy dt r 43S 8 29 y 2 x, x cos t , y (a) Chain Rule: du dt sin t 2 sin t cos t 8t 1 4t 2 4 t dw dt ln x 2 y wu wx wu wy wx wt wy wt 1 sin t 2 y cos t 2x 1 1 2 2 x y x y 2 (b) Substitution: w sin t sin t 1 2 cos t ln 4t 2 4 t 1 8t 1 2 4t 4 t (b) Substitution: u du dt sin 2 t cos t 2 sin t cos t sin t sin t 1 2 cos t © 2010 Brooks/Cole, Cengage Learning 274 Chapter 13 43. w xy ,x z Functions of Several Variables 2r t , y (a) Chain Rule: ww wr 2r t rt , z ww wx ww wy ww wz wx wr wy wr wz wr y x xy 2 t 2 2 z z z 2r t t 2 2r t rt 2rt 2 2r t 2r t 2r t 4r 2t 4rt 2 t 3 2r t ww wt 2 ww wx ww wy ww wz wx wt wy wt wz wt y x xy 1 1 r z z z2 4r 2t rt 2 4r 3 2r t (b) Substitution: w ww wr ww wt 44. u 2r t rt xy z 2r t 2 4r t 4rt 2 t 3 2r t wu wr 2r 2t rt 2 2r t 2 4r 2t rt 2 4r 3 2r t x2 y 2 z 2 , x (a) Chain Rule: 2 r cos t , y 2 r sin t , z t wu wx wu wy wu wz wx wr wy wr wz wr 2 x cos t 2 y sin t 2 z 0 2 r cos 2 t r sin 2 t wu wt 2r wu wx wu wy wu wz wx wt wy wt wz wt 2 x r sin t 2 y r cos t 2 z (b) Substitution: u r , t wu wr wu wt r 2 cos 2 t r 2 sin 2 t t 2 wz wz 2z wx wx 0 x 2y y 46. 2 xz x 2y z y 2z xz 2 y sin z 0 wz wz z 2 y cos z wx wx 0 wz wx 2 x y y 2z wz wz z 2z wy wy wz wy r2 t2 2t 0 wz wx 2t 2r 45. x 2 xy y 2 yz z 2 2x y y 2 r 2 sin t cos t r 2 sin t cos t 2t 0 2 xz wz wz y cos z sin z wy wy wz wy z2 y cos z 2 xz 0 sin z 2 xz y cos z © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 13 47. f x, y x2 y f 2 xy i x 2 j f 5, 5 50 i 25 j z 3 4 i j unit vector 5 5 u Du f 5, 5 f f 1, 4 1 v 5 u z 2, 1 2 5 5 (a) f x, y w 1, 2, 2 2i 4 j k 1 3v u Du w 1, 2, 2 50. w 1 3 w 1, 2, 2 u 4 3 2 3 10 i 2 j 2 3 z 4i 4 j z 2, 1 4 2 z z x −6 −4 § S· z ¨ 0, ¸ © 4¹ 1 4 6 −2 12 3 −4 4 3 −6 Tangent line 4 y sin x y, c 56. f x, y (a) f x, y §S · 3, P¨ , 1¸ ©2 ¹ 4 y cos x i 4 sin x 1 j §S · f ¨ , 1¸ 3j ©2 ¹ (b) Unit normal vector: j e x cos y i e x sin y j 2 2 i j 2 2 Unit normal vector 2 e x cos y § S· z ¨ 0, ¸ © 4¹ 1 27 i 8 j 793 y 4 2 xy i x 2 j z 2, 1 54 i 16 j 54 i 16 j 6 x2 y z 65, P 3, 2 54i 16 j (d) w 1, 0, 1 u 10 2 3 3 j 27 . 8 27 y z x 3 8 27 65 Tangent line y x 8 8 1 i jk 3 Du w 1, 0, 1 52. 10 x 2 y i 2 x 6 yz j 3 y 2 k w 1, 0, 1 51. 4 3 2 (c) Slope j 32 k 5 x 2 2 xy 3 y 2 z w u 2 3i x y 18 x i 8 y j (b) Unit normal: z i 2y j xk x2 i 9 x2 4 y 2 , c f 3, 2 w j 4 y 2 xz w 49. 2 4j 55. f x, y 4 5 2 5 5 5 2 x y z 2, 1 f 1, 4 u Du f 1, 4 x2 y 2 1 ,0 2 x 2 2 xy z 2 5 5 i j 5 5 x2 y 2 x2 x y z 54. x2 y 2 i 2 1 2 z 1, 1 50 2 xy 1 i 2 f 5, 5 u 1 2 y x2 4 1 2x i + y j 2 2 i 2 j f x, y z 1, 1 30 20 48. y x2 y2 z 53. 275 (c) Tangent line horizontal: y (d) 1 y 2 2 , 2 2 3 2 (π2 , 1( x π −2 π 2 π © 2010 Brooks/Cole, Cengage Learning 276 57. Chapter 13 Functions of Several Variables x2 y z F x, y , z F 2 xy i x j k 2 F 2, 1, 4 y2 z 9 61. F x, y, z 0 x y G x, y , z 4i 4 j k F 2y j k So, the equation of the tangent plane is G i j 4x 2 4 y 1 z 4 F 2, 2, 5 4x 4 y z 0 or 4t 2, y x 4t 1, z F u G t 4. y 2 z 2 25 F x, y , z 58. F 6 j 8k Tangent line: 0 2 3 j 4k 62. So, the equation of the tangent plane is 3y 3 4z 4 0 or 3 y 4 z y 3 3 2, 2x i 2 y j k k F x, y , z x2 y2 z 2 9 F 2x i 2 y j 2z k F 1, 2, 2 4i 2 j k 2i 4 j 4k k 0 2 i 2j 1 0 3. x 2 y 2 z 2 14 f x, y , z f x, y , z 2 i 2 j 2k j 4 2 1 y 1 ,z 2 f 2, 1, 3 60. 0 So, the equation of the tangent line is 63. 4 t. z 5 4 0 F 4, 3, z 2, y y 2 1 G x 2 1 and the equation of the normal line is x i j 4k 3 z 0 k 0 or z 1 G x, y , z F u G 0 So, the equation of the tangent plane is z 4 4 i 2x 4 i 2 y 6 j k F 2, 3, 4 0 x 2 1 F 2, 1, 3 x2 y 2 4x 6 y z 9 F k x2 y 2 z 25, z 4 . 4 F x, y , z 59. j F x, y , z and the equation of the normal line is x i 1 1 0 2 y j 2z k F 2, 3, 4 4j k 8, and the equation of the normal line is 0, 2, 2, 5 2x i 2 y j 2z k 4 i 2 j 6 k Normal vector to plane. cos T nk n T 36.7q 6 56 3 14 14 So, the equation of the tangent plane is x 1 2 y 2 2z 2 x 2 y 2z 0 or 9, and the equation of the normal line is x 1 1 64. (a) y 2 2 z 2 . 2 cos x sin y, f 0, 0 f x, y fx sin x, f x 0, 0 fy cos y, f y 0, 0 P 1 x, y 0 1 1 y (b) f xx cos x, f xx 0, 0 1 f yy sin y, f yy 0, 0 0 f xy 0, f xy 0, 0 P2 x, y 1 0 1 y 12 x 2 © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 13 277 0, you obtain the 2nd degree Taylor polynomial for cos x. (c) If y (d) P1 x, y P2 x, y 1.0 1.0 1.0 0.1 1.0998 1.1 1.1 0.2 0.1 1.0799 1.1 1.095 0.5 0.3 1.1731 1.3 1.175 1 0.5 1.0197 1.5 1.0 x y 0 0 0 f x, y (e) z z z 3 2 2 2 −2 1 1 y 2 y 1 −1 1 2 y x 1 1 −1 −2 −1 −1 x x The accuracy lessens as the distance from 0, 0 increases. 2 x 2 6 xy 9 y 2 8 x 14 65. f x, y fx 4x 6 y 8 fy 6 x 18 y 4 3 y 6 y xy 67. f x, y 0 3 y 0, x 8 y 4 3, 1 x2 1 x 2 y 0, x 2 y 1 0, xy 2 1 xy 2 or x y and substitution yields the y fx 4 x 1 1 x y fy f xx 4 f yy 18 So, x 2 y f xy 6 critical point 1, 1 . f xx f yy f x y 2 4 18 6 2 36 ! 0. So, 4, 43 , 2 is a relative minimum. fx fy 2x 3 y 5 3x 2 y 4x 9x 2 y3 f yy 0 At the critical point 1, 1 , f xx y 0 § 3 · 2 x 3¨ x¸ © 2 ¹ 3 x 2 f xx f yy f x y 2 2 ! 0 and 3 ! 0. So, 1, 1, 3 is a relative minimum. 5 z 10 x f xx fxy x 2 3 xy y 2 5 x 66. f x, y 2 x3 1 f xx 2, f yy 2, y 20 3 2, f xy 3, d 49 0 2, 3 is a saddle point. 3 4 4 x −20 −24 y (1, 1, 3) © 2010 Brooks/Cole, Cengage Learning 278 68. Chapter 13 z Functions of Several Variables 50 x y 0.1x3 20 x 150 0.05 y 3 20.6 y 125 zx 50 0.3 x 2 20 zy 50 0.15 y 20.6 r10 0, x 2 r14 0, y Critical Points: 10, 14 , 10, 14 , 10, 14 , 10, 14 z xx 0.6 x, z yy 0.3 y, z x y At 10, 14 , z xx z yy z x y 2 0 6 4.2 02 ! 0, z xx 0. 10, 14, 199.4 is a relative maximum. At 10, 14 , z xx z yy z x y 2 6 4.2 02 0. 10, 14, 349.4 is a saddle point. At 10, 14 , z xx z yy z xy 2 6 4.2 02 0. 10, 14, 200.6 is a saddle point. At 10, 14 , z xx z yy xx y 2 6 4.2 02 ! 0, z xx 0. 10, 14, 749.4 is a relative minimum. 69. The level curves are hyperbolas. There is a critical point at 0, 0 , but there are no relative extrema. The gradient is normal to the level curve at any given point x0 , y0 . 70. The level curves indicate that there is a relative extremum at A, the center of the ellipse in the second quadrant, and that there is a saddle point at B, the origin. R C1 C2 71. P x1 , x2 2 2 ¬ª225 0.4 x1 x2 ¼º x1 x2 0.05 x1 15 x1 5400 0.03 x2 15 x2 6100 0.45 x12 0.43 x2 2 0.8 x1 x2 210 x1 210 x2 11,500 Px 1 0.9 x1 0.8 x2 210 0.9 x1 0.8 x2 Px 2 210 0.86 x2 0.8 x1 210 0.8 x1 0.86 x2 0 0 210 Solving this system yields x1 | 94 and x2 | 157. Px 1 x1 0.9 Px 1 x 2 0.8 Px 2 x 2 0.86 Px 1 x 1 0 Px 1 x 1 Px 2 x 2 Px 1 x 2 2 ! 0 So, profit is maximum when x1 | 94 and x2 | 157. © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 13 0.25 x12 10 x1 0.15 x2 2 12 x2 72. Minimize C x1 , x2 subject to the constraint x1 x2 ¾5 x1 3 x2 O¿ 0.30 x2 12 x1 x2 4 y 20 1000 3 x1 3x2 x 2 500 5x y 6 10 x 3020 x1 377.5 x2 622.5 6 2000 5 x y 20 8 x1 C 377.5, 622.5 2000. 20O ½ ¾5 x y 4O ¿ 20 x 4 y 3000 5 x1 3 x2 4 x xy 2 y subject to the constraint 20 x 4 y 1000. O½ 0.50 x1 10 73. Maximize f x, y 494 x y 104,997.50 f 49.4, 253 279 49.4 253 13,201.8 74. Minimize the square of the distance: x 2 f x, y , z 2 y 2 fx 2 x 2 2 x2 y2 2x fy 2 y 2 2 x y 2y 2 2 2 x2 y 2 0 . 0 °½ x 2 2 x3 2 xy 2 ¾ 0°¿ y 2 2 y 3 2 x 2 y 2 Clearly x y and hence: 4 x3 x 2 So, distance 2 0.6894 2 2 75. (a) y 2 2 2 ª2 0.6894 º | 4.3389. ¬ ¼ 0.004 x 2 0.07 x 19.4 (b) When x 76. (a) y 0 0. Using a computer algebra system, x | 0.6894. 0.6894 2 Distance | 2.08 0 80, y 0.004 80 2 0.07 80 19.4 | 50.6 Kg. 2.29t 2.0 20 0 9 0 (b) Yes, the data appear linear. (c) y (d) 1.24 8.37 ln t 20 −1 3 −5 © 2010 Brooks/Cole, Cengage Learning 280 Chapter 13 Functions of Several Variables xy yz xz subject to the 77. Optimize f x, y, z constraint x y z y z O½ x z O¾x ° x y z ¾x 2O ¿ x2 x 2y RS z; x y z z 3x x 4 2 2. 0 or x 1. If x 4 1 , 3 3 Minimum: f 0, 1 4 y, then y 4y 1 3, x Constraint: i 2y y2 1 3x O x2 4 2y O y2 1 1 O 9x2 x2 4 x2 4 y2 y2 1 y2 4 3. 16 27 0 10 jk 2 | 0.707 km, 2 y 3 | 0.577 km, 3 10 O >i j k @ 1 2 1 3 So, x z 80. f x, y y2 1 z O g C 2 Maximum: f 3 x2 4 2 1 3 4 xy x 10 Constraint: x y z 1 3 x 2 y subject to the 2 0, y If x y 1 1 1 , , 3 3 3 constraint x 2 y O½ y 2 1, C 78. Optimize f x, y 2 xy QR z 1 x Maximum: f x 2 4, 1. y O°¿ x y 79. PQ 2 3 | 8.716 km. 2 3 ax by, x, y ! 0 x2 y2 64 36 1 4 x 3 y are lines of form y (a) Level curves of f x, y Using y 4 x C. 3 4 x 12.3, you obtain x | 7, y | 3, and f 7, 3 3 28 9 37. 8 −10 10 −8 Constraint is an ellipse. (b) Level curves of f x, y Using y 4 x 9 y are lines of form y 4 x C. 9 4 x 7, you obtain x | 4, y | 5.2, and f 4, 5.2 9 62.8. © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 13 281 Problem Solving for Chapter 13 1. (a) The three sides have lengths 5, 6, and 5. 16 2 Thus, s 83 2 3 8 and A (b) Let f a, b, c area 2 12. s s a s b s c, subject to the constraint a bc Using Lagrange multipliers, O s s a s c O s s a s b O. yz , Fy Fx s a a xz , Fz (− y0 z0 x x0 x0 z0 y y0 x0 y0 z z0 (b) V 3 x0 y0 z0 to Area 3 b. Tangent plane c which is an b 3 x0 z0 s s a s b s c constant. y 3 x Using Lagrange multipliers, 1 O s s b s c O s s a s c 1 O s s a s b So, s a 2. V V s b a b and a b c. So, M dM dr 16 8S r S r 3 8 · § r3¨ S ¸ ©3 ¹ r3 Then, h (b) Let x0 , x03 1 13 13 o x and lim ª f x g x º¼ x of ¬ 0. be a point on the graph of f . The line through this point perpendicular x x0 to g is y 4S r 2S rh 1000 h x3 1 hence lim ª¬ f x g x º¼ x of 2 M Base 3 y0 z0 4. (a) As x o rf, f x 4 S r S r 2h 3 Material 9 2 3 x0 y 0 a b c, subject 1 3 z 3 2 0 1 base height 3 1 § 1 3 3 ·§ 3 · ¨ ¸¨ ¸ 3 © 2 y0 z0 x0 z0 ¹© x0 y0 ¹ Similarly, b c and hence a equilateral triangle. (c) Let f a, b, c xy Tangent plane: From the first 2 equations s b 0 y0 z0 x x0 z0 y x0 y0 z constant (perimeter). s s b s c xyz 1 3. (a) F x, y, z 3 x03 1. This line intersects g at the point 1000 4 3 S r 3 Sr2 §1ª ¨ x0 © 2¬ § 1000 4 3 S r 3 · 4S r 2 2S r ¨¨ ¸¸ Sr2 © ¹ 2000 8 S r2 4S r 2 r 3 2000 16 8S r 2 S r 0 r 3 2000 r2 3 1 x03 1º, ª x0 ¼ 2¬ 3 · x03 1º ¸. ¼¹ The square of the distance between these two points 2 1 is h x0 x0 3 x03 1 . 2 h is a maximum for x0 3 1 . So, the point 2 1 · § 1 on f farthest from g is ¨ 3 , 3 ¸. 2 2¹ © 4 2000 −6 750 S 6 13 r 1000 4 3 S 750 S Sr2 §6· 5¨ ¸ . ©S ¹ −4 0. 13 The tank is a sphere of radius r §6· 5¨ ¸ . ©S ¹ © 2010 Brooks/Cole, Cengage Learning 282 Chapter 13 Functions of Several Variables y 5. (a) (− 2, 2( c = −1 6. Heat Loss c=0 k 5 xy xy 3 xz 3xz 3 yz 3 yz H 3 k 6 xy 6 xz 6 yz c=1 V x 3 1000 z xyz −1 ( 2, − 2 ( 2, x y Og : 1 2O x 1 2O y x y 2 2O x 2O y x 2 x2 4 x 2, f 2 2 Setting H x 2 2. 2 4 1000 H xy z 5y Hx 4 y Hy 6000 x2 B 2 2, f 2, 2 So, x y 0 5 yx 2 2 3 150 and z 2 2 2 y z 10. § 6000 6000 · k ¨ 5 xy ¸. y x ¹ © y x3 By symmetry, x r 2, y 0, you obtain x k 5 xy 6 xz 6 yz 7. H 2 Constraint: g x, y f 2 x y. Maximize f x, y § 1000 1000 · 6k ¨ xy ¸. y x ¹ © Then H Maximum value of f is f 1000 . xy y3 6000 1200. 53 150. 3 x y (b) f x, y Constraint: x 2 y 2 0 x, y 0, 0 Maximum and minimum values are 0. Lagrange multipliers does not work: 1 1 2O x ½ ¾x 2O y¿ y Note that g 0, 0 ` 8. (a) T x, y 0, a contradiction. 0. 2 x 2 y 2 y 10 10 1 4 1 4 2x2 y2 y 1· § 2x2 ¨ y ¸ 2¹ © y 12 x2 18 14 (b) On x 2 y 2 Tc y 1, T x, y 2 y 1 4 x 0, Ty § 1· T ¨ 0, ¸ © 2¹ 39 minimum 4 1 2 1 4 x − 1 2 − 1 2 1 2 2 ellipse 1 2 1 y 2 y 2 y 10 T y 0 y Inside: Tx § 3 1· T ¨¨ r , ¸¸ 2¹ © 2 2 y 1 ,x 2 2y 1 r 12 y 2 y 3 . 2 § 1· 0 ¨ 0, ¸ © 2¹ 49 maximum 4 © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 13 wf wx 9. (a) x Cax a 1 y1 a , wf wf y wx wy wf wy 283 C 1 a xa y a Cax a y1 a C 1 a x a y1 a ª¬Ca C 1 a º¼ x a y1 a Cx a y1 a (b) f tx, ty C tx r cos T , y 10. x a ty f 1 a r sin T , z Ct a x at1 a y1 a Cx a y1 a t tf x, y z wu wT wu wx wu wy wu wz wx wT wy wT wz wT wu wr wu wu cos T sin T . wx wy wu wu r cos T Similarly, r sin T wx wy ª w 2u wx w 2u wy w 2u wz º wu r sin T « 2 » r cos T r cos T x x y x z T T T w w w w w w w w wx ¬ ¼ w 2u wT 2 ª w 2u wx w 2u wy w 2u wz º wu 2 « » r sin T y x y y z T T T wy w w w w w w w w ¬ ¼ w 2u 2 w 2u w 2u 2 wu wu r sin 2 T 2 r 2 cos 2 T 2 r sin T cos T r cos T r sin T 2 wx wy wxwy wx wy Similarly, w 2u wr 2 w 2u w 2u w 2u cos 2 T 2 sin 2 T 2 cos T sin T . 2 wx wy wxwy Now observe that ª w 2u º 1 ª wu º w 2u w 2u wu 2 2 cos T sin T » « cos T sin T » « 2 cos T 2 sin T 2 x y x y r x y w w w w w w ¬ ¼ ¬ ¼ 1 w 2u w 2u 1 wu w 2u 2 2 2 2 r wr r wT wr wz ª w 2u º w 2u 1 wu 1 wu w 2u w 2u sin T cos T cos T sin T » 2 « 2 sin 2 T 2 cos 2 T 2 r wx r wy wy wxwy ¬ wx ¼ wz w 2u w 2u w 2u 2 2. 2 wx wy wz So, Laplace’s equation in cylindrical coordinates, is 64 cos 45q t 11. (a) x (b) tan D D (c) dD dt (d) 0. 32 2 t 64 sin 45q t 16t 2 y 1 wu 1 w 2u w 2u w 2u 2 2 2 2 r wr r wT wr wz 32 2 t 16t 2 y x 50 § y · arctan ¨ ¸ © x 50 ¹ § 32 2 t 16t 2 · arctan ¨¨ ¸¸ © 32 2 t 50 ¹ 1 § 32 2 t 16t 2 · 1 ¨¨ ¸¸ © 32 2 t 50 ¹ 2 64 8 2 t 2 25t 25 2 32 2 t 50 2 16 8 2 t 2 25t 25 2 64t 4 256 2 t 3 1024t 2 800 2 t 625 30 0 4 −5 No. The rate of change of D is greatest when the projectile is closest to the camera. © 2010 Brooks/Cole, Cengage Learning 284 Chapter 13 (e) dD dt Functions of Several Variables 0 when 8 2 t 2 25t 25 2 0 25 252 4 8 2 25 2 t | 0.98 second. 28 2 No, the projectile is at its maximum height when dy dt x2 y 2 12. (a) d (b) 2 32 2 t 16t 2 2 2 | 1.41 seconds. 0 or t 4096t 2 1024 2 t 3 256t 4 16t t 2 4 2 t 16 32 t 2 3 2 t 8 dd dt t 2 4 2 t 16 (c) When t 2: 32 12 6 2 dd dt (d) 32 2 t 32 2 32t | 38.16 ft/sec 20 8 2 32 t 3 6 2 t 2 36t 32 12 d 2d dt 2 t 2 4 2 t 16 when t 0 when t | 1.943 seconds. No. The projectile is at its maximum height 32 2. 13. (a) There is a minimum at 0, 0, 0 , maxima at 0, r1, 2 e and saddle point at r1, 0, 1 e : x2 2 y2 e fx e x2 y 2 x2 y 2 e x2 y2 x2 y2 ª x 2 2 y 2 2 x 2 x º ¬ ¼ x2 2 y 2 e fy 2 x 2 x e x2 y2 2 y 4 y e e x2 y2 ª¬2 x3 4 xy 2 2 xº¼ 0 x3 2 xy 2 x 0 x2 y2 ª x 2 2 y 2 2 y 4 yº ¬ ¼ Solving the two equations x3 2 xy 2 x e x2 y2 ª¬4 y 3 2 x 2 y 4 yº¼ 0 and 2 y 3 x 2 y 2 y 0 2 y3 x2 y 2 y 0 0, you obtain the following critical points: 0, r1 , r1, 0 , 0, 0 . Using the second derivative test, you obtain the results above. z 1 2 y 2 x (b) As in part (a), you obtain fx e x2 y 2 ª2 x x 2 1 2 y 2 º ¬ ¼ z fy e x2 y 2 ª2 y 2 x 2 2 y 2 º ¬ ¼ 1 The critical numbers are 0, 0 , 0, r1 , r1, 0 . These yield r1, 0, 1 e minima 1 x 2 y −1 0, r1, 2 e maxima 0, 0, 0 saddle © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 13 285 (c) In general, for D ! 0 you obtain 0, 0, 0 minimum 0, r1, E e maxima r1, 0, D e saddle For D 0, you obtain r1, 0, D e minima 0, r1, E e maxima 0, 0, 0 saddle 14. Given that f is a differentiable function such that f x0 , y0 0, then f x x0, y0 0 and f y x0 , y0 Therefore, the tangent plane is z z0 z z0 0. r0.05, dT dr 0 or f x0 , y0 which is horizontal. 15. (a) § S· ¨ 5, ¸ © 18 ¹ 16. r , T 6 cm r0.05 x r cos T 5 cos y r sin T 5 sin 1 cm S 18 S 18 | 4.924 | 0.868 y 5 (b) 6 cm 4 1 cm 3 2 1 (c) The height has more effect since the shaded region in (b) is larger than the shaded region in (a). (d) A hl dA ( π θ = 18 (r, θ ) = 5, π 18 ) 5 x 1 2 3 4 5 (a) dx should be more effected by changes in r. l dh h dl If dl 0.01 and dh 0, then dA 1 0.01 0.01. If dh 0.01 and dl 0, then dA 6 0.01 0.06. cos T dr r sin T dT dx | 0.985 dr 0.868 dT dx is more effected by changes in r because 0.985 ! 0.868. (b) dy should be more effected by changes in T . dy sin T dr r cos T dT | 0.174 dr 4.924 dT dy is more effected by T because 4.924 ! 0.174. 17. Let g x, y § x· yf ¨ ¸. © y¹ g y x, y § x· § x ·§ x · f ¨ ¸ yf c ¨ ¸¨ 2 ¸ y © ¹ © y ¹© y ¹ g x x, y § x ·§ 1 · yf c ¨ ¸¨ ¸ © y ¹© y ¹ § x· x § x· f ¨ ¸ f c¨ ¸ © y¹ y © y¹ § x· f c¨ ¸ © y¹ ª § x · x § x ·º § §x · § x ·· Tangent plane at x0 , y0 , z0 is f c ¨ 0 ¸ x x0 « f ¨ 0 ¸ 0 f c ¨ 0 ¸» y y0 1¨ z y0 f ¨ 0 ¸ ¸ © y0 ¹ © y0 ¹ ¹ ¬ © y0 ¹ y0 © y0 ¹¼ © ª §x · x §x · § x ·º f c ¨ 0 ¸ x « f ¨ 0 ¸ 0 f c ¨ 0 ¸» y z © y0 ¹ ¬ © y0 ¹ y0 © y0 ¹¼ 0 0. This plane passes through the origin, the common point of intersection. © 2010 Brooks/Cole, Cengage Learning 286 Chapter 13 18. x 2 y 2 x 1 Functions of Several Variables 2x 2 y2 1 Circle y x2 y2 2 Ellipse 1 2 a b The circle and ellipse intersect at x, y and x, y for a unique value of x. 2 (x, y) 1 x −1 2 b 2 a x2 a2 b2 x2 2 a2 x2 a y2 1 −1 Ellipse (x, −y) −2 Circle 2x § b2 · 2 2 0 Quadratic ¨1 2 ¸ x 2 x b a ¹ © For these to be a unique x-value, the discriminant must be 0. § b2 · 4 4¨1 2 ¸b 2 a ¹ © 0 0 a 2 a 2b 2 b 4 We use lagrange multipliers to minimize the area f a, b a ab b 2 g a, b f 2 2 S ab of the ellipse subject to the constraint 0. Og S b, S a O 2a 2ab 2 , 2a 2b 4b3 Sb O 2a 2ab 2 Sa O 2a 2b 4b3 O 4 Sb 2a 2ab 2 Sa 4b 4 2a 2b 2 4b3 2a 2b Using the constraint, a 2 a 2b 2 b 4 0, a 2 a 2 2a 2 2a 2b 2 2b 4 a a2 2 2 3 2 a Ellipse: 19. x2 y2 92 32 1 ª cos x t cos x t º¼ 2¬ w 2u wt 2 wu wx 1 ª sin x t sin x t º¼ 2¬ 1 ªcos x t cos x t º¼ 2¬ w 2u wx 2 1 ª sin x t sin x t º¼ 2¬ w 2u wt 2 w 2u . wx 2 0 a 2 3 2 6 . 2 2, b 1 wu wt Then, a 2 a2 b2 20. u x, t Let r Then wu wt w 2u wt 2 1 ª f x ct f x ct 2¬ x ct. x ct and s 1 u r, s ª f r f s º¼. 2¬ 1 df wu wr wu ws c 2 dr wr wt ws wt 1 d2 f 1 d2 f 2 2 c c 2 2 dr 2 ds 2 wu wx w 2u wx 2 So, wu wr wu ws wr wx ws wx 1 d2 f 2 1 1 2 2dr 2 2 w 2u wt 2 c2 º¼ 1 df c 2 ds c2 ª d 2 f d2 f º « 2 » 2 ¬ dr ds 2 ¼ 1 df 1 df 1 1 2 dr 2 ds 1 ªd 2 f d2 f 2 d2 f º 1 « 2 » 2 2 ¬ dr ds ds 2 ¼ w 2u . wx 2 © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 4 Multiple Integration Section 14.1 Iterated Integrals and Area in the Plane.............................................288 Section 14.2 Double Integrals and Volume ............................................................297 Section 14.3 Change of Variables: Polar Coordinates ...........................................308 Section 14.4 Center of Mass and Moments of Inertia ............................................316 Section 14.5 Surface Area .......................................................................................325 Section 14.6 Triple Integrals and Applications.......................................................332 Section 14.7 Triple Integrals in Cylindrical and Spherical Coordinates ...............344 Section 14.8 Change of Variables: Jacobians.........................................................350 Review Exercises ........................................................................................................358 Problem Solving .........................................................................................................367 © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 4 Multiple Integration Section 14.1 Iterated Integrals and Area in the Plane 1. 2. x ³0 x ª¬ xy y 2 º¼ 0 x 2 y dy x2 ³x 2y ³1 2 x2 3. 1 § x4 x2 · ¨ ¸ 2© x x¹ x 2 x 1 2 cos y ³0 4. ³0 5. 6. ³ x3 7. ³ ey 8. 9. x ³ 1 y2 x y 2 1 y2 x3 ³0 ye y x y, du u 10. S 2 ³y y ª1 2 º « 2 y ln x» y ¬ ¼e y ln x dx x y ª¬ x 2 y y 3 º¼ 3 x x 2 3 y 2 dy dy 2 1 2 12. ³ 1 ³ 2 1 2 e y dy, dv x S 2 x y dy dx x 2 y 2 dy dx 14. 4 x 2 2 y 2 dx dy 2 3 x y 2 dx dy ³ 1 ³ 1 1 1 ª 1 § ³ 1 «¬x 2 ³1 ³ 1 288 1 3 y cos y ª1 2 2 º «2 x y » ¬ ¼0 x 2 y dy 4 x2 4 x2 x4 2 x5 2 x 3 2 x 5 x9 y 2 º, y ! 0 ¼ y2 1 y2 x3 2 1 2º » ¼ 2 1 y2 1 2 y2 3 2 x 2 1 e x x 2e x 2 x S 2 cos3 x cos yº ¼y 2 1 2º y 2 ¼0 1 ³0 dx y 2 y3 º » dx 3 ¼ 2 16 · ¸ dx 3¹ 1 ª ³ 1 «¬2 x 2 ³1 1 2 ª§ 9 3 8 8º 2 x 2 » dx 3 3¼ ª 64 2º « 3 8 y » dy ¬ ¼ ³ 1 «¬¨© 2 cos3 y cos y ª¬ x 2 2 xº¼ 0 1 4 § 4 16 · § 4 16 · ¨ ¸ ¨ ¸ 3¹ © 3 3¹ ©3 2 8 3º ª 64 « 3 y 3y » ¬ ¼1 8 § 128 64 · § 64 8 · ¸ ¨ ¸¨ 3¹ © 3 3¹ © 3 8 3 · §1 ·º 3 y 2 ¸ ¨ y 2 ¸» dy ¹ ©2 ¹¼ 2 4 2 y 2 dy 2 1 3 ª 4 x3 16 º x» « 3 ¼ 1 ¬ 3 ª x3 2º « 2 xy » dy ¬3 ¼0 3 cos y 2 x 2 dx 2 2 ª x2 2º ³ 1 «¬ 2 xy »¼ dy 1 2 cos y y ln 2 y, y ! 0 1 cos 2 x sin x cos y dx ³ 0 ª¬xy 2 32 2 > yx@0 3 x 4e x ª¬ x 2e y x º¼ 0 dy xe y dy, v ³y x yª ln y 2¬ ª1 2« 1 y 2 ¬3 1 y2 x3 x3 2 ³1 ³ 0 1 y2 ª¬ xye y x º¼ x ³ e y 0 0 ³ 1 ¨© 4 x 13. > y ln x@12 y y dx 4 x2 3 x ·¸ x 2 x3 x3 ¹ x 1 y ªln 2 y ln 2 e y ¼º 2 ¬ ª cos x ¬ ³0 ³0 § x2 ¨ © x ª1 3 2 º « 3 x y x» ¬ ¼ dx sin 3 x cos y dx 11. y dx x y ln 2 y 0 x2 ª1 y2 º « » ¬2 x ¼x y dy x x2 x2 2 3º ª «4 y 3 y » ¬ ¼ 1 16 · § 2· § ¨8 ¸ ¨ 4 ¸ 3¹ © 3¹ © 18 © 2010 Brooks/Cole, Cengage Learning Section 14.1 S 2 1 ln 4 ln 3 15. ³ 0 ³ 0 y cos x dy dx 16. ³0 ³0 S 2 ³0 ln 4 ª¬e x y º¼ dx 0 ln 4 ª¬e x ln 3 e x º¼ dx ³0 e x y dy dx ³0 S sin x 4 x 17. ³0 ³0 18. ³1 ³1 19. ³0 ³0 20. ³ 4 ³ 0 21. 1 x x2 5 3y ³ 1 ³ 0 S ³0 4 ³1 2 ye x dy dx 1 ³ 0 ¬ª y x 2y ³0 ³ y 2 2 y y2 24. ³ 0 ³ 3 y2 6 y 3 y dx dy 25. 2 ³0 ³0 3 y 4 y2 4 y 4 dx dy x2 y 2 26. ³1 ³ 0 27. ³0 ³0 28. S 2 S 4 ³0 ³ 2 2 cos T r dr dT 3 cos T 3 r dr dT S 2 ³0 ³0 ³0 20 3 º ª «10 y 3 y » dy ¬ ¼ 1 y 2 ª « «¬ S 4 ³0 3³ 2 8 y 2 4 y 3 dy 0 º » 2 4 y »¼ 0 11 2 1 3 32 4 º ¼» 4 0 2 9 128 32 2048 9 2 dy 3 ³1 3 cos T dT 3 2 80 3 20 y 1 y 2 º dy ¼ 140 3 ª1 y ¬« 2 1 y3 6 1 2 2 3 1 y2 32 1 º ¼» 0 2 3 2 ª3 8 y 3 y 4 º ¬ 3 ¼0 2 2 ³ 0 2 dy >2 y@0 4 §S · ¨ ¸ dy y ©4¹ 2 cos 2 T dT S 4 ³0 3· §3 ¨ cos 2T ¸ dT 4¹ ©4 16 3 2 · § ·º y 4 y 3 ¸ ¨10 y y 3 2 y 3 ¸» dy 3 3 ¹ © ¹¼ 16 3 ³1 S y 4 >S ln y@13 dy S 2 S 2 ³0 dT ª§ 1629 4 y2 2x 2 cos T 2 2 1 y ªr2 º « » ¬ 2 ¼0 ³0 S sin 2 xº¼ 0 39 §9 · § 9 39 · 625 ¸ ¨ ¨ 25 ¸ 16 ©2 ¹ © 2 16 ¹ ³ 0 ¬«©¨ 20 y ª 2 5 y4 º «5 y » 3 ¼0 ¬ ³ 0 ª¬ 12 1 y dy § x ·º « arctan ¨ ¸» dy © y ¹¼ 0 ¬y ªr 2 º « » ¬2¼ 5 2y xyº¼ 0 2 2 S 4 º ¼» 0 ª 2 64 x3 ¬« 9 ª 9 2 39 º « 2 y 16 y » ¬ ¼ 1 ª º 2 x3 2 y 2 x» dy «10 x 3 ¬ ¼y 3 ª4 ³1 32 1 1 x2 2 3 1 2 1 4 4 e e 4e 4 e 1 64 x3 dx 2 39 3 º ª ³ 1 «¬9 y 4 y »¼ dy 2 y y2 dx dy 4 ³ 4 x 5 ³ 0 >3xy@3 y2 6 y dy 2 ª 1 ¬« 2 1 x 2 dx ª cos x ¬ 6 3y 2 1 2 4 ª¬ xe x º¼ 1 12 4 3 1 ª x3 1 2º ³ 1 «¬3x 3 4 xy »¼ dy 0 ³ 0 ª¬ 12 x x y dx dy S 5 ³0 1 y 2 1 ³0 x 64 x3 º dx ¼0 2 1 1 2 ³ 0 >sin x sin x cos x@ dx dx x2 4 ³ 4 ª¬ y 10 2 x 2 2 y 2 dx dy ³0 ³0 º x» ¼0 eln 4 ln 3 eln 4 eln 3 1 xe x e x dx x 1 2· § 2 ¨ 3 x y ¸ dx dy 4 ¹ © 23. 4 ³1 dx 1 x 2 º dx ¼0 3 3º ª 3 ³ 1 «¬9 y 9 y 4 y »¼ dy 2 ln 4 ª¬e x ln 3 e x º¼ 0 sin x 5 22. S 2 ª1 « 2 sin ¬ 1 cos x dx 2 ª¬ y y cos x º¼ 0 ª¬ y 2e x º¼ 1 64 x3 dy dx S 2 ³0 289 ln 3 1 cos x dy dx 1 x 2 dy dx 4 1 ª y2 º « cos x» dx 2 ¬ ¼0 Iterated Integrals and Area in the Plane 1 ª º «T 2 sin 2T » ¬ ¼0 § 3 cos 2 T 3· ¸ dT ¨ 2 2¹ © S 4 3 º ª3 « sin 2T 4T » ¬8 ¼0 S 4 ³0 S ln 3 S 2 3· §3 ¨ 1 cos 2T ¸ dT 2¹ ©4 3 3S 8 16 © 2010 Brooks/Cole, Cengage Learning 290 29. Chapter 14 Multiple Integration S 2 sin T ³0 ³0 sin T ª r2 º «T » ¬ 2 ¼0 S 2 ³0 T r dr dT 1 S 4³0 S 4 cos T 30. ³0 ³0 31. ³1 ³ 0 32. 33. f 3 1x f ³0 ³0 f f ³1 ³1 S 4 ³0 1 dx dy xy cos T ª¬r 3 sin T º¼ 0 1x x2 dy dx 1 y2 ³0 f ³1 ³0 f 3 ³0 2 ¬ª x arctan y¼º 0 dx f ª1 º « y ln x» dy ¬ ¼1 f ³1 32 ª cos 4 T º « » 4 ¼0 ¬ cos3 sin T dT ª 1º « 2 x » ¬ ¼1 1 f 1 dx 2 ³1 x2 S2 S 4 S 4 dT f 3 T 1 ªT 2 §1 ·º ¨ cos 2T sin 2T ¸» « 4¬ 2 2 ©4 ¹¼ 0 T T cos 2T dT ª y2 º « » dx ¬ 2 ¼0 f ³1 y dy dx 1 T sin 2 T dT 2 S 2 2 3r 2 sin T dr dT S 2 ³0 dT 0 1 2 1 8 4 º 1 ª§ 1 · «¨ 1» ¸ 4 «¬© 2 ¹ »¼ 3 16 1 2 3 §S · x 2 ¨ ¸ dx ©2¹ ªS x 3 º « » ¬ 2 3 ¼0 9S 2 ª1 1 º « y f y 0 » dy ¬ ¼ Diverges 34. f f ³0 ³0 xye x2 y2 f ³0 dx dy 8 3 ³ 0 > y@0 dx 3 8 ³ 0 > x@0 dy 35. A ³ 0 ³ 0 dy dx A ³ 0 ³ 0 dx dy 8 3 f ª 1 x2 y2 º « 2 ye » dy ¬ ¼0 8 8 ³ 0 3 dx >3x@0 3 f 1 ye y 2 2 ª 1 e y 2 º ¬« 4 ¼» 0 dy 1 4 y 24 8 3 8 f ³0 >8 y@30 ³ 0 8 dy 24 6 4 2 x 2 2 3 ³ 1 > y@1 dx 3 2 ³ 1 > x@1 dy 36. A ³ 1 ³ 1 dy dx A ³ 1 ³ 1 dx dy 2 3 3 2 2 ³1 >2 x@12 2 dx 3 > y@13 ³ 1 dy 2 2 4 6 8 y 3 2 1 x 1 4 x2 2 ³0 ³0 37. A 4 ³0 ³0 A 2 4 x ³ 0 > y@0 dy dx 4 y 4 2 dx 4 y ³ 0 > x@0 dy dx dy 2 2 2 ³0 4 x 2 dx 4 ³0 4 y dy ª x3 º «4 x » 3 ¼0 ¬ ³ 4 0 4 y 3 16 3 12 1 dy ª 2 « 3 4 y ¬ 3 2º 4 » ¼0 2 8 3 16 3 y y = 4 − x2 4 3 2 1 x −1 1 2 3 © 2010 Brooks/Cole, Cengage Learning Section 14.1 5 x 1 1 ³2 ³0 38. A 12 5 x 1 ³ 2 > y@0 dy dx 5 1 1 1 y 2 1 ³ 0 ³ 2 dx dy ³ 1 2 ³ 2 A 12 1 1 y 2 1 ³ 0 > x@2 dy ³ 1 2 > x@2 5 1 dx x 1 5 ³2 dx ª ¬2 Iterated Integrals and Area in the Plane y 5 x 1¼º 2 2 5 4 dx dy 3 12 ³0 dy § 1 · 3 dy ³ ¨ 2 1¸ dy 12 y © ¹ 1 >3 y@0 4 ³0 ³0 4 ³0 ³0 A 2 x 2 y 2 4 dy dx 2 ³ 0 > y@0 dx dy 8 3 2 x 2 4 ³0 dx 44 2 2 x−1 1 x 4 ª 8 «4 x x 3 ¬ x x dx x 1 y= 1 ª 1 º « y» y ¬ ¼1 2 12 1 39. A 291 x2 º » 2 ¼0 2 3 4 5 y 8 3 4 3 x )2 y = (2 − 2 Integration steps are similar to those above. 1 x 1 4 2x ³ 0 ³ x3 2 dy dx 40. A 4 42. A 4 ³ 0 > y@x3 2 dx 2x ³0 y2 3 8 ³0 ³ y 2 A 16 8 ³0 dx dy 8 ª3 5 3 y2 º « y » 4 ¼0 ¬5 2 32 5 3 y· § 23 ¨ y ¸ dy 2¹ © 16 5 41. A 3 9 3 ³0 y = x 3/2 (3, 3) (9, 1) x 2 9 y 3 3 2x 3 ³0 ³0 dy dx 3 2x 3 3 2x dx 3 ³0 dx 5 x 5 ³3 ³0 5 5 x ³ 3 > y@0 5 ³3 3 ³0 2 ³0 5 y 2 ba a2 x2 §9 · y ¸ dy ¹ 3 dy dx a ³ 0 > y@0 ba 9 1 ln 9 2 a2 x2 y=5−x dx S 2 b a cos 2 T dT a 2 x 2 dx ab ³ 0 a ³0 a sin T , dx a cos T dT 2 1 cos 2T dT y S 2 y = 23 x 8 dy ³1 ¨© y ª ab § 1 ·º « 2 ¨T 2 sin 2T ¸» ¹¼ 0 ¬ © 4 b y= b a S ab 1 3y · § ¨5 y ¸ dy 2¹ © 5y · ¸ dy 2¹ y 3 > x@3 y 2 dy § 5 a ³0 ³0 ab S 2 ³0 2 5 y ³ 0 ¨© 5 x 5 ³ 0 ³ 3 y 2 dx dy 2 dx 5 x dx 1 2º ª1 2 º ª « 3 x » «5 x 2 x » ¬ ¼0 ¬ ¼3 2 43. A 4 dy dx 6 dx dy 1 2º 1 2º ª ª «9 y 2 y » «9 ln y 2 y » ¬ ¼0 ¬ ¼1 8 4 −2 1 1 2 3 4 5 6 7 y = 9x 2 9 y 9 y dy 9 dx x y=x 4 3 9 9 ³ 0 x dx ³ 3 dx 6 ³ 0 > x@ y dy ³1 > x@ y 1 ³ 0 > y@0 A 1 4 y ³ 0 ³ y dx dy ³ 1 ³ y 1 (4, 8) y = 2x x −1 9 x 9 9 ln 9 ln 3 2 9 1 ln 9 2 A 6 5 4 3 2 1 9 x 3 dy dx 9 ª1 2 º « 2 x » >9 ln x@3 ¬ ¼0 y 8 7 9 x 3 16 5 3 32 16 5 9 x ³ 0 > y@0 dx ³ 3 > y@0 2 x x3 2 dx 4 ª 2 2 5 2º «x 5 x » ¬ ¼0 3 ³ 0 ³ 0 dy dx ³ 3 ³ 0 2 a2 − x2 a 4 x 1 2 −1 2 5 2º ª «5 y 4 y » ¬ ¼0 5 3 4 5 So, A S ab. b a b b2 y 2 A S ab dx dy ³ ³ 0 0 4 4 So, A S ab. Integration steps are similar to those above. © 2010 Brooks/Cole, Cengage Learning x 292 Chapter 14 Multiple Integration 44. A 2 4 y 2 ³ 0 ³ y 2 dx dy ³ 2 ³ y 2 dx dy y dy 2 2 ³0 4 § y· A 2x ³0 ³ x 4 4 x2 1 ³ 2 ³ x2 1 y=x 3 x 1 2 ³0 2 3 4 2 2 ª x2 º « » ¬ 2 ¼0 2 x x dx 1 2 x dy dx y=4− 4 x2 1 ³ 2 > y@ x 2 4 x x 2 dx 1 2 x x 2 dx ³0 ³ 3 1 2 x 2 y2 3 4 y 3 ³0 2 9 2 4 x2 4 y = x2 4 3 4 ³0 3 x −2 4 y −1 1 2 2 1 4 y dx dy x 1 > x@0 4 y dy 4 y dy 2 ³ 2 3 f x, y dy dx 3 1 y2 ³0 ³0 x2 y y=x+2 1 3º x 3 ¼ 2 dy 2 ³ 4 y ª1 y2 2 y ¬2 46. A (1, 3) 3 y d x d 2, 0 d y d 4 f x, y dx dy, y 1 dx dy 2³ y 2 ³ 0 > x@ 2 4 ³0 ³0 2 ª2 x ¬ 4 ³0 ³ 3 2 2 ³ 2 A 48. y x2 2 dx 1 ³ 2 f x, y dy dx y 1 45. A 4 2 2 dy dx f x, y dx dy, 0 d x d y, 0 d y d 4 ³0 ³ x 4 1 4 3 y 3 ª y2 º ª y2 º « » «2 y » 4 ¼2 ¬ 4 ¼0 ¬ 2 4 ³0 ³0 y = 2x 4 ³ 2 ¨© 2 2 ¸¹ dy 2 47. y 4 49. 4 y dy 3 32 3 º ª4 4 y ¼0 ¬ 3 2 ³ 2 ³ 0 2 3 4 x2 f x, y dy dx, 0 d y d 2 32 4 º ¼3 ³0 ³ 9 2 4 4 y2 4 y2 4 x2 , 2 d x d 2 dx dy y 3 dy dx y 2 ³0 4³ 2³ 1 2 S 2 0 S 2 0 x −2 cos 2 T dT −1 1 2 −1 1 1 cos 2T dT ª2 T ¬ x y = 4 − x2 4 x dx 2 1 2 x S 2 sin 2T º ¼0 2 sin T , dx 1 S 2 50. 4 x2 2 ³0 ³0 f x, y dy dx, 0 d y d 4 x 2 , 0 d x d 2 4 y 4 2 cos T dT , 4 x2 ³0 ³0 2 cos T f x, y dx dy y A 2 ³0 ³0 4³ S 2 0 4 y2 ³0 dx dy 2³ cos 2 T dT ª2 T ¬ y 2 1 2 S 2 sin 2T º ¼0 2 sin T , dy 4 y dy 2 S 2 0 4 3 1 cos 2T dT 2 1 S 2 cos T dT , x −1 4 y2 2 cos T 1 2 3 4 −1 © 2010 Brooks/Cole, Cengage Learning Section 14.1 51. 10 ln y ³1 ³ 0 f x, y dx dy, 0 d x d ln y, 1 d y d 10 ln 10 10 ³ 0 ³ ex Iterated Integrals and Area in the Plane 55. 1 2 2 ³ 0 ³ 0 dy dx 1 ³ 0 ³ 0 dx dy 293 2 y f x, y dy dx y 3 2 8 1 6 4 x 1 2 2 3 x 2 1 3 56. 52. e x 2 ³ 1 ³ 0 2 4 4 ³ 1 ³ 2 dx dy f x, y dy dx, 0 d y d e x , 1 d x d 2 2 ³ 2 ³ 1 dy dx 2 y 4 e2 2 ³ 0 ³ 1 f x, y dx dy e ln y ³ e2 ³ 1 f x, y dx dy 3 2 y 1 3 x 1 2 57. x −1 1 2 2 1 y2 1 ³0 ³ 1 y2 3 4 1 ³ 1 ³ 0 dx dy 1 x2 S dy dx 2 y 53. 1 1 ³ 1 ³ x2 f x, y dy dx, x 2 d y d 1, 1 d x d 1 1 ³0 ³ y y 1 f x, y dx dy x −1 1 y 4 58. 2 ³ 2 ³ 4 x2 4 x2 2 dy dx ³ 2 dx dy 4S 4 x2 4S 4 x 2 dx 3 2 ³ 2 ³ 2 4 y2 4 y2 y x −2 −1 1 2 1 54. S 2 cos x ³ S 2 ³ 0 1 f x, y dy dx, 0 d y d cos x, arccos y ³ 0 ³ arccos y S 2 d xd S x −1 2 1 −1 f x, y dx dy y 2 59. 3 2 2 4 x 4 x ³ 0 ³ 0 dy dx ³ 2 ³ 0 dy dx 2 4 y ³0 ³ y dx dy 4 y 1 2 −π 4 3 π x 2 4 1 x 1 2 3 4 −1 © 2010 Brooks/Cole, Cengage Learning 294 60. Chapter 14 Multiple Integration 4 x 2 ³0 ³0 6 x 6 ³4 ³0 dy dx x dx 2 6 ³4 6 x dx y 4 2 6 6 5 2 6 y 2 4 ³0 dy dx ³0 ³2y 2 ³0 dx dy ª 3y2 º «6 y » 2 ¼0 ¬ 6 3 y dy 4 6 3 y= x 2 2 (4, 2) y = 6 − x 1 x −1 −1 61. 2 1 1 ³ 0 ³ x 2 dy dx 2y ³0 ³0 1 dx dy 1 3 y ³ 0 ³ y2 63. y 1 2 3 4 1 ³ 0 ³ x3 dx dy 5 x 6 dy dx 5 12 x= 3 y y 2 x = y2 2 1 1 (1, 1) x 1 2 x 1 62. 9 ³0 ³ 3 x 9 ³0 dy dx 3 x dx 2 3 2º ª «3 x 3 x » ¬ ¼0 3 y2 ³0 ³0 3 27 18 9 2 ª y3 º « » ¬ 3 ¼0 dy 4 y2 4 ³0 ³ dx dy 4 x 4 x 32 3 dy dx y 3 ³0 y dx dy 2 ³2 ³0 64. 9 2 2 9 1 x y 1 5 4 3 2 1 2 3 −1 x = 4 − y2 −2 x y= x −1 1 2 3 4 5 6 7 8 9 −2 −3 −4 −5 65. The first integral arises using vertical representative rectangles. The second two integrals arise using horizontal representative rectangles. 50 x 2 5 ³0 ³ x 5 y ³0 ³0 x y dx dy 2 2 50 y 2 5 2 ³5 ³0 x 2 y 2 dy dx ³ 0 ª«¬13 x x 2 y 2 dx dy ³ 0 13 y 5 15,625 18 5 5 2 50 x 2 dy 32 5 2 ³5 15,625 S 18 1 3 13 x5 º dx »¼ 50 y 2 15,625 18 15,625 S 24 32 y y= 50 − x 2 (0, 5 2 ) 5 y 2 dy (5, 5) y=x 15,625 S 24 x 5 66. (a) A (b) A 2 2y ³ 0 ³ y2 4 x dx dy 2 ³0 4 2y ³0 ³ 0 ³ x 2 dy dx ³ 0 > y@x 2 dx x 2 4 ª2 3 2 x º « x » 4 ¼0 ¬3 Integrals (a) and (b) are the same. 2 2 > x@ y2 dy 2 y y 2 dy 4 § ³ 0 ¨© x 16 4 3 x· ¸ dx 2¹ 4 3 ª 2 y3 º «y » 3 ¼0 ¬ 4 8 3 4 3 y 4 x 2 x = 2y y= 3 2 y= x x = y2 (4, 2) 1 x 1 2 3 4 © 2010 Brooks/Cole, Cengage Learning Section 14.1 67. 2 2 ³0 ³ x x 2 y ³0 ³0 1 y 3 dy dx x 1 y 3 dx dy Iterated Integrals and Area in the Plane 70. 2 2 ³0 ³ x e y2 2 y 2 ³0 ª x2 º 3 « 1 y » dy 2 ¼0 ¬ 1 2 2³0 2 2 ³ 0 ye 2 y2 y2 º dx dy y dy ¼» 0 y2 dy 2 ª1 1 2 3 «2 3 3 1 y ¬ 1 1 27 1 9 9 y ³ 0 ª¬«xe 1 y y dy 3 y ³0 ³0 e dy dx 295 3 2º ª 1 y2 º « 2 e » ¬ ¼0 2 » ¼0 1 4 1 e e0 2 2 1§ 1· ¨1 4 ¸ | 0.4908 e ¹ 2© 26 9 3 y 2 (2, 2) 2 1 1 x 1 2 3 x 1 68. 4 ³0 ³ 2 x 3 dy dx 2 y3 y2 2 ³0 ³0 2 ³0 2 ³0 2 3 dx dy 2 y3 y2 71. ª 3x º dy « 3» ¬ 2 y ¼0 3y2 dy 2 y3 ln 10 ln 2 1 1 ³ 0 ³ y sin x 2 1 1 ³ 0 ª¬ y sin x 2 ªln 2 y 3 º ¬ ¼0 1 ³ 0 x sin x ln 5 (4, 2) 2 y 1 2 3 1 2 ³ 0 ³ 2 x 4e y2 dx 1 x 69. 2 x º dx ¼0 1 1 cos 1 1 2 2 1 1 cos 1 | 0.2298 2 3 1 2 dy dx 1 4 x 2 ª 1 2 º « 2 cos x » ¬ ¼0 y y= x ³ 0 ³ 0 sin x dx dy 4 dy dx 2 y 2 2 ³0 ³0 4e y dx dy ³ 0 ª¬«4 xe y 2 y2 º x 1 2 2 ªe y 2 º «¬ »¼ 0 dy ¼» 0 e4 1 2 ³ 0 2 ye y2 dy 72. 2 4 ³ 0 ³ y2 x sin x dx dy 4 ³0 ³0 x 4 ³ 0 ª¬ y y 3 x sin x dy dx x sin xº¼ 0 x dx 4 ³ 0 x sin x dx 2 1 >sin x y x 1 2 x cos x@0 4 sin 4 4 cos 4 | 1.858 4 3 3 (4, 2) 2 1 x 1 2 3 4 © 2010 Brooks/Cole, Cengage Learning 296 73. 74. 75. Chapter 14 Multiple Integration 2 2x 1 2y 4 y ³ 0 ³ x2 x3 3 y 2 dy dx ³0 ³ y 2 ³0 ³0 ln 5 dx dy x 1 y 1 2 8 | 2.590 x1 3 ³ 0 ³ x2 32 (b) x1 3 4 2 y x2 x sin 2 sin 3 | 0.408 2 3 sin x y dx dy y3 y 77. (a) x | 15.848 1664 105 32 y y x 2 y xy 2 dy dx (c) Both integrals equal 76. a ax ³0 ³0 a4 6 x 2 y 2 dy dx x2 32 67,520 | 97.43. 693 y 4 x = y3 (8, 2) 2 x 2 −2 4 x2 x 78. (a) y (b) 2 2 ³0 ³ 4 y2 6 8 x = 4 2y 4 y2 x2 x 4 4 y 4 16 4 y xy dx dy x y2 1 2 3 2 ³2 ³0 xy dx dy x y2 1 2 4 ³3 ³0 16 4 y xy dx dy x2 y 2 1 y 4 3 2 1 x 1 2 (c) Both orders of integration yield 1.11899. 2 4 x2 2 2 79. ³0 ³0 80. ³0 ³ x 81. ³0 ³0 82. e xy dy dx | 20.5648 16 x3 y 3 dy dx | 6.8520 2S 1 cos T S 2 1 sin T ³0 ³0 6r 2 cos T dr dT 15 T r dr dT 15S 2 45S 32 2 84. A region is vertically simple if it is bounded on the left and right by vertical lines, and bounded on the top and bottom by functions of x. A region is horizontally simple if it is bounded on the top and bottom by horizontal lines, and bounded on the left and right by functions of y. 85. The region is a rectangle. 86. The integrations might be easier. See Exercises 59–62. 135 | 30.7541 8 87. True 88. False, let f x, y x. 83. An iterated integral is integration of a function of several variables. Integrate with respect to one variable while holding the other variables constant. © 2010 Brooks/Cole, Cengage Learning Section 14.2 Double Integrals and Volume 297 Section 14.2 Double Integrals and Volume For Exercises 1–4, 'xi 1, 1 2 2 3 1 , 2 2 , , 'yi 5 1 , 2 2 , 7, 1 2 2 2 3 4 1 and the midpoints of the squares are 1, 3 2 2 , , 3 3 , 2 2 , 5 3 , 2 2 7, 3 2 2 , . y 4 3 2 1 x 1 1. f x, y 8 ¦f x y xi , yi 'xi 'yi 1 2 3 4 23 4 5 24 i 1 2 4 2 ³0 ³0 2. f x, y f ¦f 4 ³0 x y dy dx 1 2 x y dy dx 2 2 3. f x, y 8 ¦f 2 x 2 dx 2 4 ³0 ª x2 y2 º « » dx ¬ 4 ¼0 4 4 ³0 x 2 x3 º » 3 ¼0 dx 2 ³0 ³0 8 ¦f i 1 4 2 ³0 ª 2 y3 º «x y » dx 3 ¼0 ¬ 4 4 ³0 ³0 ³0 8· § 2 ¨ 2 x ¸ dx 3¹ © 1 x 1 y 1 4 4 4 4 4 4 4 4 9 15 21 27 15 25 35 45 dy dx 4 ª 2 x3 8x º « » 3 ¼0 ¬ 3 160 3 7936 | 1.680 4725 2 4 ª 1 º « x 1 ln y 1 » dx ¬ ¼0 4 ln 3 dx x 1 ³0 ³0 5. 4 52 1 x 1 y 1 xi , yi 'xi 'yi ³0 ³0 4 x 2 y 2 dy dx 4. f x, y 21 64 | 21.3 3 2 10 26 50 10 18 34 58 4 4 4 4 4 4 4 4 xi , yi 'xi 'yi 2 24 x2 y 2 i 1 4 4 ª¬ x 2 2 xº¼ 0 1 9 25 49 3 27 75 147 16 16 16 16 16 16 16 16 i 1 4 4 ³0 1 2 x y 2 xi , yi 'xi 'yi ³0 ³0 ª y2 º « xy » dx 2 ¼0 ¬ 4 ª¬ln 3 ln x 1 º¼ 0 ln 3 ln 5 | 1.768 f x, y dy dx | 32 31 28 23 31 30 27 22 28 27 24 19 23 22 19 14 400 Using the corner of the ith square furthest from the origin, you obtain 272. 6. 2 2 ³0 ³0 f x, y dy dx | 4 2 8 6 20 © 2010 Brooks/Cole, Cengage Learning 298 7. Chapter 14 Multiple Integration 2 1 ³0 ³0 2 ³ 0 ¬ª y 2 xy 1 2 x 2 y dy dx 1 y 2 ¼º dx 0 2 ³0 2 2 x dx 2 2 ¬ª2 x x ¼º 0 8 y 3 2 1 x 1 8. S 2 S 2 ³0 ³0 3 sin 2 x cos 2 y dy dx S 2 S ª1 2 « 2 sin ¬ S 1 §S · sin 2 x¨ ¸ dx 2 ©2¹ ³0 ³0 1 § ·º x¨ y sin 2 y ¸» dx 2 © ¹¼ 0 S S 1 cos 2 x dx 8 ³0 S ªS § 1 ·º « 8 ¨ x 2 sin 2 x ¸» ¹¼ 0 ¬ © S2 8 y 3 2 1 x 1 9. 6 3 ³0 ³ y 2 2 3 6 ³0 x y dx dy 3 ª1 2 º « 2 x xy» dy ¬ ¼y 2 6 ³0 5 2· §9 ¨ 3 y y ¸ dy 8 ¹ ©2 6 3 2 5 3º ª9 « y 2 y 24 y » ¬2 ¼0 36 y (3, 6) 6 4 2 x 2 10. 4 4 y ³0 ³ 1 2 y x 6 4 y ª x3 y 2 º dy » 3 ¼12 y ³ 0 «¬ 2 2 y dx dy 4 § y7 2 y5 · ¸ dy 3 24 ¹ ³ 0 ©¨ 4 ª 2 y9 2 y6 º « » 144 ¼ 0 ¬ 27 1024 256 27 9 256 27 y 4 (2, 4) 3 2 1 x 1 11. a ³ a ³ 2 a2 x2 a2 x2 3 4 x y dy dx a ³ a 1 2º ª « xy 2 y » ¬ ¼ a2 x2 dx a2 x2 a ³ a 2 x a 2 x 2 dx ª 2 2 2 « 3 a x ¬ 3 2º a » ¼a 0 y a a −a x −a © 2010 Brooks/Cole, Cengage Learning Section 14.2 12. 1 0 ³ 0 ³ y 1 e x y 1 y 1 ³0 ³0 dx dy 1 ³ 0 ª¬e e x y dx dy 1 ³0 x y 0 º¼ y 1 dy 1 ³ 0 ª¬e x y 1 y º¼ 0 Double Integrals and Volume y dy 2 1 e e 2 y 1 dy 299 ª¬ey 12 e 2 y 1 º¼ 0 e e 1 1 2 y = −x + 1 y=x+1 x −1 13. 5 3 ³ 0 ³ 0 xy dx dy 3 5 ³ 0 ³ 0 xy dy dx 3 ³ 0 ¬ª 12 xy 2º 1 y 5 ³ 3 25 2 0 ¼ 0 dx 5 3 ª 25 2 º ¬ 4 x ¼0 x dx 225 4 4 3 2 1 x 1 14. S 2 S S ³ 0 ³ S sin x sin y dx dy S 2 ³ S ³ 0 2 3 4 5 y sin x sin y dy dx S S 2 ³ S >sin x cos y@0 5π 2 S ³ S sin x dx dx 2π 0 3π 2 π x − 3π − π − π 2 2 15. 2 y ³1 ³1 y dx dy x2 y2 4 2 ³ 2 ³ y 2 x2 y dx dy y2 2 2x ³1 ³ x π 2 3π 2 π y dy dx x2 y 2 y 2x 1 2ª ln x 2 y 2 º¼ dx ³ ¬ 1 x 2 2 1 ln 5 x 2 ln 2 x 2 dx 2 ³1 4 4 x ³0 ³0 4 y 4 ³0 ³0 xe y dy dx 4 y 4 x º¼ 0 dx 4 ³0 x=2 2 x=1 1 ª1 § 5 · º « 2 ¨ ln 2 ¸ x» ¹ ¼1 ¬ © xe y dx dy y=x 1 5 ln 2 2 x 1 2 3 4 y 4 For the first integral, you obtain: ³ 0 ª¬xe y = 2x 3 2 1 5 2 ln dx 2 2 ³1 16. 4 3 xe 4 x x dx 2 4 ª 4 x x2 º 1 x » «e 2 ¼0 ¬ 17. 4 4 y ³ 3 ³ 4 y 2 y dx dy 4 x2 1 ³ 0 ³ 4 x 1 ³ 0 ª¬ y 2 5 8 e 4 1 e 4 13. x 1 2 y dy dx º¼ dx 4 x 1 2 4 4 (1, 3) 2 2 y=4−x 1 x 1 1 ª º x «3x3 4x2 » 5 ¬ ¼0 5 4 y = 4 − x2 3 2 4 x º dx ¼» ³ ª¬16 8 x x 16 8 x x º¼ dx 0 2 3 y 4 x2 1 ³ ª 4 x2 « 0 ¬ 2 3 4 6 5 © 2010 Brooks/Cole, Cengage Learning 300 18. Chapter 14 Multiple Integration 2 y 4 ³ 0 ³ y2 1 4 ³0 ³0 dx dy x2 x y y dy dx 1 x2 1 4 ª y2 º « » 2 ³ 0 ¬1 x 2 ¼ 0 4 x 4 ª1 2 º « 4 ln 1 x » ¬ ¼0 1 4 x dx 2 ³ 0 1 x2 dx 3 1 ln 17 4 y= x 2 1 x 1 19. 4 3x 4 ³0 ³0 x dy dx 5 ³4 ³0 25 x 2 25 y 2 3 ³0 ³ 4y 3 x dy dx 3 ³ 0 ª¬ 12 x ³ 3 25 18 0 2 2 3 4 y x dx dy 5 25 y 2 º¼ 4y 3 25 − y 2 x= 4 dy ª 25 9 y ¬ 18 9 y 2 dy x= 4y 3 3 3 º ¼0 1 y3 3 (4, 3) 2 25 1 x 1 20. 4 y2 2 ³0 ³ x 2 y 2 dy dx 1 3º ª 2 ³ 2 «¬x y 3 y »¼ 0 2 ª 2 ³ 2 «¬x ª x 2 « 4 x ¬ 4 ³0 ³0 x=− 32 y dy dx 2 4 − y2 3 x= 4 − y2 dx 1 3 2º x » dx ¼ −2 −1 x· 1§ 1ª 2 x 4 x2 ¨ x 4 x 4 arcsin ¸ 2© 2 ¹ 12 ¬« 4 ³0 2 ª y2 º « » dx ¬ 4 ¼0 4 ³0 dx 4 1 32 2 2 x ºº 4 x 2 24 arctan »» 2 ¼¼ 2 6x 2 y ³0 ³0 23. V 2 ³0 y 4 2 y ª º x2 xy» dy «4 x 2 ¬ ¼0 § · y y 2 ¸ dy 2 ¹ 2 ª 2 y3 y3 º «2 y » 6 3 ¼0 ¬ x 2 3 4 8 22. V 4 2 ³0 ³0 y 2 2 1 4S 4 x y dx dy ³ 0 ¨© 4 y 3 1 5 4 4 x2 1 4 x2 4 x2 3 2 2 4 y 4 x2 ³2 ³0 4 3 x 2 y 2 dx dy 4 y2 2 21. V 2 2 1 y=x x 8 8 6 3 1 4 2 6 2 y dy dx 4 ³ 0 ª¬6 y 2 y 2 º¼ 0 dx 4 ³ 0 8 dx 32 2 x ³0 ³0 24. V 2 ³ 0 4 x dx 4 dy dx 2 2 x2 º »¼ 0 8 y y 4 2 y=x 3 1 2 1 x x 1 2 3 1 2 4 © 2010 Brooks/Cole, Cengage Learning Section 14.2 6 ³0 ³0 25. V 2 3 x 4 § 12 2 x 3 y · ¨ ¸ dy dx 4 © ¹ 6 ³0 6 Double Integrals and Volume y 2 3 x 4 ª1 § 3 2 ·º « 4 ¨12 y 2 xy 2 y ¸» ¹¼ 0 ¬ © §1 ³ 0 ¨© 6 x 2 · 2 x 6 ¸ dx ¹ 301 dx 5 y = − 23 x + 4 4 6 ª1 3 º 2 « x x 6 x» ¬18 ¼0 3 12 2 1 x 2 1 3 4 5 6 −1 2 x 2 ³0 ³0 26. V ³0 ³0 2 1 2 x 2 2 2 x ª y2 º «2 y xy » 2 ¼0 ¬ 2 2 x y dy dx 2 1 3º x2 » 6 ¼0 dx y dx 2 y=2−x 4 3 1 x 1 1 y ³0 ³0 27. V 1 xy dx dy y y ª x2 y º «x » dy 2 ¼0 ¬ 1 ³0 2 1 1§ y3 · ³ 0 ©¨ y 2 ¹¸ dy ª y2 y4 º « » 8 ¼0 ¬2 3 8 1 y=x x 1 2 y ³0 ³0 28. V y 4 y 2 dx dy 2 2 2 ³0 4y y 3 ª 2 y4 º «2 y » 4 ¼0 ¬ dy 4 1 y=x x 1 2 f f 1 f 29. V ³0 ³0 30. V ³0 ³0 31. V 4³ 32. V ³0 ³0 33. V ³ 0 ³ 0 xy dy dx f f e x y 2 ³0 2 0 1 x 1 x 2 x 1 2 8 x2 y 1 dy dx 2 dy dx f ³0 f ³0 ª º 1 « » dx 2 «¬ x 1 y 1 »¼ 0 f ª2e x y 2 º dx ¬ ¼0 1 2e x 2 dx ³0 f 1 x 1 f x 2 ¬ª4e ¼º 0 2 dx ª 1 º « » x 1 »¼ 0 ¬« 1 4 32 2 S 3 8 x 2 y 2 dy dx 1 x 2 dy dx f ³0 f 1 3 ³ 0 ª¬ 12 xy 2º x ¼ 0 dx 1 1 x3 2 0 ³ dx 1 ª1 x4 º ¬8 ¼ 0 1 8 y 1 y=x x 1 © 2010 Brooks/Cole, Cengage Learning 302 Chapter 14 Multiple Integration 5 x ³ 0 ³ 0 x dy dx 34. V 5 5 ³ 0 > xy@0 dx x 5 ª1 x3 º ¬3 ¼0 2 ³0 x 2 4 ³0 ³0 x 35. V 2 ³0 dx 2 dy dx 2 ª 4 x3 º « » ¬ 3 ¼0 125 3 y 2 4 ³ 0 4x ª¬ x 2 yº¼ dx 0 2 dx 32 3 y 5 y=x 4 4 3 3 2 2 1 1 x 1 2 4 3 5 x −1 8³ 36. V r 0 ³0 r 2 x2 1 y r 2 x 2 y 2 dy dx y= r ª 4³ « y 0 ¬ º » r 2 x2 ¼0 y r 2 x 2 y 2 r 2 x 2 arcsin §S · r 4¨ ¸ ³ r 2 x 2 dx ©2¹ 0 r ª § 2 1 3 ·º «2S ¨ r x 3 x ¸» © ¹¼ 0 ¬ r 2 x2 2³ V 0 x ³0 1 x 2 dy dx 1 2³ x 1 x 2 dx 0 r2 − x2 r dx 4S r 3 3 x r 37. Divide the solid into two equal parts. 1 3 2 y x 1 y=x 2 ³ ª y 1 x 2 º dx 0 ¬ ¼0 ª 2 1 x 2 ¬« 3 32 1 º ¼» 0 1 2 3 x 1 4 x2 2 ³0 ³0 38. V 2 ³0 2 ³0 4 x 2 dy dx y 4 4 x 2 4 x 2 dx 16 8 x 2 x 4 dx 3 5 2 ª x º 8x » «16 x 3 5 ¼0 ¬ 3 32 64 32 3 5 y = 4 − x2 2 256 15 1 x 1 2 ³0 ³0 39. V 2 ³0 4 x2 x y dy dx 2 ³ 0 ª¬xy 12 y 2º ¼0 4 x2 dx x 4 x 2 2 12 x 2 dx ª 1 4 x 2 «¬ 3 32 2 ³0 2 2 x 16 x3 º »¼ 0 y f 2 ³0 ³0 40. V 16 3 S 2 2 3 1 dy dx 1 y2 4 2 f ³ 0 >arctan y@0 dx 2 ªS x º «2» ¬ ¼0 dx S y 2 y= 2 4−x 2 1 1 x 1 2 x 1 2 © 2010 Brooks/Cole, Cengage Learning Section 14.2 41. V 2 2³ 0 2³ 0 2 ³0 ³0 1 x 1 2 2 2 ¬ª4 x y ¼º >4 2 x@ dy dx 1 x 1 2 Double Integrals and Volume 2 2 y 1 2 2 ³0 ³ 45. V 2 2 y 1 2 303 ª4 y x 2 2 y 2 º dx dy ¬ ¼ y 2 x x 2 y 2 dy dx x2 + (y − 1) 2 = 1 2 3 y (x − 1) 2 + y 2 = 1 1 1 x −2 x −1 1 1 2 −1 −1 46. V 2³ 42. V 2 0 ³0 1 x 1 2 3 4³ 2 2 º ª ¬2 x x y ¼ dy dx 9 x2 3 ³ 3 ³ 0 y 9 x2 9 x2 ³0 ª¬18 x 2 y 2 º¼ ª¬ x 2 y 2 º¼ dy dx 18 2 x 2 2 y 2 dy dx y (x − 1) 2 + y 2 = 1 x2 + y2 = 9 1 2 1 x x 1 −2 −1 1 2 −1 −2 −1 4³ 43. V 2 0 ³0 4 x2 x 2 y 2 dy dx y 47. z V x 2 + y2 = 4 1 0 9 x2 ³0 9 9 y 2 0.5 x 1 ³0 ³0 49. V ³0 ³0 50. V ³0 ³0 0 9 x 2 y 2 dy dx 9 y dx dy 81S 2 81 2 1 −1 S 5 ³0 ³0 44. V 3 4³ 48. V x −1 9 x2 y 2 , z sin 2 x dx dy y 16 4 y 2 dy dx | 1.2315 1 x2 y 2 ln 1 x y dx dy | 38.25 51. f is a continuous function such that 0 d f x, y d 1 over a region R of area 1. Let 5 4 f m, n the minimum value of f over R and 3 f M, N 2 1 x 1 2 3 4 f m, n 5 Because the maximum value of f over R. Then ³ R ³ dA d ³ R ³ f ³ R ³ dA x, y dA d f M , N ³ R ³ dA. 1 and 0 d f m, n d f M , N d 1, you have 0 d f m, n 1 d So, 0 d ³R ³ f ³R ³ f x, y dA d f M , N 1 d 1. x, y dA d 1. © 2010 Brooks/Cole, Cengage Learning 304 52. Chapter 14 Multiple Integration x y z a b c z 1 c x y· § c¨1 ¸ a b¹ © z ³R ³ f V R a ª xy y º c³ « y » 0 a 2b ¼ 0 ¬ x y· § c¨1 ¸ dy dx a b¹ © bª¬1 x a º¼ a ³0 ³0 x, y dA 2 b ¬ª1 x a ¼º a dx b y x 2 a ª § x · xb § x · b2 § x· º 1 ¸ 1 ¸ » dx c ³ «b¨1 ¸ ¨ ¨ 0 a¹ a© a ¹ 2b © a ¹ »¼ ¬« © a 2 3 ª ab § x· x 2b x3b ab § x· º 2 c « ¨1 ¸ 1 ¨ ¸ » 2a 3a 6© a¹ a ¹ »¼ «¬ 2 © 0 53. 1 12 ³0 ³ y 2 e x2 12 2x ³0 ³0 dx dy 12 ³0 2 xe ª§ ab ab ·º ab · § ab c «¨ ¸ ¨ ¸ 6 ¹»¼ 3¹ © 2 ¬© 2 2 y e x dy dx x2 y = 2x ªe ¬« dx abc 6 12 x2 º ¼» 0 e 1 4 1 1 1 e 1 4 | 0.221 1 2 x 1 2 54. ln 10 10 ³ 0 ³ ex 1 dy dx ln y 10 ³1 ³ 0 10 ³1 10 ³1 y 1 dx dy ln y ln y 10 8 ln y ª x º « » dy ¬ ln y ¼ 0 6 y = ex 4 > y@1 10 dy 2 9 x 1 55. 2 ³2 ³ 4 x2 2 ³ 2 ³ 4 y 2 dy dx 4 x2 4 y2 4 y2 2 4 y 2 dx dy 3 4 2 ³ 2 2 2 ³ 2 1 ª 2 y3 º «8 y » 3 ¼ 2 ¬ 2 4 y 2 dy 5 ªx 4 y 2 º ¬ ¼ y 4 y2 4 y2 x2 + y2 = 4 dy 1 16 · § 16 · § ¨16 ¸ ¨ 16 ¸ 3¹ © 3¹ © x −1 64 3 56. 3 ³0 1 ³ y 3 1 x 4 dx dy 1 1 3x ³0 ³0 1 −1 1 dy dx 1 x4 3x dx x4 ³0 1 3 2 57. 1 arccos y ³0 ³0 1 ³0 y 3x ª y º «1 x 4 » dx ¬ ¼0 3 y = 3x (1, 3) 1 3 º arctan x 2 » 2 ¼0 2 1 3S 8 x 2 3 sin x 1 sin 2 x dx dy S 2 cos x ³0 ³0 S 2 ³0 §S · ¨ ¸ ©4¹ y sin x 1 sin 2 x dy dx 1 sin 2 x 12 1 sin x cos x dx 2 ª1 ¬« 2 2 3 1 sin 2 x 32 S 2 º ¼» 0 y = cos x 1 ª2 3¬ 2 1º¼ 1 x π 2 π © 2010 Brooks/Cole, Cengage Learning Section 14.2 58. 2 2 ³ 0 ³ 1 2 x2 2 y cos y dx dy 2 2 ³0 305 y 2y ³0 ³0 y cos y dy dx Double Integrals and Volume 2y (2, 2) 2 2 ³ y cos y dy y cos y dy 0 2 >cos y y sin y@0 1 2 >cos 2 2 sin 2 1@ 2 y = 12 x 2 x 1 59. Average 1 4 8³0 60. Average 1 5 3 2 xy dy dx 15 ³ 0 ³ 0 2 ³0 1 5 9 x dx 15 ³ 0 61. Average 1 4 2 x dx 8³0 x dy dx 5 2 1 325 250 100 x 0.6 y 0.4 dx dy 1250 ³ 300 ³ 200 65. Average 250 1 325 ª x1.6 º 100 y 0.4 « » dy ³ 1250 300 ¬ 1.6 ¼ 200 15 2 128,844.1 325 0.4 y dy 1250 ³ 300 1 2 2 2 x y 2 dx dy 4³0 ³0 2 1 2 ª x3 2º « xy » dy 4³0 ¬ 3 ¼0 2 ª1 § 8 2 3 ·º « 4 ¨ 3 y 3 y ¸» ¹¼ 0 ¬ © 62. Average 4 ª x2 º « » ¬ 8 ¼0 3 1 5 ª xy 2 º dx 15 ³ 0 ¬ ¼ 0 1 ª9 x2 º « » 15 ¬ 2 ¼ 0 1 12 1 325 ³0 ³0 1 8 3 0 4 ³ ³0 20 4 x 2 y 2 dy dx 28 q C 3 1 224 8 3 67. See the definition on page 994. 2³ >ln 2 x ln x@ dx 2 ³ ª¬ln x y º¼ 0 dx 0 2 ³ ln 2 dx 1 2 8 0 66. Average 1 x 1 ª y1.4 º 103.0753« | 25,645.24 » ¬ 1.4 ¼ 300 1 2 §8 2· ¨ 2 y ¸ dy 4³0 ©3 ¹ 1 dy dx x y x 2 0 2> x ln 2@0 1 68. The value of ³R ³ f x, y dA would be kB. 2 ln 2 69. (a) The total snowfall in the county R. y (b) The average snowfall in R. y=x 1 (1, 1) 70. Part (b) is invalid. You cannot have the variable of integration y as a limit of integration. 71. No, the maximum possible value is Area 6 x 6S . 72. The second is integrable. The first contains 63. Average 1 1 1 x y e dy dx 1 2³0 ³ x 1 1 º ª 2 «e x 1 e 2 x » 2 ¼0 ¬ e 2e 1 2 64. Average 1 S 1 S S 2 ³0 S ³0 1 2³ e x 1 e 2 x dx 0 1 1º ª 2 «e 2 e 2 e » 2 2¼ ¬ e 1 1 S 1 S S 2 ³0 sin y 2 dy which does not have an elementary antiderivation. 73. f x, y t 0 for all x, y and 2 f f ³ f ³ f f x, y dA sin x y dy dx P 0 d x d 2, 1 d y d 2 1 >2 sin x@S0 2 2 ³ 0 ³1 2 cos x S cos x dx S2 2 5 S 2 cos x dx 5 ³ 0 ³ 0 101 dy dx ³ 0 15 dx ªcos x y º¼ 0 dx S 2 ³0 ¬ S 2 ³0 ³ 1 10 ³ 0 101 dx 1 dy dx 1. 5 0 © 2010 Brooks/Cole, Cengage Learning 306 Chapter 14 Multiple Integration 74. f x, y t 0 for all x, y and f f ³ f ³ f f 2 2 ³0 ³0 x, y dA 1 2 ³ 0 ³1 P 0 d x d 1, 1 d y d 2 1 xy dy dx 4 1 xy dy dx 4 x dx 2 1 3x ³ 0 8 dx 2 ³0 1 3 . 16 75. f x, y t 0 for all x, y and f f ³ f ³ f f x, y dA P 0 d x d 1, 4 d y d 6 6 1ª y2 º «9 y xy » dx 27 ¬ 2 ¼3 3 6 1 9 x y dy dx 27 ³0 1 6 1 9 x y dy dx 27 ³ 0 27 4 x ³0 ³3 ³0 ³4 3 1 2 3 ³0 3 ª x x2 º « » ¬ 2 18 ¼ 0 §1 1 · ¨ x ¸ dx ©2 9 ¹ 1 7 . 27 dx 76. f x, y t 0 for all x, y and f f ³ f ³ f f x, y dA P 0 d x d 1, x d y d 1 f f ³0 ³0 1 1 ³0 ³ x e e x y dy dx x y f ³0 1 ³ 0 ª¬e dy dx 1 ª 1 2 x º e x 1 » « 2 e ¬ ¼0 V | 4 3 6 7 3 2 100 ³0 x y 1 º¼ x 0 dx 1 ³0 1 2 1 e e 1 2 2 77. Divide the base into six squares, and assume the height at the center of each square is the height of the entire square. So, f b lim ªe x y º¼ dx b of ¬ 79. e x dx lim ªe x º¼ b of ¬ b 1 0 e 2 x e x 1 dx 2 1 1 e 1 | 0.1998. 2 1 2 ³ 0 ³ 0 sin x y dy dx 4, n m 8 (a) 1.78435 2500 m3 . (b) 1.7879 z 80. 7 (15, 5, 6) (25, 5, 4) (15, 15, 7) (5, 5, 3) 2 4 ³ 0 ³ 0 20e x3 8 dy dx m 10, n 20 x dx dy m 4, n 8 m 6, n 4 (a) 129.2018 (5, 15, 2) (b) 129.2756 20 y 30 x 81. (25, 15, 3) 6 2 ³4 ³0 y cos (a) 11.0571 78. Sample Program for T1-82: Program: DOUBLE : Input A : Input B : Input M : Input C : Input D : Input N : 0 o V (b) 11.0414 82. 4 2 ³1 ³1 x 3 y 3 dx dy (a) 13.956 (b) 13.9022 83. V | 125 Matches d. z (4, 0, 16) 16 (4, 4, 16) : B A M o G : D C N o H : For (I, 1, M, 1) : For (J, 1, N, 1) : A 0.5G 2I 1 o X : C 0.5H 2J 1 o Y : V sin X Y uGuH o V (0, 4, 0) (4, 0, 0) 5 5 x y (4, 4, 0) 84. V | 50 z Matches a. 4 3 : End : End : Disp V x 3 3 y © 2010 Brooks/Cole, Cengage Learning Section 14.2 85. False 8³ V 1 0 ³0 2 1 x 2 y 2 dx dy xy e x e 2 x x ª 1 xy º « x e » ¬ ¼1 dy 307 So, f 86. True ³0 1 ³0 f 87. Average 2 ³1 e 88. 1 y2 Double Integrals and Volume ³ 1 0 1 t ³0 e t2 x ³ 0 ³1 e x dx 1 ³ dt dx 1 1 0 1 ³ xe t2 f 2 2 f ³ 0 ³1 e ³1 ³ 0 dt dx 1 2 dx dy e xy dx dy ª e xy º « » dy ¬ y ¼0 2 ³1 0 12 e 1 xy f 2 ³ tet dt dx dt ª 1 et 2 º «¬ 2 »¼ 0 t2 e x e 2 x dx x 1 e 1 dy y 2 ³1 t ln 2. 9 x 2 y 2 is a paraboloid opening downward 89. z 1 >ln y@12 with vertex 0, 0, 9 . The double integral is maximized if z t 0. That is, x ^ x, y : x 2 R 1 y 2 d 9`. ª «The maximum value is ¬ ³R ³ 81S º . 2 »¼ 9 x 2 y 2 dA x 2 y 2 4 is a paraboloid opening upward with vertex 90. z 0, 0, 4 . The double integral is minimized if z d 0. That is, ^ x, y : x 2 R y 2 d 4`. [The minimum value is 8S .] 91. 2 ³0 2 2 ³0 y Sx ³0 ³ x tan 1 S x tan 1 x dx ª x º «1 y 2 » dy ¬ ¼y S 2S ³2 1 dy dx 1 y2 2 ª x º «1 y 2 » dy ¬ ¼y S 2 1 y ³0 ³ y S 1 2 ª y ³ 0 «¬1 y 2 y2 dx dy 2S 2 1 ³2 ³ y S 1 y S º dy 1 y 2 »¼ 2S ³2 y2 dx dy ª 2 y S º «1 y 2 1 y 2 » dy ¬ ¼ 2S 2 ª1 § 1· 1 ª 2 º 1 2 º « 2 ¨1 S ¸ ln 1 y » «2tan y 2S ln 1 y » ¼2 ¹ ¬ © ¼0 ¬ 1§ 1· 1 1 1 ln 1 4S 2 2 tan 1 2 ln 5 ¨1 ¸ ln 5 2 tan 2S 2© 2S 2S S¹ 1 1 ln 5 2 tan 1 2S 2 tan 1 2 ln 1 4S 2 | 0.8274 2 2S y 7 5 4 3 2 3 ³0 ³0 9 y2 9 x 2 y 2 dx dy x a b ³0 ³0 e ^ max b 2 x 2 , a 2 y 2 2 3 4 5 9 in the first octant. ` dy dx. y Divide the rectangle into two parts by the diagonal line ay bx. On lower triangle, b b 2 x 2 t a 2 y 2 because y d x. a a bx a b ay b a bx 2 2 b ay 2 2 b2 x2 a2 y2 b x a y I ³ 0 ³ 0 e dy dx ³ 0 ³ 0 e dx dy ³ 0 a e dx ³ 0 b e dy 1 ª b2 x 2 º a 1 ª a2 y2 º b e e « » »¼ 0 ¼0 2ab ¬ 2ab «¬ 1 9S 2 because this double integral represents the portion of the sphere x 2 y 2 z 2 1 4 9S 3 S 3 V 8 3 2 93. Let I y=x 1 −2 −1 92. y = πx 6 2 2 1 ª b2 a 2 e 1 e a b 1»º ¼ 2ab «¬ e a 2b 2 (a, b) b ay = bx a x 1 ab © 2010 Brooks/Cole, Cengage Learning 308 Chapter 14 Multiple Integration 94. Assume such a function exists. 1 1 O ³ u y u y x dy; O ! u x x 1 ³0 u x D 1 1 1 ³ 0 dx O ³ 0 ³ x u dx 1 ,0 d x d 1 2 y u y x dy dx Change the order of integration. 1 ³0 u x D dx 1 O³ Hold y fixed and let z 1 0 y ³0 u y x, dz dx. 1 O ³ u y ª³ u z dz º dy 0 ¬« y ¼» 1 D y ³0 u z Let f y 0 1 y 1 O ³ u y ª³ u z dzº dy »¼ 0 ¬« 0 dz. Then f c y u y, f 0 1 1 1 O ³ f c y f y dy D 1 y 1 O ³ u y ª³ u y x dxº dy »¼ 0 ¬« 0 y u y x dx dy 0 ª f y 2º » 1 O« «¬ 2 »¼ 0 0, f 1 D. 1 2 2º ª1 1 O« f 1 f 0 » 2 2 ¬ ¼ 1 1 O D2 2 OD 2 2D 2 0. For D to exist, the discriminant of this quadratic must be nonnegative. 4 8O t 0 O d b 2 4ac But, O ! 1 2 1 , a contradiction. 2 Section 14.3 Change of Variables: Polar Coordinates 1. Rectangular coordinates 2. Polar coordinates 3. Polar coordinates 4. Rectangular coordinates 5. R ^ r, T : 0 d r d 8, 0 d T d S ` 6. R ^ r, T : 0 d r d 4 sin T , 0 d T d S ` 7. R ^ r, T : 0 d r d 3 3 sin T , 0 d T d 2S ` Cardioid 8. R ^ r, T : 0 d r d 4 cos 3T , 0 d T d S ` 9. S cos T ³0 ³0 r dr dT 2 cos T π 2 S ªr º « » ¬ 2 ¼0 S 1 cos 2 T dT 2 1 1 cos 2T dT 4 ³0 ³0 S ³0 10. dT S 1ª 1 º T sin 2T » 4 «¬ 2 ¼0 0 1 S 4 2 S sin T ³0 ³0 r 2 dr dT 1 S 3 sin T dT 3³ 0 S ³0 sin T ªr3 º « » ¬ 3 ¼0 dT 1 S 1 cos 2 T sin T dT 3³ 0 S 1ª cos3T º «cos T » 3¬ 3 ¼0 π 2 1 ª§ 1· § 1 ·º ¨1 ¸ ¨ 1 ¸» « 3 ¬© 3¹ © 3 ¹¼ 4 9 0 1 © 2010 Brooks/Cole, Cengage Learning Section 14.3 11. 2S 6 ³ 0 ³ 0 3r 2 2S ³0 sin T dr dT 2S ³0 Change of Variables: Polar Coordinates 6 ª¬r 3 sin T º¼ dT 0 13. S 2 3 ³0 ³2 S 2 ³0 9 r 2 r dr dT 216 sin T dT ª 1 2 « 3 9 r ¬ S 2 2S >216 cos T @0 ª5 5 º T» « ¬ 3 ¼0 0 309 3 2º 3 » dT ¼2 5 5S 6 π 2 π 2 0 4 0 1 12. S 4 4 ³0 ³0 r 2 4 ªr3 º « sin T cos T » dT 3 ¬ ¼0 S 4 ³0 sin T cos dr dT S 4 ª§ 64 · sin 2 T º «¨ ¸ » ¬© 3 ¹ 2 ¼ 0 14. S 2 3 ³0 ³0 2 3 S 2 2 ³0 re r dr dT 3 ª 1 r2 º « 2 e » dT ¬ ¼0 S 2 ª 1 9 º « 2 e 1 T » ¬ ¼0 16 3 S§ 1· ¨1 9 ¸ e ¹ 4© π 2 π 2 0 1 2 3 4 0 1 15. S 2 1 sin T ³0 ³0 ªT r 2 º « » ¬ 2 ¼0 S 2 1 T 1 sin T 2 ³0 3 1 sin T S 2 ³0 T r dr dT 2 π 2 dT 2 dT S 2 1 § 1 1 · 1 2 º ª1 2 «8T sin T T cos T 2 T ¨ 2 cos T sin T 2T ¸ 8 sin T » © ¹ ¬ ¼0 0 3 2 9 S 32 8 16. S 2 1 cos T ³0 ³0 sin T r dr dT S 2 ³0 1 1 cos T ª r2 º « sin T » 2 ¼0 ¬ dT S 2 ³0 sin T 1 cos T 2 2 dT ª1 « 6 1 cos T ¬ 3º S 2 » ¼0 2 1 6 π 2 (x, y) = (0, 1) 0 1 17. a ³0 ³0 a2 y2 y dx dy S 2 a ³0 ³0 r 2 sin T dr dT a3 S 2 sin T dT 3 ³0 S 2 ª a3 º « cos T » 3 ¬ ¼0 a3 3 © 2010 Brooks/Cole, Cengage Learning 310 18. 19. Chapter 14 Multiple Integration a a2 x2 2 4 x2 ³0 ³0 ³ 2 ³ 0 ³0 ³ a x x2 ³0 ³0 S 2 S ³0 r 2 r dr dT 2 ªr4 º « » dT ¬ 4 ¼0 S ³0 4 dT 2 1· 1 § ¨ x 2 x ¸ 4¹ 4 © cos T ³ S 4S cos T ªr4 º 2 « 4 » ¬ ¼0 S 2 r 2 r dr dT a3 3 1· § x x2 y2 ¨ x ¸ 2¹ © 1 § 1· ¨ x ¸ . So y 4 © 2¹ ³ S 2 ³ 0 x 2 y 2 dy dx x x2 2 S 2 ª a3 º « sin T » 3 ¬ ¼0 a3 S 2 cos T dT 3 ³0 cos T dr dT 2 S x 2 y 2 dy dx 20. Note that x x 2 1 S 2 ³0 ³0 r x dy dx 22. 3 9 x2 2 8 y2 ³0 ³0 ³0 ³ y 2 23. ³0 ³0 24. ³0 ³0 4 32 x2 y 2 2 x x2 4 y y2 1 1 x 2 2 4 x2 ³ 1 ³ 0 26. ³0 ³0 S 4 3 2 2 ³0 ³0 x y dx dy 2 2 S 2 2 cos T xy dy dx ³0 ³0 x 2 dx dy ³0 ³0 S 2 64³ 25. S 2 ³0 ³0 r dy dx y = x − x2 r = cos θ 0 2 x S 1 x 2 y 2 dy dx ³ 0 ³ 0 sin 2 dT S 2 0 2 2 3 S 2 cos5 T sin dT ª 4 cos 6 T º « » 6 ¬ ¼0 3 S 4 2S 3 4 2 3 64 sin 4 T cos 2 dT S 2 ³ 0 ³ 0 cos r x 2 y 2 dy dx 4³ S 2 º 64 ª 5 sin 3 T cos T 3 T sin T cos T » «sin T cos T 6¬ 4 8 ¼0 sin 4 T sin 6 T dT S 2 S 2 ³0 ³0 S 4 ª 2 2 3 º « » « 3 T» «¬ »¼ 0 3 3 ³0 r 3 cos 2 T dr dT ³0 27. ³0 r dr dT 2 cos x 2 y 2 dy dx sin 2 2 S 4 0 2 243S 10 243 S 2 dT 5 ³0 dr dT r 3 cos T sin T dr dT 4 sin T S 2 4 1 . 4 π 2 dT 1 S2 1 S cos 4 T dT cos 4 T dT 4 ³ S 2 2³0 1§ 1 3 S · 3S Wallis's Formula ¨ ¸ 2© 2 4 2 ¹ 32 21. 2 2 ³2 ³0 8 x2 2 1 ª1 2 º « 2 sin r » dT ¬ ¼0 S ³0 r dr dT 2 S ³0 S sin 1 | 1.3218 2 1 sin 1 dT 2 S 2 2 ³ 0 >sin r r cos r@0 dT r r dr dT 2S >Integration by parts@ S sin 2 2 cos 2 | 2.7357 2 sin 2 2 cos 2 dT S 4 2 ³0 ³0 x 2 y 2 dy dx S 4 ³0 2 π 2 r 2 dr dT 4 2S 3 16 2 dT 3 0 1 28. ³0 5 2 2 x 5 ³ 0 xy dy dx ³ 5 2 2 ³0 25 x 2 xy dy dx S 4 5 ³0 ³0 r S 4 ³0 625 4 3 2 3 sin T cos T dr dT sin T cos dT S 4 2 º ª 625 ¬ 8 sin T ¼ 0 625 16 © 2010 Brooks/Cole, Cengage Learning Section 14.3 29. 2 ³0 ³0 4 x2 S 2 2 ³0 ³0 x y dy dx 8 S 2 3 0 ³ 30. S 2 5 ³ S 2 ³ 0 e r2 2 r dr dT S 2 ³ S 2 ª¬«e S 2 ³ S 2 r2 2 º 1 2 4 y2 ³ 5 25 2 2 ³1 2 ³y S 4 2 ³ 0 ³1 S 4 16 3 y 5 4 3 2 1 dT x S 1 e 25 2 2 4 y2 −5 −4 −3 −2 −1 1 2 3 4 −2 −3 −4 −5 y dx dy x arctan π 2 ( 1 , 2 1 2 ( T r dr dT ( 2, 2) 2 S 4 ª 3T º « » ¬ 4 ¼0 3 T dT 2 ³0 3S 64 2 0 1 32. 3 ³0 ³0 9 x2 S 2 3 9 r 2 r dr dT S 2 3 9r r 3 dr dT ³0 ³0 9 x 2 y 2 dy dx ³0 ³0 33. V S 2 1 ³0 ³0 1 S 2 2 0 ³ S 2 1 ³0 r 1 4³ 35. V ³0 ³0 r 36. V ³ R ³ ln x 2S ³0 5 3 1 S 2 8 0 ³ sin 2T dr dT 4³ r 2 3 r dr dT 2 2 dr dT y 2 dA 2S ³0 2³ S 2 0 4 cos T ³0 S 2 0 2S 2 ³ 0 ³1 2S 0 2S 4 ³ 0 ³1 81 S 2 dT 4 ³0 81S 8 1 4³ S 2 0 2³ ln r 2 r dr dT 2S 0 7S 2 7 dT 4 2 ³ 1 r ln r dr dT 2 ªr2 º « 1 2 ln r » dT 4 ¬ ¼1 2³ 2S ³0 1 8 250S 3 16 r 2 r dr dT 16 r 2 r dr dT S 2 ªr4 3r 2 º « » dT 2 ¼0 ¬4 S 2 0 128 S 2 ª 1 sin T 1 cos 2 T ¼º dT 3 ³0 ¬ 38. V ³0 3 1 4º ª9 2 « 2 r 4 r » dT ¬ ¼0 ª 1 cos 2T º ¬ 16 ¼0 sin 2T dT 125 dT 3 2³ 37. V S 2 2 r cos T r sin T r dr dT 34. V 0 311 cos T sin T r 2 dr dT S 2 »¼ 0 dT 1e y dx dy x arctan 1 y2 2 ª 8 sin T cos T º ¬3 ¼0 cos T sin T dT S 2 ³0 S 2 ³0 ³0 r cos T r sin T r dr dT ª 1 e 25 2 T º ¬ ¼ S 31. Change of Variables: Polar Coordinates ª 1 « 3 ¬ ª 1 « 3 ¬ 2³ 2S 0 3· § ¨ ln 4 ¸ dT 4¹ © 4 cos T 3 º 16 r 2 » ¼0 dT S 2 128 ª cos3 T º «T cos T » 3 ¬ 3 ¼0 4 3 º 16 r 2 » dT ¼1 2S ³0 2 S 3³0 3· § 4S ¨ ln 4 ¸ 4¹ © 2 64 sin 3 T 64 dT 64 3S 4 9 5 15 dT 10 15S © 2010 Brooks/Cole, Cengage Learning 312 Chapter 14 Multiple Integration 2S 4 ³0 ³a 39. V 2S ³0 16 r 2 r dr dT 4 ª 1 « 3 ¬ 3 º 16 r 2 » dT ¼a 1 3 16 a 2 3 2S One-half the volume of the hemisphere is 64S 3. 2S 16 a 2 3 16 a 2 64S 3 32 32 32 16 a 2 322 3 16 322 3 a2 4 4 23 2 a 40. x 2 y 2 z 2 V 8³ 8³ S 2 0 S 2 0 a ³0 a2 z 2 4 2 3 2 | 2.4332 a2 x2 y2 a 2 r 2 r dr dT ª 1 2 2 2 « 2 3 a r ¬ 41. Total volume 16 8 3 2 2S 8 times the volume in the first octant 3 2º a 8³ » dT ¼0 4 ³ 0 ³ 0 25e V a2 r 2 r2 4 S 2 0 r dr dT S 2 ª 8a 3 º « T» ¬ 3 ¼0 a3 dT 3 2S ³0 4S a 3 3 4 ª50e r 2 4 º dT »¼ 0 ¬« 2S ³0 50 e 4 1 dT 1 e 4 100S | 308.40524 Let c be the radius of the hole that is removed. c 2S 2S c 2 1 ª50e r 2 4 º dT V 25e r 4 r dr dT ³ ³ ³ « » 0 0 0 ¬ ¼0 10 2S ³0 50 e c 2 4 100S 1 e c 1 dT 30.84052 ec 2 4 c2 4 c2 c 0.90183 0.10333 0.41331 0.6429 diameter 42. 2 4 2c 1.2858 9 9 1 1 d z d ; d r d 1 cos 2 T 2 4 x2 y 2 9 4 x2 y 2 9 4 (a) 9 9 d z d 2 4r 36 4r 36 0.7 2 −1 1 −0.7 (b) Perimeter r dr dT ³D 2 1 1 cos 2 T 2 1 1 1 cos 2 T 2 2 1 x 1 cos T sin T Perimeter (c) V z 2 § dr · r ¨ ¸ dT . © dT ¹ E 2³ 2S 0 2³ S 0 1 1 cos 2 T 4 1 2 1 cos 2 T ³1 4 2 y cos 2 T sin 2 T dT | 5.21 9 r dr dT | 0.8000 4r 2 36 © 2010 Brooks/Cole, Cengage Learning Section 14.3 S 6 cos T 43. A ³0 ³0 44. A ³ 0 ³ 2 r dr dT 45. A ³0 ³0 46. A 2S 4 2S 1 cos T 2S S ³ 0 18 cos r dr dT 2S ³0 6 dT 2 sin T 9³ T dT S 0 S 1 cos 2T dT 48. A 8³ 49. r 1 A 1 cos 2T · § ¨1 2 cos T ¸ dT 2 © ¹ 1 2S 2³0 1 2S 2³0 1 2S 4 4 sin T sin 2 T dT 2³0 1 cos 2T · § ¨ 4 4 sin T ¸ dT 2 © ¹ r dr dT A S 4 2³ ³0 S 3 2 cos T ³1 0 S 3 0 2 2 sin T r dr dT 3 S 3 2 0 r dr dT 4³ 2³ 2S 3 0 2S 3 ³0 >5T S 3 ³0 >3T 9 cos 2 2T dT 18³ ³1 2 cos T ªr 2 º « » ¬ 2 ¼1 S 3 0 2³ dT S 3 0 S 3 sin 2T º ª1 2« T 2 ¼» 0 ¬2 S 3 sin 6T ¼º 0 S S 4 1 cos 4T dT 9S 2 1 ª º 18«T sin 4T » 4 ¬ ¼0 2³ 2S 3 0 0 ªS 3º 2« » 4 ¼ ¬6 3 3 2 2 2 cos T ªr2 º « » ¬ 2 ¼1 dT π 2 ³0 1 T 2 1 cos T cos T S 3 S 3 r = 2 + 2 cos θ 1 ª¬3 8 cos T 2 1 cos 2T º¼ dT r 2 3 cos T ªr º dT « » ¬ 2 ¼1 cos T 8 cos 2 T 2 cos T 1 dT 2 sin 2T 2 sin T @0 2S 3 10S 3 4 3 3 2 0 r=1 r=1 ª¬3 8 cos T 4 cos T º¼ dT 2³ 3 S 1º dT ¼ 2S 3 r = 2 cos θ 1· § 2 ¨ 2 cos T ¸ dT 2¹ © 2S 4S , 3 3 1 T 2 2 3 cos T 1 6 3 r dr dT ³ 1 cos T r dr dT S 4 0 3¬ªT 1 cos 6T dT π 2 2³ 2 0 9S 2 1 >8S 4 S 4@ 2 S 1 cos T 2 2 cos T S 3 3³ 0 3S 2 1ª 1§ 1 ·º T 2 sin T ¨T sin 2T ¸» 2 «¬ 2© 2 ¹¼ 0 dT 4 sin 2 3T dT S 4 8 sin T sin 2T @0 S 3 0 r r dr dT ª 2 2 cos T ¬ 3 cos T 2³ ³ 1· § ¨1 cos 2T ¸ dT 2¹ © 2 2 cos T ³0 A 3 cos 2T 0 2S 3 51. r 2 sin 3T ³0 2 cos T T 2³ 50. r S 3 0 9S 2S 1 2S 2³0 2S 3³ ª § 1 ·º «9¨T 2 sin 2T ¸» ¹¼ 0 ¬ © 12S 1ª 1 1 º 4T 4 cos T T sin 2T » 2 «¬ 2 4 ¼0 47. A 313 1 2S 1 2 cos T cos 2 T dT 2³0 r dr dT ³0 ³0 2 Change of Variables: Polar Coordinates S 3 ³0 §S · 3¨ ¸ ©3¹ 3 10S 7 3 3 2 S 3 π 2 S 3 ³0 ª9 cos 2 T 1 cos T 2 º dT ¬ ¼ ª¬4 1 cos 2T 2 cos T 1º¼ dT 3 0 2 3 S r = 3 cos θ 0 1 r = 1 + cos θ © 2010 Brooks/Cole, Cengage Learning 314 Chapter 14 Multiple Integration 52. r 1 cos T S 2 1 A 2 1 cos T ³ S 3 ³ 3 cos T S 2 S 2 r dr dT 2 1 cos T ªr º ³ S 3 «¬ 2 »¼ ³S 3 dT 3 cos T S 1 cos T ³S 2 ³ 0 ³ S 2 «¬ 2 »¼ S 53. r A S 2 0 §1 S ³ S 2 ¨© 2 cos T 4 sin 3T 5S 18 S 18 4 sin 3T ³2 S 5S 1 3T 2 2 sin 3T 3³ r dr dT 5S 18 S 18 6 , A 2 2 cos T cos T 2³ 2³ S 2 0 S 2 0 S 2 ³0 S 2 ³0 S 2 ³0 4 sin 3T ªr 2 º « » ¬ 2 ¼2 S ³S 2 1 cos T 2 dT r = 1 + cos θ 1 cos 2T · ¸ dT 4 ¹ 3 3 · § 3S 3S § 3S · § S · 1¸ ¨¨ 1¸ ¸¨ ¨ ¸ 4 2 2 2 4 8 © ¹ © ¹ ¹ © S 8 ³ 2 2 cos T r dr dT π 2 3 5S 18 ª 4 sin 3T 2 ³ S 18 ¬ dT r = 4 sin 3θ 4º dT ¼ 2 5S 18 0 3ª 4 º 4T sin 6T » 2 «¬ 3 ¼S 18 0 T r 2 r = 2 − 2 cos θ 1 3 4 r=2 4 S 2 3 3 S 56. See Theorem 14.3. 2 57. r-simple regions have fixed bounds for T T-simple regions have fixed bounds for r. π 2 2 ªr2 º dT « » ¬ 2 ¼ 2 2 cos T 58. (a) Horizontal or polar representative elements r=2 (b) Polar representative element 0 1 ª4 2 2 cos T 2 º dT ¬ ¼ 8 cos T 4 cos 2 T dT 8 cos T 2 1 cos 2T >8 sin T S 2 2T sin 2T @0 dT 8S 55. Let R be a region bounded by the graphs of r g1 T and r g 2 T , and the lines T T 2 dT 1 2 S 5S , 18 18 T 6 3 ª§ 10 4 § 3 · · § 2S 4 § 3 · ·º ¨¨ «¨ S ¨¨ ¸¸ ¸¸ ¨¨ ¸ ¸» ¨ 2 «¬© 9 3© 2 ¹¹ © 9 3 © 2 ¹¸ ¸¹»¼ 2 S 3 9 cos T 2 2 sin 2T º ª3 « T sin T 4 8 »¼S ¬ 3 5S 18 ª8 1 cos 6T 4º¼ dT 2 ³ S 18 ¬ 54. r 1 cos T 2 . 4 3³ r = 3 cos θ 3 ³S 3 dT 1 2 cos T 4 1 cos 2T dT 2 S 2 π 2 S 0 ªr º S r r dr dT 2 1 cos T ª 3 º « 2T sin T sin 2T » ¬ ¼S So, A 1 T 2 3 cos T cos T (c) Vertical or polar 3 59. (a) ³ 3 ³ (b) ³0 ³0 2S 3 9 x2 9 x2 f x, y dy dx f r cos T , r sin T r dr dT (c) In general, the integral in part (b) is easier to evaluate. The endpoints of the region of integration are constants. a and b. When using polar coordinates to evaluate a double integral over R, R can be partitioned into small polar sectors. 60. 0 d r d 4, 0 d T d 2S , x 2 y 2 r 2. Answer (c) 61. You would need to insert a factor of r because of the r dr dT nature of polar coordinate integrals. The plane regions would be sectors of circles. © 2010 Brooks/Cole, Cengage Learning Section 14.3 Change of Variables: Polar Coordinates 62. (a) The volume of the subregion determined by the point 5, S 16, 7 is base u height 315 5 10 S 8 7 . Adding up the 20 volumes, ending with 45 10 S 8 (12), you obtain V | 10 S ª5 7 9 9 5 15 8 10 11 8 25 10 14 15 11 8¬ 35 12 15 18 16 45 9 10 14 12 º¼ 5S 5S >150 555 1250 2135 2025@ | >6115@ | 24,013.5 ft 3 4 4 63. (b) 57 24,013.5 (c) 7.48 24,103.5 | 179,621 gallons S 2 5 ³S 4 ³ 0 r 1,368,769.5 pounds T dr dT | 56.051 1 r 3 sin ªNote: This integral equals «¬ 64. S 4 4 rT ³ 0 ³ 0 5e S 2 ³S 4 1 r 3 dr .º» ¼ 5 ³0 r T dT sin r dr dT | 87.130 base u height 65. Volume base u height | 66. Volume | 8S u 12 | 300 9S 4 u 3 | 21 Answer (a) Answer (c) z z 6 16 4 2 y 4 2 6 4 x 4 4 6 x y 67. False Let f r , T r 1 where R is the circular sector 0 d r d 6 and 0 d T d S . Then, ³R ³ r 1 dA ! 0 but r 1 ! 0 for all r. 68. True f (b) So, I 70. (a) Let u (b) Let u 71. 7 ³ 7 ³ f ³ f ³ f e 69. (a) I 2 49 x 2 49 x 2 x2 y2 2 4³ dA S 2 0 f ³0 e r 2 2 r dr dT 4³ 1 du 2 1 2 S 2 0 f ªe r 2 2 º dT «¬ »¼ 0 4³ S 2 0 dT 2S 2S . 2 x, then 2 x, then 4000e f ³ f e f ³ f e x2 4 x 2 0.01 x2 y 2 dx dx dy dx f ³ f e f u 2 2 ³ f e u 2 2S 7 1 du 2 ³ 0 ³ 0 4000e 2S S. 1 S. 2 0.01r 2 r dr dT 2S 200,000 e 0.49 1 2S ³0 7 0.01r 2 º ª «¬200,000e »¼ 0 dT 400,000S 1 e 0.49 | 486,788 © 2010 Brooks/Cole, Cengage Learning 316 72. Chapter 14 Multiple Integration f f ³0 ³0 ke x2 y2 S 2 f ³0 ³0 dy dx 2 ke r r dr dT 74. (a) 4 ³ S ³0 2 (b) 4 ³ 0 (c) 2 ³ 0 For f x, y to be a probability density function, kS 4 2 ³2 4 y2 f dx dy f ª k r2 º « 2 e » dT ¬ ¼0 2 k kS dT 2 4 S 2 ³0 2 0 ³0 S 2 4 x2 2 4 cos T ³0 y f dy dx fr dr dT (x − 2) 2 + y 2 = 4 2 1 1 4 k S . x 1 3 −1 73. (a) (b) 4 ³2 ³ y 2 ³2 3 ³2 4 3 S 3 f dx dy 3 ³2 (c) y 3x −2 f dy dx 'T r22 'T r12 2 2 75. A ³x 4 csc T ³ S 4 ³ 2 csc T 3x 4 4 ³4 f dy dx 3 ³x f dy dx § r r2 · 'T ¨ 1 ¸ r2 r1 © 2 ¹ r'r'T fr dr dT y 5 y= y=x 3x (4, 4) 4 ,4 3 ( 3 (2, 2) 2 ,2 3 ( 1 1 2 3 ( ( x 4 5 Section 14.4 Center of Mass and Moments of Inertia 1. m 2. m 3. m 4. m 2 2 3 9 x2 ³ 0 ³ 0 xy dy dx ³0 ³0 S 2 1 ³0 ³0 3 3 ³0 ³3 2 2 ª xy 2 º » dx 2 ¼0 ³ 0 «¬ 2 2 ¬ª x ¼º 0 3 x 9 x2 9 x2 xy dy dx 3 ³0 ª xy 2 º « » ¬ 2 ¼0 xy dy dx 3 ³0 ³0 dx S 2 ³0 r cos T r sin T r dr dT 9 x2 2 ³ 0 2 x dx 3 ª y2 º «x » ¬ 2 ¼3 1ª 2 «2 9 x 2¬ 2 4 2 dx 1 ª 9 x2 « 1 « 4 3 ¬ ª r4 º « cos T sin T » dT 4 ¼0 ¬ 9 x2 dx 3 ³0 x§ 3 2 ¨© 3 32 x4 º 9 x2 » 2 4 ¼0 S 2 ³0 9 x2 2 3 3 º » » ¼0 0 1 243 4 1 cos T sin T dT 4 · 9 ¸ dx ¹ 1 ª81 81 º 54» 2 «¬ 2 4 ¼ 243 4 S 2 ª 1 sin 2 T º « » 2 ¼0 ¬4 1 8 1 3ª 6 x 9 x 2 9 x x3 º dx ¼ 2³0 ¬ 297 8 © 2010 Brooks/Cole, Cengage Learning Section 14.4 5. (a) m ³ 0 ³ 0 kx dy dx m My x x, y m Mx My x x, y m a a My a ,y 2 m §a a· ¨ , ¸ ©2 2¹ a y a y a y ³ 0 ³ 0 k dx dy ³ 0 ³ 0 kx dx dy My a m 3 § a 2a · ¨ , ¸ ©3 3 ¹ a y a y a y ³ 0 ³ 0 kx dx dy Mx ³ 0 ³ 0 kxy dx dy My ³ 0 ³ 0 kx x x, y ka 2 dx 2 ka 3 2 ka 3 2 Mx m x My m ka 3b 2 6 ka 2b 2 4 ka 2b 2 4 ka 2b3 6 ka 3b 2 6 2a , 3 y Mx m ka 2b3 6 ka 2b 2 4 2 b 3 2 My a m 2 § a 3a · ¨ , ¸ ©2 4 ¹ dx dy 1 2 ka 2 1 3 ka 3 1 3 ka 6 Mx y m 1 3 ka 6 1 4 ka 8 1 ka 4 12 Mx y m 2a 3 a b ³ 0 ³ 0 kx m 2 a b a b a b ³0 ³0 k x ³0 ³0 My ³0 ³0 k x 2 a dy dx y dy dx y 2 dy dx k x 2 y y 3 dy dx 3 xy 2 dy dx kab 2 a b2 3 kab 2 2a 2 3b 2 12 ka 2b 2 3a 2b 2 12 x My m ka 2b 12 3a 2 2b 2 a 3a 2 2b 2 kab 3 a 2 b 2 4 a 2 b2 y Mx m kab 2 12 2a 2 3b 2 b 2a 2 3b 2 kab 3 a 2 b 2 4 a 2 b2 § a 3a 2 2b 2 b 2a 2 3b 2 ¨ , ¨ 4 a 2 b2 4 a 2 b2 © 1 3 ka 3 a y 1 4 2 Mx ³ 0 ³ 0 ky dx dy 4 ka a y 1 4 My ³ 0 ³ 0 kxy dx dy 8 ka My Mx 3a x y , m m 8 § 3a 3a · x, y ¨ , ¸ ©8 4¹ m 2 317 § 2a 2b · ¨ , ¸ © 3 3¹ Mx x, y (b) b My x, y a 2 a ³ 0 ³ 0 kxy center of square 2a 3 b Mx a 2 (b) a ³ 0 ³ 0 kxy dy dx m a My m a ³0 6. (a) 1 3 ka 2 a a 1 4 2 ³ 0 ³ 0 ky dy dx 3 ka a a 1 4 ³ 0 ³ 0 kyx dy dx 4 ka My a Mx , y 2 m m § a 2a · ¨ , ¸ ©2 3 ¹ a a 1 3 ³ 0 ³ 0 kx dy dx 2 ka a a 1 4 ³ 0 ³ 0 kxy dy dx 4 ka a a 1 3 2 ³ 0 ³ 0 kx dy dx 3 ka My 2a Mx , y 3 m m § 2a a · ¨ , ¸ © 3 2¹ a ³ 0 ³ 0 ky dx dy x, y ka 2 ³ 0 ³ 0 ky dy dx Mx x (c) a My Mx 7. (a) a ³ 0 ³ 0 ky dy dx x, y (c) a Mx x (b) a ³ 0 ³ 0 k dy dx Center of Mass and Moments of Inertia · ¸ ¸ ¹ y ³ 0 ³ 0 ky dx dy 3a 4 3a 4 © 2010 Brooks/Cole, Cengage Learning 318 Chapter 14 Multiple Integration 8. (a) 1 2 ka 2 a a y 2 1 3 ³ 0 ³ y 2 ky dx dy 6 ka a a y 2 1 3 ³ 0 ³ y 2 kx dx dy 4 ka My a Mx a ,y , x, y m m 2 3 a Mx My x (b) a y 2 ³0 ³ y 2 m k dx dy y = 2x a y 2 Mx My x y = − 2x + 2a §a a· ¨ , ¸ © 2 3¹ x (b) The x-coordinate changes by 5: x , y § 11a a · , ¸ ¨ © 20 2 ¹ a· §a ¨ 5, ¸ 2¹ ©2 2a · §a ¨ 5, ¸ 2 3¹ © 1 2 ka a 5 25 2 a 5 a 1 2 2 ³ 5 ³ 0 kxy dy dx 4 ka a 5 25 a 5 a 1 3 2 ³ 5 ³ 0 kx dy dx 3 ka a 5 125 3 2 ª a 5 125º 2 a 2 15a 75 My ¬ ¼ 2 m 3 a 10 3ª a 5 25º ¬ ¼ Mx a m 2 § 2 a 2 15a 75 a · ¨ , ¸ ¨ 3 a 10 2¸ © ¹ a 5 Mx My x y x, y a 10. The x-coordinate changes by c units horizontally and d units vertically. This is not necessarily true for variable densities. See Exercise 9. Mx My x y x, y (a, 0) ³ 5 ³ 0 kx dy dx m m a 2 (0, 0) kxy dx dy 9. (a) The x-coordinate changes by 5: x , y 11. ( a2 , a) a 1 ka 4 12 a a y 2 1 2 5 ³ 0 ³ y 2 kxy dx dy 24 ka a a y 2 11 2 5 ³ 0 ³ y 2 kx y dx dy 240 ka My 11a Mx a ,y , x, y 20 2 m m a ³0 ³ y 2 m (c) y 1 ³0 ³0 x 1 x 1 x ³0 ³0 ³0 ³0 ky dy dx ky 2 dy dx kxy dy dx My 2 3 m Mx 8 m 15 §2 8 · ¨ , ¸ © 3 15 ¹ 1 k 4 2 k 15 1 k 6 12. x2 2 x2 ³0 ³0 My ³0 ³0 y y= x x, y (23 , 158 ( 2 Mx y (1, 1) x2 ³0 ³0 x 1 2 m 16 k 3 32 k 3 64 k 7 kxy dy dx kxy 2 dy dx kx 2 y dy dx My 12 m 7 Mx 2 m § 12 · ¨ , 2¸ ©7 ¹ y 4 y = x2 (2, 4) 3 2 1 x 1 x 1 2 3 4 © 2010 Brooks/Cole, Cengage Learning Section 14.4 13. 4 4 x m ³1 ³ 0 Mx ³1 ³ 0 My ³1 ³ 0 kx3 dy dx My 84k 30k 24k 30k 4 4 x 4 x 4 x m My y m kx 2 dy dx 30k kx 2 y dy dx Center of Mass and Moments of Inertia (b) 24k 84k 14 5 4 5 14. x m Mx y 2 3 4 1 1 1 x2 1 1 1 x2 ³ 1 ³ 0 Mx m k dy dx kS 2 (b) § 2 S· ¨ 0, ¸ 4S ¹ © x, y y 2 y= kxy dy dx e2 1 ,y 2 e2 1 1 e x 1 e x 1 e x m ³0 ³0 Mx ³0 ³0 My ³0 ³0 kxy dy dx x My m 1 3e 2 2 1 e 2 y Mx m 4 e3 1 Mx m 9 e2 1 1 1 e 2 k 4 1 1 e 3 k 9 1 1 3e 2 k 8 ky dy dx ky 2 dy dx 4 1 e 3 9 1 e 2 § 1 3e 2 4 1 e 3 ¨ , ¨ 2 1 e 2 9 1 e 2 © x, y k ky dy dx 2S 8 k 2 2S 2S kS 8 4S ky 2 dy dx § e 2 1 4 e3 1 · ¨ ¸ , ¨ 2 e2 1 9 e2 1 ¸ © ¹ 0 by symmetry ³ 1 ³ 0 e2 1 k 4 e3 1 k 9 e2 1 k 8 ky dy dx My m x 1 ex ³0 ³0 2 1 1 My 4 y = 4x ex ³0 ³0 y 3 1 Mx x, y 16. (a) ex ³0 ³0 x § 14 4 · ¨ , ¸ © 5 5¹ x, y 1 m 319 1 e x 1 e x 1 e x m ³0 ³0 Mx ³0 ³0 My ³0 ³0 kxy 2 dy dx x My m 1 4e 3 3 1 e 3 y Mx m 1 1 + x2 ky 2 dy dx ky 3 dy dx · ¸ ¸ ¹ 1 1 e 3 k 9 1 1 e 4 k 16 1 1 4e 3 k 27 9 1 e 4 16 1 e 3 x −1 § 1 4e 3 9 1 e 4 ¨ , ¨ 3 1 e 3 16 1 e 3 © 1 x, y 15. (a) 1 ex 1 ex 1 ex m ³0 ³0 Mx ³0 ³0 My x y x, y k dy dx k e 1 ky dy dx 1 k e2 1 4 ³0 ³0 kx dy dx k My m Mx m 1 , e 1 e2 1 4e 1 § 1 e 1· , ¨ ¸ ©e 1 4 ¹ e1 , 4 17. 2 4 x2 2 4 x2 m ³ 2 ³ 0 Mx ³ 2 ³ 0 kx dy dx kxy dy dx x 0 by symmetry y Mx m x, y · ¸ ¸ ¹ 256 k 15 4096 k 105 y 16 7 y = 4 − x2 3 § 16 · ¨ 0, ¸ © 7¹ 2 1 x −2 −1 1 2 © 2010 Brooks/Cole, Cengage Learning , 320 Chapter 14 Multiple Integration 3 9 y2 3 9 y2 3 9 y2 m ³ 3 ³ 0 Mx ³ 3 ³ 0 18. x, y 19. by symmetry 23,328 k 35 kx 2 dx dy My 36 , m 7 § 36 · ¨ , 0¸ ©7 ¹ x 0 kxy dx dy ³ 3 ³ 0 My 648 k 5 kx dx dy L 2 m ³0 ³0 by symmetry L sin S x 2 L sin S x L ³0 ³0 Mx Mx m y 0 y x k dy dx 2kL ky dy dx S y kL 4 y = sin π x L S 8 §L S · ¨ , ¸ ©2 8¹ x, y x L 2 L y 20. 6 4 2 x 2 4 6 L2 cos S x L L2 cos S y L L2 cos S x L m ³0 ³0 Mx ³0 ³0 x = 9 − y2 ³0 ³0 My −4 −6 y My x y ³R ³ ³R ³ My m Mx m S 4 S 4 a ³ 0 ³ 0 kr kx dA 2 2 8 ka 3 2 S a 2k 6 ka 2 3 6 § 4a 2 ¨ 4a 2 , ¨ 3S 3S © a a2 x2 a a2 x2 Mx ³0 ³0 My M x by symmetry y a ³ 0 ³ 0 kr ky dA ³0 ³0 x, y LS 4 4S 2 16 9S 8 m x 32S 2 S a2k x, y 22. L2 k S 2 4 § L S 2 4 16 · ¨ ¸ , ¨ 4S 2 9S ¸ © ¹ x, y Mx kxy dy dx kL 8 2kL 9S 2 My m Mx m x m ky 2 dy dx 10 −2 21. ky dy dx 2 2 6 ka cos T dr dT 3 2 π 2 6 4a 2 3S 8 S a 2k y=x r=a 4a 2 2 3S a 0 2 · ¸ ¸ ¹ k x 2 y 2 dy dx k x 2 y 2 y dy dx My m ka 3 2 sin T dr dT 8 ka 5 4 5 ka S S 2 a ³ 0 ³ 0 kr S 2 a 3 ³ 0 ³ 0 kr dr dT 4 ka 4S 8 sin T dr dT ka 5 5 8a 5S § 8a 8a · ¨ , ¸ © 5S 5S ¹ © 2010 Brooks/Cole, Cengage Learning Section 14.4 23. My x 2 e x 2 e x kxy 2 dy dx 1 7e 6 k 27 ³0 ³0 kx 2 y dy dx 1 13e 4 k 8 My m e 4 13 e4 5 8e 7 27 e 5e 6 k x e ln x k ³1 ³ 0 x e ln x k ³1 ³ 0 x My k m 1 Mx k 6 m 1 § · ¨ 2, ¸ © 2¹ ln x e Mx My x y x, y 27. m Ix Iy x y S 6 1 r = 2 cos 3θ My m 81 3 | 1.12 40S 0 1 π θ =−6 2 y 1 1 3 2S 1 1 cos T ³0 ³0 2S kr dr dT 1 cos T 2 e 3 x 3S k 2 k 2S cos T 1 3 cos T 3 cos 2 T cos3 T dT 3³0 3 1 5kS 2 ª 2 2 «cos T 2 1 cos T 3 cos T 1 sin T 4 1 cos 2T dT 4 ¬ y 2 dy dx ³ 0 ³ 0 x dy dx Ix m π θ= 6 x , y | 1.12, 0 ³0 ³0 kr 2 cos T dr dT 2 bh 3 bh 1 3 bh 3 1 bh 3 bh r = 1 + cos θ 0 1 3 b3h 3 3 π 2 5 6 bh m π 2 y = ln x My 5kS 2 4 3kS m §5 · ¨ , 0¸ ©6 ¹ Iy kr 2 cos T dr dT x 2 kx dA h 2 cos 3T ³ S 6 ³ 0 kS 3 kr dr dT 2 2 k 2 k ³R ³ b kx dA 2 cos 3T 3 My h ³R ³ y = e −x · ¸ ¸ ¹ k k dA b My S 6 ³ S 6 ³ 0 27 3 k | 1.17 k 40 1 x dy dx ³R ³ ³0 ³0 k dA x k 6 m x, y ³R ³ 2 y dy dx 0 by symmetry x m 321 k 2 dy dx y k 2S 3³0 0 by symmetry 2 6 ³1 ³ 0 m y y § e 4 13 8 e6 7 ¨ 4 , ¨ e 5 27 e6 5e 2 © x, y 25. 1 5e 4 k 8 kxy dy dx Mx m y 26. e x ³0 ³0 Mx 24. 2 ³0 ³0 m Center of Mass and Moments of Inertia 2 b 3 2 h 3 b 3 h 3 3 b 3 3 h 3 b h hx b b h hx b b h hx b 28. m ³0 ³0 Ix ³0 ³0 Iy ³0 ³0 x y dy dx y 2 dy dx x 2 dy dx bh 2 bh3 12 b3h 12 m b3h 12 bh 2 b 6 6 b 6 Ix m bh3 12 bh 2 h 6 6 h 6 Iy © 2010 Brooks/Cole, Cengage Learning 322 Chapter 14 29. m Ix Iy I0 x 30. m Multiple Integration S a2 ³R ³ y 2 ³R ³ x 2 dA dA 2S 2S a ³0 ³0 r cos 2 T dr dT 3 a 4S 4 a 4S 4 Ix Iy a 4S 2 I0 a 2 x S a S a dA ³0 ³0 r Iy ³R ³ x 2 dA ³0 ³0 r I0 Ix Ix x y 3 sin 2 T dr dT a 4S 8 3 cos 2 T dr dT a 4S 8 a 4S a 4S 8 8 2 a 4S S a2 8 Ix m 2 S a4 16 S 2 a 3 3 sin 2 T dr dT cos 2 T dr dT S a4 S a4 16 8 Sa Ix m y a ³0 ³0 r dA Ix I y S 2 ³0 ³0 r dA 4 16 4 S a2 S a4 16 S a4 16 a 2 S ab 4³ a ³0 0 ba a2 x2 4³ y 2 dy dx b b2 y 2 a 0 b3 2 a x2 3a 3 32 dx I y Ix x Iy m 1 a 3bS 4 S ab a 2 y Ix m 1 ab3S 4 S ab b 2 x 2 dx dy a 3bS ab3S 4 4 a a 0 a Ix k³ 0 Iy k³ 0 I0 Ix I y a m 3kab 4 2kb 2 a 3 12 m ka 3b 2 6 kab 2 2 Ix m kab 4 4 kab 2 2 Iy 2 kab 2 b kab 4 3 ³ 0 y dy dx 4 b ka 3b 2 2 x yy dy dx ³0 6 b ³ 0 y dy dx a 2 x 2 º dx ¼ a2 x2 x2 x ºº a 2 x 2 a 4 arcsin »» a ¼¼ 0 34. U ky k³ 4b3 a ª 2 a 3a 3 ³ 0 ¬ ab3S 4 a 3bS 4 abS 2 a b2 4 I0 0 ³0 ab 4³ y ³R ³ x 2 a 2 Iy x ³R ³ y a 4S 4 x · 1ª 4b3 ª a 2 § 2 2 2 2 2 ¨ x a x a arcsin ¸ « x 2 x a 3« a ¹ 8¬ 3a ¬ 2 © m 4 2 2 33. U S a2 S a2 ³R ³ y Ix sin 2 T dr dT a 4S 1 4 S a2 Ix m Ix 32. m 3 a 4S a 4S 4 4 Ix I y y a ³0 ³0 r 31. m a2 3 b2 2 a 3 b 2 3 a 3 2 b 2 ky 2k ³ a 0 ³0 a a2 x2 a 2 x2 a y dy dx k³ y 3 dy dx 4ka 5 15 0 Ix k³ a ³ 0 Iy k³ a I0 Ix I y x Iy m 2ka 5 15 2ka 3 3 a2 5 y Ix m 4ka 5 15 2ka 3 3 2a 2 5 a ³0 a 2 x2 x 2 y dy dx a 2 x 2 dx 2ka 3 3 2ka 5 15 2ka 5 5 a 5 5 a 10 5 © 2010 Brooks/Cole, Cengage Learning Section 14.4 35. U 38. U kx 4 x2 2 m k³ Ix k³ 0 Iy k³ 0 I0 Ix I y y 36. U m Ix Iy I0 Ix Iy I0 4 x2 ³0 x3 dy dx 16k x 2 y 2 dy dx 1 x x 2 y 2 y 2 dy dx 1 x x 2 y 2 x 2 dy dx Ix ³ 0 ³ x2 Iy ³ 0 ³ x2 I0 Ix I y 2 3 2 3 3 x Ix m 32k 3 4k 8 3 4 6 2 6 3 Iy m y Ix m k 48 k 24 k 60 k 24 39. U k 24 k 60 k 48 2 xy dy dx Ix m m Ix Iy I0 2 2 10 5 ³0 ³0 x 4 x 4 x ³0 ³0 ³0 ³0 kxy dy dx 32k 3 kxy 3 dy dx 16k kx3 y dy dx 512k 5 Ix I y Iy Ix m 16k 3 1 32k b ³ 0 2 k ª³ x 2 «¬ b b 2 ³0 ³0 Iy I0 m b Ix 592k 5 512k 3 5 32k 2k ³ m b2 x2 xa 48 5 3 2 2 k x 6 2 dy dx 2k ³ 4 ³0 b b b xa 2 b b dx kx dy dx m k 20 18 3k 30 9 Ix m 3k 20 56 3k 70 14 ky 512k 21 2 4x k 32,768 2 ³ ³ 3 ky 3 dy dx x 0 65 2 4x 2048k 2 ³ ³ 3 kx 2 y dy dx x 0 45 321,536k Ix I y 585 2³ b 2 x 2 dxº »¼ 4 2 x 2 0 Iy 4x ³ x3 ky dy dx m 2048k 21 45 512k 28 15 2 105 15 Ix m 32,768k 21 65 512k 8 1365 65 b 2 x 2 dx x b 2 x 2 dx a 2 ³ 2k x 6 351,945 891 351,945 891 x Iy y b 395 891 3k 20 x 1 3k 2 ³ 0 ³ x2 kxy dy dx 56 x 1 k 3 ³ 0 ³ x2 kx dy dx 18 55k Ix Iy 504 1 x 6 2 dy dx b 2 x 2 dx 2a ³ 4 15 5 316 2079 158 35 2079 6 ³ 0 ³ x2 y 40. U 4 158 2079 158 2079 kx x kxy 4 x ³ 0 ³ x2 4 3 x 6 35 1 m 16k 3 4k 1 323 x2 y2 m Iy m y 42. I 32k 3 16k 3 xy 2 dy dx k 1 3 x x5 dx 0 ³x 2³0 1 x k 1 5 k ³ ³ 2 xy 3 dy dx x x9 dx 0 x 4³0 1 x k 1 5 k ³ ³ 2 x3 y dy dx x x 7 dx 0 x 2³0 9k 3k Ix I y 240 80 x 41. I ³0 2 k³ y m 4 x2 2 4k x dy dx kxy x 37. U ³0 0 Iy x Center of Mass and Moments of Inertia 3º ª 2k «3 x 6 » ¬ ¼0 ªS b 4 S a 2b 2 º 2k « 0 » 2 ¼ ¬ 8 kS b 2 2 b 4a 2 4 416k 3 © 2010 Brooks/Cole, Cengage Learning 324 Chapter 14 4 x 43. I ³0 ³0 44. I ³ a ³ 0 a Multiple Integration kx x 6 a2 x2 2 dy dx ky y a 2 4 4 ³ 0 kx ª y4 2ay 3 a2 y2 º ³ a k «¬ 4 3 2 »¼ 0 ª1 a 4 42,752k 315 dy dx a 2 x2 a ³ a k «¬ 4 a 24 7 2 72 5 2 º ª2 k « x9 2 x x » 7 5 ¬9 ¼0 x x 2 12 x 36 dx dx 2a 2 x 2 x 4 2a 2 a 3 a2 x2 x2 a2 x2 º a2 2 a x 2 » dx 2 ¼ ª1 § 2a 2 x 3 x 5 · 2a ª a 2 § x· 2 2 2 k « ¨ a4 x ¸ « ¨ x a x a arcsin ¸ 4 3 5 3 2 a © ¹ ¹ ¬ ¬ © 1§ ¨ x 2 x2 a2 8© a a 2 x 2 a 4 arcsin x3 ·º x ·º a 2 § 2 ¨a x ¸» ¸» 2© 3 ¹¼ a a ¹¼ ª1 § 2 1 · 2a § a 4S a 4S · a 2 § 3 a 3 ·º 2k « ¨ a 5 a 5 a 5 ¸ ¨ ¸ ¨a ¸» 3 5 ¹ 3© 4 16 ¹ 2© 3 ¹¼ ¬4© a ³0 ³0 45. I a2 x2 k a y y a 2 a ³0 ³0 dy dx a2 x2 k a y 3 § 7a5 a 5S · 2k ¨ ¸ 8 ¹ © 15 a ³0 dy dx § 56 15S · ka 5 ¨ ¸ 60 © ¹ 4º ª k « 4 a y » ¬ ¼0 a2 x2 dx a2 x2 k a 4 ª¬a 4a 3 y 6a 2 y 2 4ay 3 y 4 º¼ dx ³ 0 0 4 k a ³ ªa 4 4a 3 a 2 x 2 6a 2 a 2 x 2 4a a 2 x 2 a 2 x 2 a 4 2a 2 x 2 x 4 a 4 º dx ¼ 4 0¬ a k ³ ª7 a 4 8a 2 x 2 x 4 8a 3 a 2 x 2 4ax 2 a 2 x 2 º dx ¼ 4 0¬ a 8a 2 3 kª x x · a§ § x «7 a 4 x 4a 3 ¨ x a 2 x 2 a 2 arcsin ¸ ¨ x 2 x 2 a 2 4¬ 3 5 a ¹ 2© © 8 1 1 17 · k§ · § 7S a5k ¨ ¨ 7 a 5 a 5 a 5 2a 5S a 5S ¸ ¸ 4© 3 5 4 15 ¹ ¹ © 16 2 4 x2 ³ 2 ³ 0 46. I k y 2 2 dy dx 4 x2 3º ªk ³ 2 «¬ 3 y 1 »¼ 0 2 k 2 16 12 x 2 6 x 4 x 6 dx 3 ³ 2 dx 2 planar lamina R. x, y dA and M y ³ R ³ xU x, y dA. If m is the mass of the lamina, then the center of mass is x, y 48. I x Iy § My Mx · , ¨ ¸. © m m ¹ ³R ³ y 2 2 U x, y dA, Moment of inertia about x-axis x ·º ¸» a ¹¼ 0 8¼º dx 2k § 192 128 · ¨ 32 32 ¸ 3© 5 7 ¹ 1408k 105 49. See the definition on page 1017. 50. (a) U x, y The movements of mass with respect to the x- and y-axes are ³ R ³ yU k ªk § 6 5 1 7 ·º 3 « ¨16 x 4 x 5 x 7 x ¸» ¹¼ 2 ¬3© 47. Let U x, y be a continuous density function on the Mx 2 ³ 2 3 ¬ª 2 x a 2 x 2 a 4 arcsin ky y will increase. (b) U x, y k2 x x , y will be the same. (c) U x, y kxy Both x and y will increase. (d) U x, y k 4 x 4 y Both x and y will decrease. ³R ³ x U 2 x, y dA, Moment of inertia about y -axis © 2010 Brooks/Cole, Cengage Learning Section 14.5 L ,A 2 y 51. b ªªy L 2 º º ¬ ¼ » dx » 3 ¬ ¼0 ya a ,A 2 y 52. L L3b 12 L 2 bL 2 b ³0 ³0 Iy a a b 12 ª¬L a 2 º¼ ab 2 ya 2L ,A 3 y 53. 2³ Iy b2 0 bL ,h 2 L y 2 dy dx LS a 2 2S a ³0 ³0 r 3 sin 2 T dr dT a 4S 4 a2 4L ³ x dA R § · ¨ ³ R ³ x dA ¸ 2S ¨ ¸ ³ R ³ dA ¨ ³ R ³ dA ¸ © ¹ 2S xA. 3 2L a By our positioning, x 2 § a 4S 4 2S ³ L 3 ³ 2 Lx b ¨© y L ³ R ³ 2S x dA a 3b 12 a 3L 2a 3 a 2 x2 325 55. Orient the xy-coordinate system so that L is along the yaxis and R is the first quadrant. Then the volume of the solid is V 2 a· § ¨ y ¸ dy dx 2¹ © a L 3 a 2 L ab, h ya a2 x2 a4 sin 2 T dT 4 ³0 L3b 12 ³ 0 «« Iy y hA ³ a ³ 2S 3 L b a Iy 2 S a2 , h 0, A y 54. L· § ¨ y ¸ dy dx 2¹ © L ³0 ³0 Iy L 2 bL, h Surface Area 2L · ¸ dy dx 3 ¹ r. So, V 2S rA. y L 3 2 b 2 ª§ 2L · º y dx « » ¨ ¸ ³ 3 0 ¬«© 3 ¹ ¼» 2 Lx b L R ( x, y ) 3 2 b2ª L 2L · º § 2 Lx ¨ « » dx ¸ ³ 3 0 ¬« 27 © b 3 ¹ ¼» b § 2 Lx 2 ª L3 x 2L · « ¨ ¸ 3 «¬ 27 8L © b 3 ¹ L3b 36 2L 2 Lb 6 3 ya 4 b2 º » »¼ 0 x L3b 36 L 2 Section 14.5 Surface Area 2x 2 y 1. f x, y fx 2 fy 2 1 fx 4 4 x ³0 ³0 S 2 1 4 4 3³ 3 dy dx 4 0 4 x dx 3 fy 3 ³0 ³0 S 2 14 3 ³0 3 14 dy dx 14 dx 9 14 y 4 ª x2 º 3«4 x » 2 ¼0 ¬ 2 1 fx 3 3 2, f y fx fy 15 2 x 3 y 2. f x, y 24 3 R y 2 4 1 y=4−x 3 x 1 2 2 3 1 x 1 2 3 4 © 2010 Brooks/Cole, Cengage Learning 326 Chapter 14 7 2x 2 y 3. f x, y fx Multiple Integration 2 fy 2 1 fx 2S fy 2 1 4 4 2S 2 ³ 0 ³ 0 3 r dr dT S ³0 6 dT 3 R square with vertices 0, 0 , 3, 0 , 0, 3 , 3, 3 fx 0, f y 12S 3 2y 2 1 fx x2 + y2 = 4 2 fy 3 ³0 ³0 S y 1 4 y2 3 ³0 3 1 4 y 2 dx dy 3 4 x 6 37 ln 6 1 4 y 2 dy 3 ª 3 2 y 1 4 y 2 ln 2 y ¬« 4 1 −1 y2 6. f x, y 1 4 y2 º ¼» 0 37 1 y −1 3 R 2 12 2 x 3 y 4. f x, y 2 1 fx 2S fy 3 ³0 ³0 S 1 3 2, f y fx x 2 1 4 9 2S ³0 14 r dr dT 1 14 9 14 dT 2 9 14 S 2 3 x3 2 7. f x, y fx y 3 3 12 x , fy 2 0 2 2 x2 + y2 = 9 1 fx fy 1 2 1 1 3 2 4 9x dy dx 2 4 ³0 ³0 S x − 2 −1 −1 ª4 « 27 4 9 x ¬ −2 3 2º 3 4 9x 2 9 x 4 4³ 3 0 4 9x dx 2 4 31 31 8 27 » ¼0 y 9 x 5. f x, y 2 2 x, f y fx 2 1 fx 4 0 fy 3 2 2 1 4x2 1 2 2 ³0 ³0 S 2³ 1 4 x dy dx 2 2 0 1 4 x dx 2 x 1 2 3 2 ª1 2 « ln ¬4 1 4 x2 2 x ª1 2 « ln ¬4 17 4 2 17 1 ln 4 2 º 17 » ¼ 17 x º 1 4x2 » 2 ¼0 2 8. f x, y 2 1 fx 2 S y 2 2 y3 2 3 y1 2 0, f y fx 4 fy 2 y 2 1 y ³0 ³0 1 y dx dy ª2 1 y ¬ 32 2 33 2 2 5 2 5 1 y 2 ³0 1 y 2 y dy 52 2 35 2 2 º ¼0 2 5 12 5 3 8 5 y 1 2 y=2−x x 1 2 1 R x 1 2 © 2010 Brooks/Cole, Cengage Learning Section 14.5 9. f x, y ln sec x fx 2 1 fx S 4 tan x ³0 ³0 S S 4 ³0 2 fy 1 tan 2 x ^ x, y : 0 R 0 d d f x, y d 1` x 2 y 2 d 1, x 2 y 2 d 1 x fx sec x 327 x2 y 2 11. f x, y S ­ ½ ® x, y : 0 d x d , 0 d y d tan x¾ 4 ¯ ¿ tan x, f y 0 R Surface Area y , fy x2 y2 x2 y 2 y sec x dy dx 1 fx 2 sec x tan x dx y = tan x S 1 S 4 >sec x@0 2 1 2 2 fy 1 x2 1 ³ 1 ³ 1 2S 1 ³0 ³0 2 dy dx 1 x2 x2 y2 2 2 x y x y2 2 2 2r dr dT 2S R y x π 4 2 1 fx 2S 2 ³0 ³0 2S ³0 2S ³0 S 1 2 fy 1 4x2 4 y2 1 4r 2 r dr dT 12. f x, y ª 1 1 4r 2 ¬«12 1 12 x 2 y 2 x, f y S x 2 + y2 = 1 1 13 x 2 y 2 10. f x, y fx π 2 32 2 º dT ¼» 0 R S y 4 ³4 ³ fy 16 x 2 16 x 2 4 ³0 ³0 1 y 2 d 16` x 2 2S x2 + y2 = 2 2 y, f y 1 fx 17 17 1 6 ^ x, y : x 2 fx 173 2 1 dT xy 2 1 y 2 x2 1 y 2 x 2 dy dx 2S 17 17 1 3 1 r 2 r dr dT y x −2 −1 1 x 2 + y 2 = 16 2 −1 2 −2 x −2 2 −2 a2 x2 y2 13. f x, y R ^ x, y : x 2 x fx a2 x2 y2 1 fx S y 2 d b 2 , 0 b a` b 2 ³ b ³ fy b2 x2 b2 x2 2 y , fy 1 y a a2 x2 y2 b x2 y2 2 2 2 a x y a x2 y2 2 a a2 x2 y 2 dy dx 2S b ³0 ³0 a a2 r 2 x 2 + y 2 ≤ b2 a a x2 y2 −b 2 b a −b r dr dT 2S a a a 2 b2 © 2010 Brooks/Cole, Cengage Learning x 328 Chapter 14 Multiple Integration 14. See Exercise 13. a ³ a ³ S 2S a a2 x2 a x y 2 a a ³0 ³0 16 x 2 y 2 16. z a2 x2 a r 2 2 2 r dr dT 1 fy dy dx 2 2S a 2 2 1 fx S 2 4 2 1 4 x2 4 y2 1 4 x 2 y 2 dy dx 1 4r 2 r dr dT S 24 65 65 1 y 14 6 3 2 x 12 8 ³0 ³0 S 16 x 2 ³0 ³0 2 fy fy 4 ³0 ³0 S 24 3 x 2 y 15. z 2 14 dy dx y = 16 − x 2 48 14 4 y 2 16 x 12 2 4 6 8 4 x 4 8 16 25 x 2 y 2 17. z 2 1 fx S 12 2³ fy 3 3 ³ y 2 1 9 x2 x2 y2 2 2 25 x y 25 x 2 y 2 5 9 x2 25 x y 2 2 dy dx 2³ 2S 0 5 3 ³0 25 r 2 5 25 x 2 y 2 r dr dT 20S x 2 + y2 = 9 2 1 x −2 −1 2 1 −1 −2 18. z x2 y 2 2 2 1 fx S 2S fy 2 ³0 ³0 2 1 5r dr dT 4S 4x2 4 y2 2 2 x y x y2 2 5 5 y x2 + y2 = 4 1 x −1 1 −1 © 2010 Brooks/Cole, Cengage Learning Section 14.5 2 y x2 19. f x, y 2 1 fx 1 fy x ³0 ³0 S 2 5 4 x2 d f x, y d 16` 0 d x y d 16 2 2 2 x, f y fx 1 27 5 5 12 5 4 x 2 dy dx ^ x, y : 0 R 329 x2 y 2 22. f x, y triangle with vertices 0, 0 , 1, 0 , 1, 1 R Surface Area 2 1 fx 2y fy 2 1 4x2 4 y2 y 4 ³4 ³ S 16 x 2 1 4 x 2 4 y 2 dy dx 16 x 2 y=x 1 2S 4 ³0 ³0 R 65 65 1 S 1 4r 2 dr dT 6 y x x 2 + y 2 = 16 1 2 2x y 20. f x, y 2 x −2 triangle with vertices 0, 0 , 2, 0 , 2, 2 R 2 1 fx 2 fy x ³0 ³0 S 2 2 −2 5 4 y2 5 4 y 2 dy dx 5 § 8 21 37 · ln ¨ ¸¸ 4 ¨© 5 ¹ 4 x2 y2 23. f x, y 21 5 5 4 12 R ^ x, y : 0 fx 2 x, f y y 2 1 fx d x d 1, 0 d y d 1` 2 y fy 2 1 4x2 4 y2 3 1 R 1 1 2 9 x y 2 ^ x, y : 0 0 d 9 x y 2 x2 y 2 d 9 1 fx S 2 3 ³ 3 ³ 2S 3 ³0 ³0 S 6 9 x2 9 x2 2 2 1 1 4x2 4 y2 1 ³0 ³0 S 2 y fy d x d 1, 0 d y d 1` x1 2 sin x, f y 1 fx d f x, y ` 2 x, fy cos x 0 2 2 fx 2 32 x 3 ^ x, y : 0 R 3 fx R 1 4 x 2 4 y 2 dy dx | 1.8616 24. f x, y x 21. f x, y 1 ³0 ³0 S y=x 2 fy 1 2 1 x sin x 25. Surface area ! 4 6 x sin x 2 2 dy dx | 1.02185 24 Matches (e) 1 4 x 4 y dy dx 2 2 z 10 1 4r 2 r dr dT 37 37 1 | 117.3187 5 5 y x © 2010 Brooks/Cole, Cengage Learning 330 Chapter 14 Multiple Integration 26. Surface area | 9S Matches (c) ^ x, y : 0 R z 2 2 1 fx y 3 3 1 1 ³0 ³0 S ex ^ x, y : 0 R fx ex , f y 2 1 fx 1 1 1 e ³0 ³0 S ³0 1 y3 1 ³0 1 y 3 dx dy 1 y 3 dy | 1.1114 R square with vertices 1, 1 , 1, 1 , 1, 1 , 1, 1 d x d 1, 0 d y d 1` fx 3x2 3 y 0 fy 3x 3 y 2 fy 1 2 fy x3 3xy y 3 29. f x, y 27. f x, y d x d 1, 0 d y d 1` y3 2 0, f y fx 3 x 2 y5 2 5 28. f x, y 1 e 2 2x 1 e2 x S 1 1 ³ 1 ³ 1 3 y2 x 1 9 x2 y 2 9 y2 x 2 dy dx dy dx x 2 3 xy y 2 30. f x, y | 2.0035 2x 3 x2 y , R fx ^ x, y : 0 d x d 4, 0 d y d x` 2 x 3 y, f y 1 fx f y 3 x 2 y 2 3x 2 y 1 2x 3y 2 3x 2 y 1 13 x 2 y 2 S e x sin y, f y 2 ³2 ³ 1 e 2 x sin 2 y e 2 x cos 2 y 4 x2 1 e 2 x dy dx 4 x2 R S½ ­ 2 2 ® x, y : x y d ¾ 2¿ ¯ fx 2 x sin x 2 y 2 , f y 2 1 fx ³ S 2 S 2 fx ³ ^ x, y : 0 xy ye , f y 1 fx S fy 2 S 2 x2 S 2 x2 2 y sin x 2 y 2 1 4 x 2 sin 2 x 2 y 2 4 y 2 sin 2 x 2 y 2 1 4 ª¬sin 2 x 2 y 2 º¼ x 2 y 2 1 4 x 2 y 2 sin 2 x 2 y 2 dy dx e xy 33. f x, y R 1 e 2 x cos x 2 y 2 32. f x, y S 1 13 x 2 y 2 dy dx e x cos y 1 f x2 f y2 S x e x sin y 31. f x, y fx 4 ³0 ³0 4 2 10 ³0 ³0 d x d 4, 0 d y d 10` xe xy fy 2 1 y 2e 2 xy x 2e 2 xy 1 e 2 xy x 2 y 2 1 e 2 xy x 2 y 2 dy dx © 2010 Brooks/Cole, Cengage Learning 2 Section 14.5 ^ x, y : 0 e fx x 4 d x d 4, 0 d y d x` e x cos y sin y, f y 2 1 fx fy x ³0 ³0 S 331 e x sin y 34. f x, y R Surface Area 2 1 e2 x sin 2 y e 2 x cos 2 y 1 e 2 x 1 e 2 x dy dx 38. (a) Yes. For example, let R be the square given by 35. See the definition on page 1021. 0 d x d 1, 0 d y d 1, x 2 y 2 is a paraboloid opening upward. 36. f x, y and S the square parallel to R given by Using the figure below, you see that the surface areas satisfy: 0 d x d 1, 0 d y d 1, z b c a 1. (b) Yes. Let R be the region in part (a) and S the surface given by f x, y xy. y x2 + y2 = 4 (c) No. 2 x 1 x2 ; f x 39. f x, y 12 x 2 1 S x 1 2 ³R ³ 16 ³ 1 0 f x, y and 16 ³ f x, y k z 1 1 x2 0 x 1 x2 2 fy 1 x ³0 37. No, the surface area is the same. z 2 1 fx , fy 0 dA dy dx dx ª16 1 x 2 ¬« Sr2 k2 1 12 1 º ¼» 0 16 have the same partial derivatives. 40. f x, y 1 fx S ³R ³ 41. (a) V x2 y 2 k fy 2 1 fx 2 2 k 2 x2 k 2 y2 x2 y 2 x2 y2 1 fy 2 ³R ³ dA k 1³ k 2 1 dA R ³ dA A k2 1 y ³R ³ f x, y 8³ 625 x 2 y 2 dA where R is the region in the first quadrant ³ R 8³ S 2 0 24 ³R ³ 8³ R ³4 4³ 625 r 2 r dr dT 1 fx ³ 20 16 25 8 S ª¬0 609 609 º¼ 3 2 (b) A k2 1 2 fy 25 625 x y 2 2 2 812S dA dA S lim ª200 625 r 2 º ¼4 2 b o 25 ¬ b 2 « 3 625 r ¬ 0 3 2º 25 » dT ¼4 12 R 8 4 609 cm3 8³ R 8³ S 2 ª2 ³ S 2 0 1 25 ³4 100S x 4 8 12 16 20 24 x2 y2 dA 2 2 625 x y 625 x 2 y 2 25 625 r 2 r dr dT 609 cm 2 © 2010 Brooks/Cole, Cengage Learning 332 Chapter 14 42. (a) z Multiple Integration 1 3 4 2 16 y y y 25 75 25 15 15 § (b) V | 2 50 ³0 (c) f x, y 0, f y fx 50 2³ S 0 1 3 4 2 16 · y y 25 ¸ dy ¨ y 25 15 © 75 ¹ 100 266.25 26,625 cubic feet 1 3 4 2 16 y y y 25 75 25 15 1 8 16 y2 y 25 25 15 15 ³0 1 f y2 f x2 dy dx | 3087.58 sq ft (d) Arc length | 30.8758 Surface area of roof | 2 50 30.8758 3087.58 sq ft Section 14.6 Triple Integrals and Applications 1. 3 2 1 ³0 ³0 ³0 3 3 ³0 2. 1 1 1 ³ 1 ³ 1 ³ 1 x 2 ³ ³ y z dx dy dz ³ ³ x 9 y 3 4 1 xy ³0 ³0 ³0 4. ³0 ³0 ³0 5. ³ 1 ³ 0 ³ 0 2 ze x dz dy dx y2 9 x2 x x2 1 x ³ 0 ³ 0 > xz@0 xy 9 y 3 ³ ³0 1 2 0 z dz dx dy ³ 1 ³ 0 ª¬« 2 ze 4 dy dx dz 1 2 1 ª y 3 z 2 º1 ¼ 1 9 1 ¬ ³ 1 x ³0 ³0 x2 x yº dx dz ¼» 0 1 ³1 4 e2 ³ 0 «¬ 2 z yz z2 º » dy 2 ¼0 18 4 1 z2 9 1 ³ dz 1 ª x2 y 2 º ³ 9 1 2 0 4 dz x 1 ³ 0 «¬ 2 »¼ dx 0 x 2 y dy dx y 2 9 x 2 dx dy ª ze x2 º dz ¬« ¼» 0 4 3 2 3 ª1 · y z ¸ dz dy ¹ dy dz y 2 z 2 dy dz dy dx 2§ 1 3 ³ 0 ³ 0 ¨© 2 ª¬3 y y 2 º¼ 0 1 2 y 2 dy 2 1 1 3 1 1 1 1 º xy xz » dz dy ¼0 1 1 1 1 ªx3 y 2 z 2 º ¼ 1 3 1 1 ¬ 2 2 2 3. ª x2 ³ 0 ³ 0 «¬ 2 x y z dx dz dy ³0 y 3 ª¬ xy 2 3x3 º¼ dy 0 1 ³ 1 ³ 0 2 zxe x2 ³1 2 ª 1 z º «1 e » 2 ¼1 ¬ z 1 e1 dz 1 ª x5 º « » ¬10 ¼ 0 x4 dx 2 ³ 8 27 9 2 18 0 y 3 dy 1 10 9 ª 1 y4 º ¬ 36 ¼ 0 729 4 dx dz 4 4 1 ª 4 3º ¬ 27 z ¼ 1 15 § 1· ¨1 ¸ 2© e¹ e2 4 e2 4 S 2 1 xz 6. ³1 ³1 ³ 0 7. ³0 ³0 ³0 ln z dy dz dx 1 x ³1 ³1 x cos y dz dy dx ³0 S 2 y 2 3 9 y2 1y ³0 ³0 ³0 9. ³0 ³ 9 y2 sin y dz dx dy y2 ³0 y dz dx dy S 2 4 ³0 ³0 1 x ª¬ x cos y z º¼ 0 S 2 y 2 ³0 ³0 ln z dz dx xz sin y dx dy y 4 S 2 ³0 ³0 dy dx ª¬ x 1 x sin yº¼ 0 dx S 2 e2 ³1 ³1 ª¬ ln z yº¼ 0 dz dx 4 8. 4 1 xz 4 ³0 4 ³1 ª ln z 2 º « » dx «¬ 2 x »¼1 ³1 2 dx x 8 64 3 4 2 ln 4 x 1 x cos y dy dx 4 x 1 x dx 1 S2 sin y dy 2³0 4 ¬ª2 ln x ¼º1 ª x2 x3 º « » 3 ¼0 ¬2 S 2 ª 1 º « 2 cos y» ¬ ¼0 40 3 1 2 324 5 © 2010 Brooks/Cole, Cengage Learning Section 14.6 2 10. ³0 ³0 11. ³0 ³0 2 x2 4 x2 2 4 y2 4 ³1 ³0 ³0 x 2 sin y dz dy dx z 2 3 2 2y 3 6 2 y 3z ³0 ³0 ³0 ze x 2 y2 4 x2 2 ³0 ³0 ³ 0 ª¬x 12. 2 x2 2 ³ 2 x2 y2 y dz dy dx 2 4 6 6 x 2 5 5 x 3 2x 5 x y ³0 ³0 ³0 14. V ³0 ³0 ³0 15. V ³ 6 ³ 16. V ³4 ³ 17. z 1 2 9 x2 4 V 18. V z 19. V 6 x2 y 2 16 x 2 ³0 16 x2 4 4 2 x2 1 x2 y2 2 43 0 z 8 z 10 0 z 2 ª16 y ¬ 8 x2 y2 2z 16 ellipse 2 x ³ 0 dz dx dy 2 xy 20. V ³0 ³0 ³0 21. V 8³ dz dy dx a2 x2 ³0 4 y2 ³ 2 ³0 ³ 0 ³0 dz dx dy dz dy dx 1 2 2 2 a 6 x2 y 2 ³0 6 y2 ³ 2 2 dz dy dx 3 x 3y 2x2 3 y 2 2 6 y2 4 x2 3 4 ³2 ³0 2 6 ³ 6 ³ x2 3 y2 4 y2 2 dz dy dx 2 80 z 2 2 z 80 ³ 1 2 x2 y 2 4 2 x2 4 x2 2 y2 dz dy dx 80 x 2 y 2 16 x 2 2 ze x ln 4 ª1 cos 4 x 2 º dx | 2.44167 ¬ ¼ x2 y2 2z z2 16 x 2 ³ 2 ³ dz dy dx 16 x2 y 2 x y 2 2z ³4 ³ 6 x2y 3 2 dz dy dx ³0 6 x2 x2 y2 z 2 ³0 2 ³0 x dx dz dy dx 6 x2 6 4 x2 1 § 6 x 2 y · x2 y 2 dy dx | 2.118 ¨ ¸ e 2© 3 ¹ 3 x 2 ³0 ³0 13. V 16 2 15 4 y 2 x 2 y 2 y 3 dy dx ln 4 cos y º¼ 0 6 333 ª¬ x 2 sin y ln z º¼ dy dx 1 ³0 ³0 dx dz dy Triple Integrals and Applications 2 x dx dy 4 y2 2 2 2 ³ 0 ³ 0 2 xy dy dx a 2 x2 y 2 dz dy dx 8³ 4³ ³0 dy ³ 0 ª¬xy a 0 ³0 a 0 ª «y ¬« 16 8 y 2 y 4 dy 2 2 º¼ 0 a2 x2 dx 2 ³ 0 4 x dx 2 1 y5 º 5 ¼0 256 15 8 a 2 x 2 y 2 dy dx a x y a x 2 8 3 y 3 2 §S · a 4¨ ¸ ³ a 2 x 2 dx ©2¹ 0 2 2 2 § arcsin ¨ © a ª § 2 1 3 ·º «2S ¨ a x 3 x ¸» ¹¼ 0 ¬ © ·º ¸» 2 2 a x ¹¼» 0 y a 2 x2 dx 4 3 Sa 3 © 2010 Brooks/Cole, Cengage Learning 334 Chapter 14 4³ 22. V 6 36 x 2 ³0 0 Multiple Integration 36 x 2 y 2 ³0 4³ dz dy dx 6 0 ³0 36 x 2 36 x y 2 6ª 4³ «36 36 x 2 x 2 0 ¬ 4 x2 2 ³0 ³0 23. V 4 x2 ³0 2 2 x2 2 2 x2 9 x3 ³0 ³0 24. V ³0 2 ³0 2 3 2º ª § x· 1 4 «9 x 36 x 2 324 arcsin ¨ ¸ x 36 x 2 ©6¹ 6 ¬ 3 2º 4 x2 2 2 ³0 dx 36 x 2 dx 6 4 162S » ¼0 2 648S 256 15 z 9 x 3 dy dx 9 x 3 2 x 2 dx y −1 1 x 18 9 x 2 2 x 3 x 5 dx 1 4 18 2 6 2 2 3 2 12 2 3 3 4 y2 2 ³ 0 ³ 0 ³ 2 y 3 2 ³0 ³0 z dy dz dx z 28. 1 2 dz dy dx 1 x y −1 ª¬4 y 2 2 yº¼ dy dx z 1 1 y2 ³ 1 ³ 0 2 ª y3 y2 º «2 y » dx 3 2 ¼0 ¬ 4 1 z ³ y2 dx dz dy 29. Plane: 3x 6 y 4 z 3§ 8 · ³ 0 ¨© 4 3 2 ¸¹ dx 3 3 ª10 º « 3 x» ¬ ¼0 1 ³ 0 ³ 0 ³ 1 ª x º 1 4 3 «18 x 3x x » 2 6 ¼0 ¬ ³0 36 x 2 » dx ¼ ª16 x 83 x3 15 x5 º ¬ ¼0 16 8 x 2 x 4 dx 27. 2 3 0 ª y3 º 2 «36 y x y » 3 ¼0 ¬ 1 36 x 2 3 dz dy dx 6 25. V 4³ dy dx 6 1 ³0 ³0 ³0 2 ³0 dz dy dx 2 3 10 2 12 4 z 3 ³0 ³0 1 3 y 12 12 4 z 3 x 6 ³0 dy dx dz z x 3 26. The region in the xy-plane is: x2 2 2 x ³ 0 ³ x2 ³ 0 dz dy dx V 2 x2 ³ 0 > xy@x2 2 ³0 dx x2 ³ 0 ³ x2 x dy dx 2 3 y 4 x x 2 x3 dx 2 ª x3 x4 º 2 « x » 4 ¼0 ¬3 8 4 4 3 8 3 x 30. Top plane: x y z 6 Side cylinder: x 2 y 2 9 z y y = x +2 3 ³0 ³0 4 9 y2 6 x y ³0 6 dz dx dy 3 2 y = x2 3 1 x 1 2 3 4 3 6 y 6 x © 2010 Brooks/Cole, Cengage Learning Section 14.6 Triple Integrals and Applications 335 z 31. Top cylinder: y z 2 Side plane: x 1 x ³0 ³0 ³0 1 y2 2 z 1 y 32. Elliptic cone: 4x z 2 4 4 ³0 ³ z ³0 1 y2 z2 2 2 y 2 5 4 dx dy dz 3 2 dz dy dx 1 3 1 x 1 2 x 1 5 y 33. Q ^ x, y , z : 0 ³ ³³ xyz dV Q 3 d x d 1, 0 d y d x, 0 d z d 3` 1 1 ³ 0 ³ 0 ³ y xyz dx dy dz 3 1 y x ³ 0 ³ 0 ³ 0 xyz dy dx dz 1 3 1 1 1 3 ³ 0 ³ 0 ³ y xyz dx dz dy y=x 1 1 3 x 1 x 3 ³ 0 ³ 0 ³ 0 xyz dy dz dx R x ³0 ³ y ³0 34. Q ^ x, y , z : 0 d ³ ³³ xyz dV Q 2 xyz dz dx dy x d 2, x 2 d y d 4, 0 d z d 2 x` 2 x 4 ³ 0 ³ x2 ³ 0 xyz dz dy dx z 4 4 2 x y ³0 ³0 ³0 2 2 x 4 2 2 z 4 xyz dz dx dy 2 ³ 0 ³ 0 ³ x2 xyz dy dz dx 2 2 ³0 ³0 2 z 2 2 4 y ³0 ³0 ^ x, y , z : x 2 4 4 ³ 0 ³ 0 ³ x2 xyz dy dx dz 35. Q ³0 ³0 ³0 1 9 16 xyz dz dy dx y (2, 4) x 2 4 4 2 2 z ³0 y xyz dx dy dz ³0 ³ 2 z 2 ³ 0 ³0 y xyz dx dz dy ³0 ³ 2 y ³ 0 2 z xyz dx dy dz 104 21 dx dz dy y 2 d 9, 0 d z d 4` z 5 ³³ ³ xyz dV Q 4 3 ³ 0 ³ 3 ³ 3 4 ³ 3 ³ 0 ³ 3 4 ³ 3 ³ 0 ³ 36. Q ^ x, y , z : 0 d ³ ³³ xyz dV Q 9 x2 9 x2 9 y2 9 y2 9 x2 9 x2 4 3 xyz dy dx dz ³ 0 ³ 3 ³ xyz dx dz dy ³ 3 ³ xyz dy dz dx ³ 3 ³ 3 3 9 y2 9 y2 9 y2 9 y2 9 x2 9 x2 xyz dx dy dz 4 ³ 0 xyz dz dx dy 4 ³ 0 xyz dz dy dx 4 0 x d 1, y d 1 x 2 , 0 d z d 6` 1 1 x 2 1 6 1 6 6 ³ 0 ³ 0 ³ 0 xyz dz dy dx ³0 ³0 ³0 1 y 1 x2 ³0 ³0 ³0 xyz dx dz dy xyz dy dz dx ³ 0 xyz dz dx dy 6 1 1 y ³0 ³0 ³0 6 1 4 y 6 6 1 x 2 ³0 ³0 ³0 3 z 1 y 1 ³0 ³0 3 x xyz dx dy dz xyz dy dx dz 3 2 1 2 1 2 y x © 2010 Brooks/Cole, Cengage Learning y 336 Chapter 14 Multiple Integration ^ x, y , z : 0 d 37. Q y d 1, 0 d x d 1 y 2 , 0 d z d 1 y` z 1 y 2 1 1 y ³0 ³0 ³0 1 1 x 1 2 z z2 1 1 ³0 ³0 dz dx dy 1 y ³0 ³0 ³0 1 x 1 y 2 1 y ³0 ³0 ³0 ^ x, y , z : 0 d 38. Q 1 1 x 1 ³ 0 ³ 2 z z2 ³ 0 dy dx dz 1 z ³ 0 ³ 1 z=1− 1−x 1 1 z ³0 ³0 1 dz dy dx dy dz dx 1 1 1 x ³0 ³0 1 z 1 ³0 1 y 2 ³0 ³0 ³0 dx dz dy y+z=1 dy dx dz 1 x dy dz dx 1 5 12 dx dy dz 1 x y x = 1 − y2 x d 3, 0 d y d x, 0 d z d 9 x 2` z 9 3 x 9 x2 ³0 ³0 ³0 z = 9 − x2 9 x2 3 3 3 9 x2 ³0 ³ y ³0 dz dy dx 9 ³ 0 dy dz dx 9 z 9 z = 9 − y2 x ³0 ³0 ³0 ³0 dz dx dy 9 z ³y ³0 ³0 9 z 3 9 y2 ³0 ³0 dx dy dz x ³ 0 dy dx dz ³y 9 z dx dz dy 81 4 y=x 3 x 3 y 39. 40. 41. 4 2x 3 6 m k³ 0 M yz k³ 0 ³0 4 2x 3 6 ³0 x M yz m m k³ ³0 0 ³0 M xz k³ 5 5 x 5 x m k³ 4 1 5 15 3 x 3 y 1 5 15 3 x 3 y 4k ³ 4 4 0 4 4 x y 2 dz dy dx 4 4 x k³ 4 0 xz dz dy dx 2 k³ 3 0 m M xz y M xy m b k³ 0 k³ 0 b M xz m 4 ³0 x 4 x 4 0 4 ³0 x 4x 2 a ¬ª1 y b ¼º a ª¬1 y b º¼ ³0 c ¬ª1 y b x a ¼º ³0 c ª¬1 y b x a º¼ ³0 kab 2c 24 kabc 6 b 4 dz dx dy y dz dx dy kabc 6 kab 2c 24 b b b b b k³ 0 M xz k³ xy 0 ³0 ³0 M xy k³ 0 b b b ³0 ³0 x 2 y dz dy dx kb 6 6 ³ 0 ³ 0 xyz dz dy dx kb 6 8 2 m kb 6 6 kb5 4 2b 3 M xz m kb6 6 kb5 4 2b 3 M xy kb 6 8 kb5 4 b 2 m a b c b c b c b c m k³ 0 M xy k³ 0 M yz k³ xz dz dy dx 0 ³0 ³0 M xz k³ 0 x y z a a a ³ 0 ³ 0 z dz dy dx ³0 ³0 z 2 dz dy dx ³ 0 ³ 0 yz dz dy dx m ka 2bc 2 4 kabc 2 2 a 2 M xz m kab 2c 2 4 kabc 2 2 b 2 M xy kabc3 3 kabc 2 2 2c 3 M yz m kb5 4 kb6 6 dz dy dx M yz 1 ³0 b M yz dy dx 128k 3 b xy dz dy dx 0 ³0 ³0 z 44. 2 b k³ x dy dx 128k 3 2k ³ 16 x 8 x x dx 42. 125 k 8 125 k 4 y dz dy dz x dz dy dx 4 z 12k x dz dy dx b m y 4 x x 2 dx ³0 ³0 0 43. 2 ³0 ³0 0 8k dz dy dx 3 2 ³0 0 ³0 y k³ 2 y 2 x 3 ³0 12k 8k 5 M xz m M xy 2 y 2 x 3 ³0 kabc 2 2 kabc3 3 ka 2bc 2 4 kab 2c 2 4 © 2010 Brooks/Cole, Cengage Learning Section 14.6 45. x will be greater than 2, whereas y and z will be unchanged. 50. 46. z will be greater than 8 5, whereas x and y will be Triple Integrals and Applications m M xz k³ 3 ³ 0 M xy k³ 3 x 49. 1 kS r 2 h 3 y 0 by symmetry x 4k ³ M xy r 2 x2 ³0 y h ³h x2 y 2 r z z dz dy dx r 2 x2 2kh 2 r r 2 x 2 y 2 dy dx 2 ³0 ³0 r 32 kS r 2 h 2 4kh 2 r 2 r x2 dx 2 ³0 3r 4 M xy kS r 2 h 2 4 3h m kS r 2 h 3 4 z m x z M xy ³0 3 3 ³0 M yz 9 x2 9 x2 y ³0 y ³0 y ³0 18k x dz dy dx 0 y dz dy dx 81S k 8 z dz dy dx 81S k 16 0 m M xz m M xy x, y, z 9 x2 y ³ 0 dz dy dx 9S 16 9S 32 m § 9S 9S · , ¨ 0, ¸ © 16 32 ¹ 128kS 3 y 0 by symmetry 42 x 2 y 2 4k ³ 2k ³ 4 0 4 0 42 x 2 ³0 42 x 2 ³0 ³0 42 x 2 y 2 z dz dy dx 42 x 2 y 2 dy dx 32 4k 4 2 4 x2 dx 3 ³0 1024k S 2 cos 4 T dT let x 3 ³0 64S k by Wallis's Formula z x, y, z 3 9 x2 3h · § ¨ 0, 0, ¸ 4¹ © x, y, z 51. r 0 3 ³0 k³ 48. x , y and z will all be greater than their original values. m 3 0 M yz unchanged. 47. y will be greater than 0, whereas x and z will be unchanged. 2k ³ 337 M xy m 64kS 3 1 128kS 4ª 1 º 2k ³ «16 y x 2 y y 3 » 0 3 ¼0 ¬ 42 x 2 dx 4 sin T 3 2 3· § ¨ 0, 0, ¸ 2¹ © © 2010 Brooks/Cole, Cengage Learning 338 Chapter 14 Multiple Integration x 0 m 2k ³ 0 M xz 2k ³ 0 M xy 2k ³ 0 52. k³ 2 2 1 y 2 1 1 ³0 ³0 1 y 2 1 1 ³0 ³0 ³0 0 x, y, z 2 0 1 ³ 0 y2 2k ³ y dz dy dx 2 0 §S · 2 2k ¨ ¸ ³ dx ©4¹ 0 1 dy dx 1 1 ³ 0 y2 y dy dx 1 k³ 2 ln 2 dx 0 1 y 1 2 kS k ln 4 z dz dy dx 1 1 2k ³ dz dy dx 2 §1 S · 2 k ¨ ¸ ³ dx 8¹ 0 ©4 2ª º y 1 arctan y» dx k³ « 0 2( y 2 1) 2 ¬ ¼0 dy dx k ln 4 ln 4 S kS S 1 § · k ¨ ¸ kS 4¹ ©2 § ln 4 2 S · , ¨ 0, ¸ 4S ¹ © S z §1 S · k¨ ¸ 4¹ ©2 2S 4S 5 y 12 53. f x, y 20 m k³ 0 M yz k³ 0 M xy 2 1 y 2 1 1 ³0 ³0 M xz m M xy m y M xz 2 20 20 k³ 0 k³ 0 20 3 5 x 12 ³0 3 5 x 12 ³0 3 5 x 12 ³0 3 5 x 12 ³0 ³0 5 12 y ³0 5 12 y ³0 5 12 y ³0 5 12 y 200k dz dy dx x dz dy dx y 20 1000k 16 y dz dy dx y = − 35 x + 12 12 1200k 8 z dz dy dx 250k 4 x x y z M yz m M xz m M xy m 5 m k³ 0 M yz k³ 0 M xz k³ M xy k³ z x, y, z 8 12 16 20 6 5 4 1 60 12 x 20 y 15 54. f x, y y 4 5 5· § ¨ 5, 6, ¸ 4¹ © x, y, z x 1000k 200k 1200k 200k 250k 200k 5 5 0 5 0 M yz m M xz m M xy m 3 5 x3 ³0 3 5 x3 ³0 ³0 ³0 3 5 x3 ³0 3 5 x3 ³0 1 15 60 12 x 20 y dz dy dx 1 15 60 12 x 20 y 1 15 60 12 x 20 y ³0 1 15 60 12 x 20 y ³0 25k 2 10k 15k 2 10k 10k 1 10k 5 4 3 4 x dz dy dx y dz dy dx z dz dy dx 10k 25k 2 15k 2 10k y 5 4 y = 35 (5 − x) 3 2 1 x 1 2 3 4 5 §5 3 · ¨ , , 1¸ ©4 4 ¹ © 2010 Brooks/Cole, Cengage Learning Section 14.6 55. (a) I x k³ a 0 a a ³0 ³0 a a ª1 º ka ³ « y 3 z 2 y» dz 0 3 ¬ ¼0 Ix Iy (b) I x k³ a a a ³0 ³0 a 2 a 2 56. (a) I xy k³ z a 2 ³a 2 ³a 2 I xz I yz Ix Iy (b) I xy k³ I xy k³ I yz I xz by symmetry a 2 a 2 a 2 a 2 a 2 a 2 ³a 2 ³ a 2 z I xy I xz a7k 30 Iy I xy I yz a7k 30 Iz I yz I xz 7 ka 7 180 k³ 2 2 y a 2 ³a 2 ³ a 2 Ix 57. (a) I x 4 0 4 4 0 4 x ³0 ³0 4 2 x 2 y 2 dz dy dx a 3k a 2 a 2 2 x y 2 dy dx 12 ³ a 2 ³ a 2 x 2 y 2 dz dy dx ka ³ k³ y 2 z 2 dz dy dx 4 x ³0 ³0 x 2 z 2 dz dy dx 4ª 1 3º 4k ³ «4 x 2 x3 4 x » dx 0 3 ¬ ¼ Iz k³ 4 0 4 ka8 8 ka 5 6 4 k³ a ka 5 12 dz dy dx 4 ª y3 y 3º k ³ « 4 x 4 x » dx 0 3 3 ¬ ¼0 Iy 2ka 5 3 ª ka 4 § a 2 z 2 2 z 4 ·º « ¨ ¸» 4 ¹»¼ 0 «¬ 8 © 2 ka 4 a 2 a z 2 z 3 dz 8 ³0 ka 5 by symmetry 12 ka 5 ka 5 Iz 12 12 a 2 a ª §1 3 1 3 ·º «ka¨ 3 a z 3 az ¸» © ¹¼ 0 ¬ ka8 by symmetry 8 Iz a 2 y 2 z 2 dy dz ka 2 a a 3 y z yz 3 dy dz 2 ³0 ³0 y 2 z 2 xyz dx dy dz a Iy a ³0 a §1 · ka ³ ¨ a 3 az 2 ¸ dz 0 3 © ¹ ka 2 a ª y 4 z y2 z3 º « » dz ³ 2 0¬ 4 2 ¼0 Ix a 0 339 2ka 5 by symmetry 3 Iz 0 ka ³ y 2 z 2 dx dy dz Triple Integrals and Applications 4 x ³0 ³0 x 2 y 2 dz dy dx 4 º 4 ª§ y3 · k ³ «¨ x 2 y ¸ 4 x » dx 0 3¹ ¬© ¼0 4 0 4 ª ³ 0 «¬ y 2 a 2 a 2 a 2 ³a 2 x 2 y 2 y 4 dy dx 4 x 1 3º 4 x » dy dx 3 ¼ 4 ª 64 4 3º k ³ « 4 x 4 x » dx 0 3 3 ¬ ¼ k³ 4 0 4 ª ³ 0 «¬x 2 4 x 4 4 0 4 ³0 7 ka 7 360 ª 32 4 x k « ¬ 3 4 2 1 4º 4 x » 3 ¼0 256k 1 3º 4 x » dy dx 3 ¼ 1 1 4º ª4 4k « x 3 x 4 4 x » 4 12 ¬3 ¼0 k³ a7k 72 512k 3 x 2 y 2 4 x dy dx 4§ 64 · k ³ ¨ 4 x2 ¸ 4 x dx 0 3¹ © 256k © 2010 Brooks/Cole, Cengage Learning 340 Chapter 14 Multiple Integration (b) I x k³ 4 0 4 x 4 ³0 ³0 4 4 ª y4 y2 3º 4x 4 x » dx k³ « 0 4 6 ¬ ¼0 Iy k³ 4 0 4 x 4 ³0 ³0 k³ 4 0 4 x 4 ³0 ³0 0 4 ª ³ 0 «¬ y 4x 3 1 3º y 4 x » dy dx 3 ¼ 4ª 8 3º k ³ «64 4 x 4 x » dx 0 3 ¬ ¼ k³ y x 2 z 2 dz dy dx 4 0 ª 4 ³ 0 «¬x 2 1 1 4º ª4 8k « x 3 x 4 4x » 4 12 ¬3 ¼0 k³ y x 2 y 2 dz dy dx 4 4 ³0 0 ª k «32 4 x ¬ 4 2 2 4º 4 x » 3 ¼0 2048k 3 1 3º y 4 x » dy dx 3 ¼ y4 x 4 4ª 1 3º 8k ³ «4 x 2 x3 4 x » dx 0 3 ¬ ¼ Iz 4 k³ y y 2 z 2 dz dy dx 1024k 3 x 2 y y 3 4 x dx 4 º 4 ª§ x 2 y 2 y4 · k ³ «¨ ¸ 4 x » dx 0 4¹ ¬© 2 ¼0 8k ³ 58. (a) I xy k³ 4 0 k³ 4 8 x 2 64 4 x dx 0 4 ª § 4 3 1 4 ·º 2 «8k ¨ 32 x 4 x 3 x 4 x ¸» ¹¼ 0 ¬ © 32 8 x 4 x 2 x3 dx 4 4 y2 2 0 ³0 ³0 z 3 dz dy dx k³ 4 2 1 ³0 4 4 0 4 y2 2 I xz I yz k³ 4 4 y2 2 0 ³0 ³0 4 2 0 k³ 0 ³0 ³0 4 2 k³ 0 4 y2 2 ³0 I xz I xy (b) I xy ³0 ³0 ³0 k³ I xz 4 Ix 4 y2 2 4 y2 2 4 k³ 4 0 2 ³0 ³0 k³ 4 0 ³0 ³0 2 4 y2 k³ 4 2 4 y2 0 ³0 ³0 I xz I xy 4 y2 2 4 16,384 0 945 dx dy dx 2 8 y5 k 4 ª16 y 3 y7 º « » dx ³ 2 0¬ 3 5 7 ¼0 2 1 ³0 2x 2 4 y2 2 65,536k 315 k 4 1024 dx 2 ³ 0 105 dy dx 2 8 y3 k 4 ª 2§ y 5 ·º « x ¨16 y ¸» dx ³ 0 2 ¬ © 3 5 ¹¼ 0 8192k , Iz 21 I yz I xy 2048k 105 I yz I xz k 4 256 2 x dx 2 ³ 0 15 8192k 45 63,488k 315 4 z 2 dz dy dx k ³ 4 0 2 4 y2 2 4 y2 2 4 y2 ³0 ³0 z 3 dz dy dx 32,768k 65,536k 105 315 32,768k 315 y 2 4 z dz dy dx 4 y2 0 2 k³ z 2 4 z dz dy dx ³0 ³0 ³0 ³0 ³0 k³ I yz 4 0 x 2 z dz dy dx 2048k , Iy 9 4 y2 2 1 2 ³0 2 y 0 1 2 x 16 8 y 2 y 4 dy dx 2 Ix 4 4 k³ 1 16 y 2 8 y 4 y 6 dy dx 2 k³ 4 ³0 y 2 z dz dy dx k 4 2 256 256 y 2 96 y 4 16 y 6 y 8 dy dx 4³0 ³0 dy dx 256 y 3 96 y 5 16 y 7 k 4ª y9 º «256 y » dx ³ 0 4 ¬ 3 5 7 9 ¼0 2048k 3 4 4 y 2 dz dy dx k ³ 0 ³0 ³0 y 2 z dz dy dx 1024k 2048k 15 105 1024k 21 x 2 z dz dy dx 4096k 8192k 9 45 11,264k I xz I yz 35 4096k 15 x 2 4 z dz dy dx 4 x 2 dz dy dx k ³ 48,128k , Iy 315 4 0 ³0 ³0 I yz I xy 118,784k , Iz 315 © 2010 Brooks/Cole, Cengage Learning Section 14.6 k³ 59. I xy L2 a L 2 ³a ³ a2 x2 a2 x2 z 2 dz dx dy k³ L2 L 2 2 a ³a 3 a 2 x2 S a 2 Lk , I xy Because m k³ I xz L2 2k ³ k³ I yz a L 2 a a2 x2 a ³ a ³ Iy I xy I yz Iz I xz I yz a2 x2 a2 x2 b2 c2 a 2 b2 c2 a 2 b2 I xz ³ c 2 ³ a 2 ³ b 2 y I yz ³ c 2 ³ a 2 ³ b 2 x Iy I xy I yz Iz I xz I yz 1 1 x 1 62. ³ 1 ³ 1 63. U 1 x2 2 a 2 x 2 dx dy L2 2 a L 2 ³a x kS a 2 ³ L2 L 2 dz dy dx 2 dz dy dx xº dy a »¼ a ka 4S L 2 dy 4 ³L 2 ka 4S L 4 ma 2 4 b3 c 2 a 2 dy dx 12 ³ c 2 ³ a 2 1 2 1 b abc mb 2 12 12 c 2 a 2 1 2 ba 3 c 2 ba 3c b³ y 2 dy dx dx a abc ³ c c 2 ³ a 2 2 12 12 12 c2 1 2 1 abc3 c abc mc 2 ab ³ x 2 dx c 2 12 12 12 dz dy dx 2 1 mL2 12 a 2 x 2 dx dy 2 a a 2 x 2 a 4 arcsin 2kS a 2 § L3 · ¨ ¸ 3 ©8¹ y 2 dy 1 ma 2 12 1 m a 2 b2 12 1 m b2 c2 12 1 m a2 c2 12 x2 y2 4 x2 y 2 1 x2 2k ³ ma 2 2 m 3a 2 L2 12 a 2 ³ 1 ³ 1 ³ 0 x 2 dz dx dy ma 2 ma 2 4 4 2 mL ma 2 12 4 c2 a ³ a y x ·º ¸» dy a ¹¼ a m 3a 2 L2 12 ³ c 2 ³ a 2 ³ b 2 z I xy I xz L2 L 2 ma 2 mL2 4 12 60. I xy Ix 2k ³ a 2 x 2 a 2 arcsin 1ª x 2x2 a2 L 2 8« ¬ I xy I xz 61. y 2 dz dx dy L2 Ix a 4S Lk 4 a ª y2 § x L 2 « 2 ¨ ¬ © L2 x ºº x 2 a 2 a 4 arcsin »» dy a ¼¼ a ma 2 4. a2 x2 L2 L 2 2k ³ ³ a ³ 341 a 2 x 2 dx dy x· 1 2 L 2 ª a2 § k « ¨ x a 2 x 2 a 2 arcsin ¸ x 2 x 2 a 2 a¹ 8 3³L 2 ¬ 2 © a 4S · 2k L 2 § a 4S 2¨ ¸ dy ³ L 2 3 16 ¹ © 4 Triple Integrals and Applications ³0 x 2 y 2 z 2 dz dy dx kx 2 x 2 y 2 dz dy dx kz z 2 (a) m ³ 2 ³ (b) x y z (c) I z 4 x2 4 x2 4 x2 y2 ³0 § kz dz dy dx ¨ © 32kS · ¸ 3 ¹ 4 z = 4 − x2 − y2 0 by symmetry M xy m 2 ³2 ³ 1 2 m³2 ³ 4 x2 4 x2 4 x2 4 x2 4 x2 y2 ³0 4 x2 y2 ³0 kz 2 dz dy dx § x 2 y 2 kz dz dy dx ¨ © 2 32kS · ¸ 3 ¹ y 2 2 x x2 + y2 =4 © 2010 Brooks/Cole, Cengage Learning Chapter 14 Multiple Integration 342 64. U kxy (a) m 5 ³0 ³0 25 x 2 ³0 25 x 2 y 2 § kxy dz dy dx ¨ © 625 · k¸ 3 ¹ z M yz (b) x 1 5 m³0 ³0 m 25 x 2 ³0 25 x 2 y 2 § x kxy dz dy dx ¨ © 25S · ¸ 32 ¹ 25 x 2 y 2 § z kxy dz dy dx ¨ © 25 · ¸ 16 ¹ x 2 + y 2 + z 2 = 25 5 x by symmetry y M xy z 1 5 m³0 ³0 m 25 x 2 ³0 5 y 5 (c) I z 5 ³0 ³0 25 x2 ³0 25 x 2 y 2 § x 2 y 2 kxy dz dy dx ¨ © 62500 · k¸ 21 ¹ 65. See the definition, page 1027. x 1 unit cube 69. V See Theorem 14.4, page 1028. Average value 66. Because the density increases as you move away from the axis of symmetry, the moment of inertia will increase. 1 1 1 1 ³0 ³0 (b) The annular solid on the right has the greater moment of inertia. 1 z 2 4 dx dy dz z 2 4 dy dz 1 ª z3 º « 4 z» 3 ¬ ¼0 (c) The solid on the left will reach the bottom first. The solid on the right has a greater resistance to rotational motion. 1 4 3 1 ³0 z 2 4 dz 13 3 64 cube with sides of length 4 70. V 68. The region of integration is a cube: Average value z 1 f x, y , z dV V ³ Q³³ 1 4 4 4 xyz dx dy dz 64 ³ 0 ³ 0 ³ 0 1 4 4 8 yz dy dz 64 ³ 0 ³ 0 4 1 4 8 z dz ³ 0 z dz 8 8³0 1 2 1 f x, y , z dV V ³ Q³³ ³0 ³0 ³0 67. (a) The annular solid on the right has the greater density. 3 x 2 + y 2 = 25 y x Answer: (a) 71. V 1 base u height 3 1§ 1 4 · ¨ 2 2¸2 3© 2 3 ¹ f x, y , z z (0, 0, 2) 2 x + y+ z = 2 x y z Plane: x y z Average value 2 1 f x, y , z dV V ³ Q³³ (0, 2, 0) (2, 0, 0) x 2 3 2 2 x 2 x y x y z dz dy dx 4³0 ³0 ³0 3 21 3 3 2 x 4 x 2 dx 2 4³0 6 4 2 2 y 3 2 2 x 1 2 x y x y 2 dy dx 4³0 ³0 2 © 2010 Brooks/Cole, Cengage Learning Section 14.6 4 S 3 72. V 3 3 Triple Integrals and Applications 343 4 3S 1 f x, y, z dV V ³ Q³³ Average value 1 4 3S ³ 3 3 ³ 3 x2 3 x2 ³ 3 x2 y2 3 x2 y2 x y dz dy dx 0, by symmetry 73. 1 2 x 2 y 2 3 z 2 t 0 z 2 x 2 y 2 3z 2 d 1 ^ x, y , z : 2 x 2 Q 1 2 ³ 1 2 ³ 1 2 x2 1 2 x2 Exact value: y 2 3 z 2 d 1` ellipsoid 1 2 x2 y2 ³ 3 1 2 x2 y 2 1 1 2 x 2 y 2 3z 2 dz dy dx | 0.684 3 2x 2 + y 2 + 3z 2 = 1 1 1 y x 4 6S 45 −1 74. 1 x 2 y 2 z 2 t 0 x2 y2 z 2 d 1 ^ x, y , z : x 2 Q 1 ³ 1 ³ 1 x2 ³ 1 x2 Exact value: 75. 14 15 1 ` y 2 z 2 d 1 sphere 1 x2 y2 1 x2 y2 1 x 2 y 2 z 2 dz dy dx | 1.6755 8S 15 3 a y2 4 x y2 ³0 ³0 ³a dz dx dy 3 a y2 3 a y2 1ª x2 º ³ 0 «¬ 4 y a x 2 »¼ 0 2 So, 3a 2 22a 32 0 a 2, y2 z2 2 9 b dy 4 x y 2 a dx dy 1ª 2 2 ³ 0 «« 4 y a 3 a y ¬ 3 a y2 º » dy 2 »¼ 94 11a 1 a2 15 3 2 0 a 2 3a 16 76. x 2 1 ³0 ³0 16 . 3 1 By symmetry, the volume in the first octant is 1 16S 8 2S 2S . 1 b 1 x2 ³0 ³0 3 1 x 2 y 2 b2 ³0 By trial and error, b 1 dz dy dz 4. ª x2 y2 z2 «Note: Volume at ellipsoid 2 2 2 a b c ¬ º 4 1 is S abc.» 3 ¼ © 2010 Brooks/Cole, Cengage Learning 344 Chapter 14 Multiple Integration 1 xk . 77. Let yk S 2n S x1 " xn 2n S n y1 y2 " yn 2 S y1 " yn 2n So, 1 1 1 0 0 ³ 0 ³ 0 "³ 0 cos I1 0 ³ 1 ³ 1 "³ 1 sin I1 I 2 S ½ x1 " xn ¾ dx1 dx2 " dxn ® ¯ 2n ¿ 2­ S ½ y1 " yn ¾ dy1 dy2 " dyn ® ¯ 2n ¿ 2­ 1 1 1 ³ 0 ³ 0 "³ 0 sin S ½ x1 " xn ¾ dx1 dx2 " dxn ® ¯ 2n ¿ 2­ I2 1 . 2 1 I1 1 . 2 Finally, lim I1 nof Section 14.7 Triple Integrals in Cylindrical and Spherical Coordinates 5 S 2 3 1. ³ 1 ³ 0 ³ 0 r cos T dr dT dz 2. ³0 ³0 ³0 S 4 6r 6 rz dz dr dT S 4 S 4 3. 2 cos 2 T ³0 ³0 4 r2 ³0 6 6r ª rz 2 º » 2 ¼0 S 2 r sin T dz dr dT 3 e U U 2 d U dT dI ³0 ³0 ³0 5. ³0 ³0 ³0 6. ³0 ³0 ³0 2S S 4 S 4 cos I S 4 S 2 2 cos 2 T S 2 ³0 ³0 S ³0 ³0 U 2 sin I d U dI dT cos T 6 6 ³0 S 2 S 4 U 2 sin I cos I d U dT dI 3 S 4 ³0 dz 5 5 ³ 1 92 dz ª 9 zº ¬ 2 ¼ 1 9 2 5 1 §S · 54¨ ¸ ©4¹ 1 108 dT 2 r 4 r sin T dr dT S 2 ³0 27S 2 2 cos 2 T ª§ 2 º r4 · «¨ 2r ¸sin T » 4 ¹ ¬«© ¼» 0 dT S 2 ª¬8 cos 4 T 4 cos8 T º¼ sin T dT 2 S 4 ³0 S 2 S1 ³0 ³0 3 cos3 I sin I dI dT 1 S 3³ 0 1 S 3³ 0 S 4 4 ³0 4 ³0 S 4 27 12r 2 36r dr dT 2 ª 1 U3 º « 3 e » dT dI ¬ ¼0 1 2S 3³ 0 1 ³0 ³0 2 r dr dT 1 ªr4 3 2º « 4r 18r » dT 2¬ 4 ¼0 S 2 4. S 2 5 ³ 1 ª¬ 92 sin T º¼ 0 cos T dT dz 9 2 ³ 0 ³ 0 «¬ ³0 S 2 S 2 5 ³ 1 ³ 0 ª 8 cos5 T 4 cos9 T º « » 9 ¬ ¼0 S2 1 e 8 dT dI 6 S 4 1 2S ª¬cos 4 I º¼ dT ³ 0 0 12 52 45 1 e 8 S 8 cos3 T sin I cos I dT dI sin I cos I ª¬cos T 1 sin 2 T º¼ dT dI S 4 ª 1 S4 sin 3 T º sin I cos I «sin T » ³ 0 3 3 ¼0 ¬ 5 2 S4 sin I cos I dI 36 ³ 0 4 S 2 z 7. ³0 ³0 ³0 8. ³0 ³0 ³0 S 2 S re r dT dr dz sin T dI S 4 ª 5 2 sin 2 I º « » 2 »¼ 0 «¬ 36 5 2 144 S e4 3 2 cos I U 2 d U dT dI 8 9 © 2010 Brooks/Cole, Cengage Learning Section 14.7 S 2 e r 3 2 ³0 ³0 ³0 9. r dz dr dT S 2 3 ³ 0 ³ 0 re r2 Triple Integrals in Cylindrical and Spherical Coordinates 3 S 2ª 1 r2 º « 2 e » dT ¬ ¼0 ³0 dr dT S 2 ³0 1 1 e9 dT 2 S 4 345 1 e 9 z 3 2 1 3 1 y 2 3 x 2S 5 r2 5 ³0 ³0 ³2 10. r dz dr dT 2S ³0 ³0 5 2S ³0 5r r 3 dr dT 5 ª 5r 2 r4 º » dT « 4 ¼0 ¬ 2 2S ³0 § 25 25 · ¨ ¸ dT 4¹ © 2 25 2S 4 25S 2 z 5 −3 3 2S S 2 4 ³ 0 ³S 6 ³ 0 U 11. y 3 −1 x 64 2S S 2 sin I dI dT 3 ³0 ³S 6 sin I d U dI dT 2 64 2S >cos I @SS 62 dT 3 ³0 64 3S 3 32 3 2S dT 3 ³0 z 4 2S S 5 ³0 ³0 ³0 U 12. y 4 4 x 2 sin I d U dI dT 117 2S S sin I dI dT 3 ³0 ³0 117 2S S >cos I @0 dT 3 ³0 468S 3 156S z r=5 7 r=2 7 13. 2S 2 2S arctan 1 2 4 ³ 0 ³ 0 ³ r2 r 2 ³0 ³0 14. cos T dz dr dT 4 sec I ³0 S 2 2 16 r 2 S 2 S 6 4 2S a ³0 ³0 ³0 ³0 ³0 ³0 U 15. y 7 x a ³0 ³0 ³a S 4 2S 3 U 3 sin 2 I cos T d U dI dT r 2 dz dr dT 8S 2 2S 3 sin 2 I d U dI dT a2 r 2 2 a cos I ³ 0 ³ 0 ³ a sec I 0 r 2 cos T dz dr dT S 2 2S S 2 cot I csc I ³ 0 ³ arctan 1 2 ³ 0 U 3 sin 2 I cos T d U dI dT 0 3 S 2 2 csc I ³ 0 ³S 6 ³ 4 U 3 sin 2 I d U dI dT 8S 2 2S 3 3 0 U 3 sin 2 I cos T d U dT dI 0 © 2010 Brooks/Cole, Cengage Learning 346 16. Chapter 14 Multiple Integration S 2 3 9 r2 S 2 S 2 3 ³0 ³0 ³0 ³0 ³0 ³0 U 17. V 4³ S 2 0 a cos T 18. V 2 S 4 3 2 3 81S 8 sin I d U dI dT 3 ³0 4 3 S a 3 ³0 81S 8 r 2 z 2 r dz dr dT a2 r 2 ³0 4³ r dz dr dT S 2 a cos T ³0 0 r a 2 r 2 dr dT S 2 4 3ª 1 º a T cos T sin 2 T 2 » 3 «¬ 3 ¼0 1 sin 3 T dT ª S 4 «³ 0 ¬« 2 2 2 r ³ 0 ³ 0 r dz dr dT S 2 4 ³0 ³2 2 ³0 16 r 2 4 3§ S 2· a ¨ ¸ 3 ©2 3¹ 2a 3 3S 4 9 º r dz dr dT » ¼» z 7 Volume of lower hemisphere 4 Volume in the first octant V 128S ª S 4 «³ 3 ¬ 0 2 2 2 ³0 ª8 2S 128S 4« 3 ¬« 3 S 2 S 2ª 1 2 « 3 16 r ¬ ³0 ª8 2S 128S 8 2S º 4« » 3 3 3 ¼ ¬ x 12 cos T S cos T 2 r cos T ³ 0 ³ 0 ³ 2r2 ³0 ³0 4 cos T S §2 cos 4 T · 4 ¨ cos T ¸ dT 2 ¹ ©3 2S 128S 64 2S 3 3 2 r2 2S 12 14 2 1 4 1 ª 2 r º «r » dT 2 ¼0 ¬ 0 2³ 0 S 2 a cos T ³0 2S 2 2S 2 ³0 ³0 ³r ³0 1 23. m r a2 r 2 y r dz dr dT a 2 r dr dT r 4 r2 3 2º a cos T dT » ¼0 2S 2 2S 2 4 r 2 r 2 dr dT 32 2S ³0 9 r cos T 2 r sin T ³0 ³0 ³0 2 2a 3 3S 4 9 r dz dr dT ª 1 2 « 4 r 3 ¬ ³ 0 ³ 0 kr S ³0 S ³0 ³0 dr dT 1 2S 2 a cos T ³0 2a 3 ª cos3 T º «T cos T » 3 ¬ 3 ¼0 22. V 2 7 2a 3 S 1 sin 3 T dT 3 ³0 2S 2 2 S 2³ S ª 1 2 ³ « a 2 r 2 0 ¬ 3 dT r dz dr dT ³ 0 ³ 0 r 2 2r ³0 2 7 2 16 2 ³ 0 ³ 0 ³ r2 2S 64S 2 3 21. V y x y x y 2 1 2 S 1 S cos 4 T dT 6³0 20. 2 x y » ¼2 x º dT » ¼» 2r 2 cos T 2r 3 dr dT 3 2 4 r dz dr dT ª 2r r º cos T » « 3 2 ¼0 ¬ ³0 V 2 S ³0 º r 16 r 2 dr dT » ¼ cos T for this circle. In polar coordinates, use r V 3 2º x2 x y 2 x2 x 1 4 y 2 S 2 2x2 2 y 2 19. In the xy-plane, 2 x 0 4 ³0 ³2 r 2 dr dT r3 º » 3 ¼0 2 8S 2 3 dT 2 kr r dz dr dT 9 r cos T 2r sin T dr dT 2 ª º r4 r4 cos T sin T » dT k «3r 3 4 2 ¬ ¼0 2S ³ 0 k >24 4 cos T 8 sin T @ dT 2S k >24T 4 sin T 8 cos T @0 k >48S 8 8@ 48kS © 2010 Brooks/Cole, Cengage Learning Section 14.7 24. S 2 12 e r 2 2 ³0 ³0 ³0 S 2 2 ³ 0 ³ 0 12ke k r dz dr dT S 2 ª6ke ¬« ³0 S 2 ³0 Triple Integrals in Cylindrical and Spherical Coordinates r2 r dr dT 2 r2 º ¼» 0 6ke 4 6k dT 28. U kz h r0 h y m 4k ³ 4³ V S 2 0 h r 0 r r0 r0 ³0 ³0 4h S r0 ³ 0 2 r0 ³0 r dz dr dT r0 r r 2 dr dT 4h § r03 ·§ S · ¨ ¸¨ ¸ r0 ¨© 6 ¸¹© 2 ¹ 4k ³ 2kh r02 S 2 0 2 h r0 r r0 r0 ³0 ³0 S 2 27. U ³0 ³0 m r02 r 2r0 r 2 r 3 dr dT x2 y 2 y m 4k ³ z x, y, z 30. I z kr02 h 2S 12 h r0 r r0 r0 ³0 ³0 2 r0 ³0 r 3 dz dr dT r0 r 3 r 4 dr dT 1 kS r04 h 10 S 2 4k ³ h 4 0 4k ³ S 2 0 h r0 r r0 r0 r0 r 2 dz dr dT h r0 r r0 ³0 ³0 1 kS r03 h 2 30 M xy kS r03h 2 30 m kS r03h 6 3 2 mr0 . 10 y 2 U x, y, z dV S 2 0 4kh ³ kr ³0 ³0 2 §1 · k ¨ S r02 h ¸ ©3 ¹ 3m S r02 h. So, 1 § 3m · 4 ¨ ¸S r0 h 10 © S r02 h ¹ 1 kS r04 h 10 ³³³ x kV Q 0 by symmetry x M xy 2h 5 from Exercise 25, we have k zr dz dr dT kr02 h 2S § 3 · ¨ ¸ 12 © S r02 hk ¹ M xy k z 2 r dz dr dT Because the mass of the core is m Iz r0 2kh 2 § r04 ·§ S · ¨ ¸¨ ¸ r02 © 12 ¹© 2 ¹ z S 2 0 4kh § r05 ·§ S · ¨ ¸¨ ¸ r0 © 20 ¹© 2 ¹ 1 2 S r0 hk from Exercise 25 3 M xy 4k ³ 4kh S r0 ³ 0 1 2 S r0 h 3 h r0 r r0 r0 ³0 ³0 0 by symmetry y m S 2 0 1 kS r02 h 2 12 zr dz dr dT 2h · § ¨ 0, 0, ¸ 5¹ © x, y, z 29. I z h r0 r r0 r0 ³0 ³0 1 kS r02 h3 30 M xy kS r02 h3 30 m kS r02 h 2 12 z 4h S 2 r03 dT r0 ³ 0 6 26. x S 2 0 4k ³ M xy h r0 r r0 x2 y 2 0 by symmetry x 3kS 1 e 4 25. z 347 1 kS r03h 6 r 2 z dz dr dT 31. m Iz S 2 0 r0 r0 ³0 S 2 ªr5 4kh ³ 0 4kh ³ 0 « ¬5 S 2 4k ³ S 2 0 r0 r6 º » dT 6r0 ¼ 0 1 5 r0 dT 30 b h ³a ³0 r S 2 0 b 4kh ³a r 3 3 4kh ³ 1 5S r0 30 2 Iz r05 º « » dT 6¼ ¬5 1 5 r0 S kh 15 dz dr dT dr dT kh ³ S 2 0 b 4 a 4 dT kS b 2 a 2 b 2 a 2 h 2 1 m a2 b2 2 32. m S 2 ª r05 0 kS h b 2 a 2 kS b 4 a 4 h h· § ¨ 0, 0, ¸ 5¹ © r 4 dz dr dT r 4 r dr dT r0 k S b2h S a 2h 4kh ³ h 5 h r0 r r0 r0 ³0 ³0 2 kS a 2 h 2k ³ S 2 0 2 a sin T ³0 h ³0 r 3 dz dr dT 3 kS a 4 h 2 3 2 ma 2 © 2010 Brooks/Cole, Cengage Learning 348 Chapter 14 Multiple Integration 33. V 2S S 2 3 ³ 0 ³S 4 ³ 0 U 2S sin I d U dI dT 2 z 3 S 2 ³ 0 ³ S 4 9 sin I dI dT 2S S 2 S 4 ³ 0 >9 cos I @ 2S ³0 dT § 2· 9¨¨ ¸¸ dT © 2 ¹ 34. x 2 y 2 z 2 2 § 2· 18S ¨¨ ¸¸ © 2 ¹ z 1· § x2 y 2 ¨ z ¸ 2¹ © 2 1 4 S 4 cos I ³0 ³0 ³0 2S S 4 sin I 35. V ³0 ³0 ³0 36. V 8³ S 4 S 2 −1 −1 1 1 cos I 2S S 4 U 2 sin I d U dI dT ³0 ³0 U 2 sin I d U dI dT 16S 2 b y x ³0 ³a U 0 1 1 4 1· § Sphere with center ¨ 0, 0, ¸: U 2¹ © 2S 2 z 1· § x2 y 2 ¨ z 2 z ¸ 4¹ © V 9S y 3 3 x 2 sin I d U dT dI cos3 I sin I dI dT 3 2S ³0 S 4 ª cos 4 I º « » ¬ 12 ¼ 0 S 4 37. m 8k ³ S 2 S 2 2ka 4 ³ 0 S 2 kS a 4 ³ 38. m 8k ³ S 2 0 S 2 S 2 S 2 0 3 a S 2 ³0 3 § 2 · 4S 3 b a3 ¨¨1 ¸¸ 2 © ¹ 3 2S 2 3 a x S 2 kS a 4 b 2 kS r 3 3 0 by symmetry y M xy 4k ³ S 2 0 S 2 r ³0 ³0 U 3 cos I sin I d U dT dI 1 4 S2 S2 kr sin 2I dT dI 2 ³0 ³0 kr 4S S 2 sin 2I dI 4 ³0 sin I d U dT dI 2 sin 2 I dT dI S 2 ª 1 º 4 « 8 kS r cos 2I » ¬ ¼0 sin 2 I dI S 2 kS a 4 y 2 b3 a3 39. m 4 ¬ªkS a cos I ¼º 0 1 ª ·º 4§ 1 «kS a ¨ 2I 4 sin 2I ¸» © ¹¼ 0 ¬ 8 a b x sin I d U dT dI sin I dI S b sin I dT dI ³0 ³0 U 0 kS a 4 ³ S 2 ³0 S 2 0 2ka 4 ³ a ³0 ³0 U 0 1§ 1· ¨1 ¸ dT 12 © 4¹ z includes upper and lower cones S 4 S 2 8 3 b a3 ³ ³ 0 sin I dT dI 0 3 S 4 4S 3 b a 3 ³ sin I dI 0 3 ª 4S 3 º 3 « 3 b a cos I » ¬ ¼0 2S ³0 dT S 4 1 2 4 kS a 4 z x, y, z M xy m kS r 4 4 2kS r 3 3 1 kS r 4 4 3r 8 3r · § ¨ 0, 0, ¸ 8¹ © © 2010 Brooks/Cole, Cengage Learning Section 14.7 40. x 0 by symmetry y 42. I z 2 §2 · k ¨ S R3 S r 3 ¸ 3 ©3 ¹ m Triple Integrals in Cylindrical and Spherical Coordinates 4k ³ M xy S 2 0 2 kS R 3 r 3 3 S 2 R ³0 ³r M xy m z 4 3R r 4 4 2kS R 3 r 3 3 4k ³ S 2 S 2 cos I ³0 ³0 S 4 I2 U2 47. (a) r (b) x2 y2 r2 y r sin T tan T z z z y x z 44. x U sin I cos T U2 y U sin I sin T tan T z U cos I cos I 4 4 45. T2 g T h 2 r cos T , r sin T ³ T 1 ³ g12T ³ h1 r cos T , r sin T x2 y2 z 2 y x z x y2 z2 2 f r cos T , r sin T , z r dz dr dT kS 192 f U sin I cos T , U sin I sin T , U cos I U 2 sin I d U dI dT r0 : right circular cylinder about z-axis T T 0 : plane parallel to z-axis z z0 : plane parallel to xy-plane U0 : sphere of radius U0 (b) U 48. (a) r cos T 3 S 2 T2 43. x U sin I d U dT dI 4 1 8 ·º ª2 § 1 6 « 5 kS ¨ 6 cos I 8 cos I ¸» © ¹¼S ¬ ³T 1 ³I 1 ³ U 1 U 4 sin 3 I d U dT dI S 2 8 R3 r 3 4 S2 S2 k cos5 I sin 3 I dT dI 5 ³S 4 ³ 0 S 2 2 cos5 I 1 cos 2 I sin I dI kS 5 ³S 4 46. R 4kS 5 R r5 15 1 kS R 4 r 4 4 § 3 R4 r 4 · ¨ 0, 0, ¸ ¨ 8 R 3 r 3 ¸¹ © x, y, z 41. I z kS R r 4 S 2 ³0 ³r ª 2kS 5 § cos3 I ·º R r 5 ¨ cos I « ¸» 3 ¹»¼ 0 «¬ 5 © S 2 S 2 1 k R4 r 4 ³ ³ 0 sin 2I dT dI 0 2 S 2 1 kS R 4 r 4 ³ sin 2I dI 0 4 S 2 S 2 0 S 2 S 2 4k 5 3 R r5 ³ ³ 0 sin I dT dI 0 5 S 2 2kS 5 R r 5 ³ sin I 1 cos 2 I dI 0 5 U 3 cos I sin I d U dT dI ª 1 º 4 4 « 8 kS R r cos 2I » ¬ ¼0 4k ³ 349 T T 0 : plane parallel to z-axis I I0 : cone S 2 a a2 r 2 S 2 S 2 a ³0 ³0 ³0 ³0 ³0 ³0 U 3 r 2 z 2 r dz dr dT sin I d U dI dT Integral (b) appears easier. The limits of integration are all constants. z a a a y x © 2010 Brooks/Cole, Cengage Learning 350 Chapter 14 Multiple Integration 49. 16³ a 0 ³0 a 2 x2 S 2 16 ³ 0 S 2 16 ³ 8³ 50. f f a2 x2 y 2 ³0 a ³0 ³0 0 ³0 S 2 a 0 ³0 f ³ f ³ f ³ f 2S S 2 S f 2S k of 0 lim k of S 16³ dw dz dy dx a 0 a2 x2 ³0 a r 2 2 z a r 2 2 4S ³ a 2 r 2 r dr dT x2 y2 z 2 2 arcsin S 2 ª a 2r 2 0 º » 2 2 a r ¼0 z « ¬ 2 r4 º » dT 4 ¼0 a 4S ³ 3 U2 ³0 ³0 U e S 2S ª U 1 e 2 2S lim « k of « 2 ¬ 2 k 3 U2 2 d 36 x 2 y 2 2 d 36r 2 r 2 z 2 8 d 6r r 2 6r 9 z 2 1 d 0 dU r 3 k º » » ¼0 a 4S 2 2 dT r2 z2 8 ³0 U e U2 S 2 0 In cylindrical coordinates, sin I d U dI dT dT r dr dT 51. x 2 y 2 z 2 8 dx dy dz 2 ³ 0 sin I dI ³ 0 a 2 x 2 y 2 z 2 dz dy dx a2 r 2 a U e U U 2 sin I d U dI dT k a 2 x2 y 2 ³0 a 2 r 2 z 2 dz r dr dT x2 y 2 z 2 e ³0 ³0 ³0 lim ³ a 2 x2 y 2 z 2 a2 r 2 1ª «z 2¬ a ³0 ª1º 4S « » ¬2¼ 2 z 2 d 1. This is a torus: rotate x 3 2S 2 z2 1 about the z-axis. By Pappus' Theorem, V 2S 3 S 6S 2 . Section 14.8 Change of Variables: Jacobians 1. x y 4. x 1 u v 2 y 1 u v 2 wx wy wy wx wu wv wu wv § 1 ·§ 1 · § 1 ·§ 1 · ¨ ¸¨ ¸ ¨ ¸¨ ¸ © 2 ¹© 2 ¹ © 2 ¹© 2 ¹ uv 2u uv wx wy wy wx wu wv wu wv 1 2 5. x u cos T v sin T u sin T v cos T 2. x au bv y y cu dv wx wy wy wx wu wv wu wv wx wy wy wx wu wv wu wv 3. x y u a u v2 y v a u v wx wy wy wx wu wv wu wv 7. x eu sin v y eu cos v wx wy wy wx wu wv wu wv 8. x y ad cb 6. x wx wy wy wx wu wv wu wv 1 1 1 2v 1 2v eu sin v eu sin v eu cos v eu cos v v 2 u vu 2u cos 2 T sin 2 T 1 1 0 0 1 1 e 2u u v u v wx wy wy wx wu wv wu wv §1· § u· ¨ ¸ 1 1 ¨ 2 ¸ ©v¹ © v ¹ 1 u 2 v v u v v2 © 2010 Brooks/Cole, Cengage Learning Section 14.8 Change of Variables: Jacobians 3u 2v 9. x y 3v v y 3 v x, y u, v (0, 0) (0, 0) (3, 0) (1, 0) (2, 3) (0, 1) 1 x 2 y 3 3 x 2v 3 u 10. x 1 3 4u v y 1 3 u v u x y v x 4y x 2y 3 9 (0, 1) (1, 0) u 1 12. x 1 3 v u y 1 3 2v u u y 2x v x y v x, y v u, v 1 (0, 0) (0, 0) (4, 1) (3, 0) −2 (2, 2) 0, 6 −4 (6, 3) 3, 6 −6 −1 (0, 0) (3, 0) 1 −1 x, y 2 4 5 6 −5 1 2 u v y 1 2 u v u v x y x y 13. u, v 1, 1 2 2 (1, 0) (0, 1) 1, 1 (1, 2) 3, 1 −1 (3, 0) −2 x 2y x y x 2y x y x 2y x y x 2y x y u v R (1, 0) (2, 4) (2, 1) 1, 2 3 3 (0, 1) 4, 8 3 3 (0, 4) (0, 1) (2, 1) 2 , 10 3 3 (2, 4) 3 2 1 u 1 2 3 4 (3, 0) u 2 (1, −1) 3y 0½ ¾ y 4¿ 3y 4½ ¾ y 4 ¿ 3y 4½ ¾ y 1 ¿ 3y 0½ ¾ y 1¿ 23 (0, 4) 1 4, 3 x 8 3 x 4 3 x 32 y 8 8, 3 5, 3 x − 2y = 0 x+y=4 (43 , 83 ( 2 1 (3, 3 ( (8, 4 ( 3 3 x 1 2 3 −1 1 1, 2 x − 2y = −4 3 (− 23 , 53 ( 5 x4 2 ³ 2 3 ³ 1 x (3, −1) 4 x+y=1 x 3y y x y ½ u v ¾ x 2 y¿ 2u v 3x x ³³ 3 xy dA (3, −6) 13 , 43 v x, y 3, 3 2 2 (0, −6) u, v 4 u −3 11. x 351 2 3 1 3 3 xy dy dx u v 1 3 2u v 43 x4 2 ³2 3 ³x 2 3 xy dy dx 83 4 x ³4 3 ³x 2 3 xy dy dx 32 27 164 27 296 27 164 9 © 2010 Brooks/Cole, Cengage Learning 352 14. Chapter 14 Multiple Integration ³³ x 2 y 1 x 1 ³ 0 ³ 1 x sin 2 x y dA R f x dy dx 3 x 2 ³ 1 ³ x 1 § cos 2 1 5 15 17 · sin 1 cos 1 sin 2 1 ¨¨ ¸ 3 16 16 ¸¹ © 16 13 13 13 13 sin 1 cos 1 sin 2 | 2.363 3 3 3 6 y y=x+1 f x dy dx 2 y=x−1 8 ª 2 º «cos 1 3 sin 1 cos 1 7 3» ¬ ¼ y = −x + 3 1 x 1 2 y = −x + 1 15. x y 1 u v 2 1 u v 2 v (−1, 1) wx wy wy wx wu wv wu wv ³³ 4 x 2 § 1 ·§ 1 · § 1 ·§ 1 · ¨ ¸¨ ¸ ¨ ¸¨ ¸ © 2 ¹© 2 ¹ © 2 ¹© 2 ¹ 1 1 1 1 R ³ 1 ³ 1 16. x y 1 u v, u 2 1 u v, v 2 wx wy wy wx wu wv wu wv ³R ³ 60 xy dA ª1 1 2 1 2 º§ 1 · u v » ¨ ¸ dv du 4 ¼© 2 ¹ u 2 v 2 dv du § 2 1· ³ 1 2¨© u 3 ¸¹du 2 1 x y 1 § 1 · § 1 ·§ 1 · ¨ ¸ ¨ ¸¨ ¸ 2 © 2 ¹ © 2 ¹© 2 ¹ 1 3 1 3 §1 1 2 ·§ 1 ·§ 1 · ¸¨ u v ¸¨ ¸ dv du ³ 1 ³ 1 60©¨ 2 u v ¹© 2 ¹© 2 ¹ 15 3 u v x, y u, v (0, 1) 1, 1 (2, 1) (1, 3) (−1, 1) (1, 2) 1, 3 −2 (1, 0) (1, 1) 1 0 1 1 3 4 ³ 0 ³ 0 uv 1 y dA 3 ³ 0 8u du 1 15 § ³ 1 2 ¨© 2u 2 26 · ¸ du 3¹ 4 (1, 3) 2 (1, 1) u 1 ª15 § 2 3 26 º « 2 ¨ 3 u 3 u» ¬ © ¼ 1 −1 1 1 dv du y § 2 26 · 15¨ ¸ 3¹ ©3 1 u v 2 1 u v 2 wx wy wy wx wu wv wu wv 120 v u 1 −1 1 2 2 v=u−2 −2 y e x y dA 2 0 v§ 1 · ³ 0 ³ u 2 4ue ¨© 2 ¸¹ dv du 2 ³ 0 2u 1 e 3 2 36 ³R ³ 4 x v (−1, 3) −1 18. x u wx wy wy wx wu wv wu wv 8 3 v 2 u 2 dv du ª 15 § v3 º 2 · ³ 1 ¬« 2 ©¨ 3 u v ¹¸¼» du 1 ³R ³ y x 1 ª § u3 u ·º ¸» «2¨ 3 ¹¼ 1 ¬ ©3 (1, −1) v 1 y (− 1, −1) x y ³ 1 ³ 1 2 17. x u ³ 1 ³ 1 4«¬ 4 u v y 2 dA (1, 1) u2 du 2 ªu 2 º 2 « ueu 2 eu 2 » ¬2 ¼0 2 1 u 1 2 3 4 2 1 e 2 © 2010 Brooks/Cole, Cengage Learning Section 14.8 19. ³R ³ e xy 2 dA 4 x 4 y = 2x 3 y ,v x uv u v u, y x 1 ,y x 2 x, y 353 y = x1 y x ,y 4 R: y Change of Variables: Jacobians y = 4x xy y = 41 x 2 R 1 wx wu wy wu w x, y w u, v wx wv wy wv 12 1v 2 u3 2 1 2 1 u1 2v1 2 1 v1 2 2 u1 2 1 2 u1 2 v1 2 x 1§ 1 1· ¨ ¸ u¹ 4© u 1 1 2u 2 3 4 Transformed Region: y y y y ³R 1 yx x 4 ux x y 2x x x y x 4 xy ³e 2 v 1 v 1 4 v 4 3 S 2 2 u 2 1 u 4 1 4 2 4 ³1 4 ³1 dA u 1 § 1 · e v 2 ¨ ¸ dv du © 2u ¹ 2 ª¬ e 2 e 1 2 ln u º¼ 14 20. x y 3 4 ³ ª e v 2 º « » du 14 ¬ u ¼1 2 ³ 2 14 1 v ³ R ³ y sin xy dA ³ 1 ³ 1 v sin u 4 4 1 dv du v 21. u x y 1, v x y 1 u x y 1, v x y 3 1· § e 2 e 1 2 ¨ ln 2 ln ¸ 4¹ © 4 ³ 1 3 sin u du 1 du u e1 2 e 2 ln 8 | 0.9798 >3 cos u@1 4 y=x+1 1 u v 2 1 v u 2 w x, y w u, v (1, 2) y = −x + 3 (2, 1) R 1 y=x−1 x wx wy wy wx wu wv wu wv ³ R ³ 48 xy dA 3 cos 1 cos 4 | 3.5818 y 2 y e 2 e 1 2 u v v wx wy wy wx wu wv wu wv x 4 3 ³1 1 § 1 · § 1 ·§ 1 · ¨ ¸ ¨ ¸¨ ¸ 2 © 2 ¹ © 2 ¹© 2 ¹ 1 1 2 y = −x + 1 §1· §1· §1· ³ 1 48¨© 2 ¸¹ u v ¨© 2 ¸¹ v u ¨© 2 ¸¹ du dv 1 3§ 2· 6 ³ ¨ 2v 2 ¸ dv 1 3¹ © 3 ª 2v3 2 º v» 6« 3 3 ¬ ¼1 2 3 1 ³ 1 ³ 1 6 v 2 u du dv 2 2º ª 6 «18 2 » 3 3¼ ¬ 2 6³ 3ª 1 1 u3 º «uv » dv 3 ¼ 1 ¬ 2 96 © 2010 Brooks/Cole, Cengage Learning 354 Chapter 14 Multiple Integration 22. u 2y x 0, v 3x 2 y 0 u 2y x 8, v 3x 2 y 16 x y 1 v u 4 1 v 3u 8 x 16 4, v x y 0 u x y 8, v x y 4 x 1 u v 2 y 1 u v 2 w u, v −1 8 12 x−y=0 8 4 ³4 ³0 §1· uev ¨ ¸ dv du © 2¹ S, v x y 0 2S , v x y S x 1 u v, 2 y 1 u v 2 4096 2 3 x−y=4 4 6 8 ª1 2 4 º « u e 1» ¬4 ¼4 1 8 u e 4 1 du 2³4 12 e 4 1 y 3π 2 x−y=0 x + y = 2π π π 2 1 2 x− y=π x+y=π π 2 ³ R³ · 2¸ ¹ x x y 2 162 § 32 ¨ 2 © 3 2 v dv 2 x y x y 32 3 x+y=8 x+y=4 u w u, v 16 ³0 4 24. u 8 6 1 2 x y e x y dA w x, y 4 y 2 ³ R³ 3 ª2 3 2º « 3 vu » dv ¬ ¼0 16 ³0 du dv 2 (0, 0) −1 ³0 ³0 v u 2 y x dA x y 1 y= x 2 1 8 23. u w x, y (4, 2) R 2 3 y=− x 2 2 3x 2 y 3 y=− x+8 2 3 § 1 ·§ 1 · § 3 ·§ 1 · ¨ ¸¨ ¸ ¨ ¸¨ ¸ © 4 ¹© 8 ¹ © 8 ¹© 4 ¹ w u, v (2, 5) (−2, 3) −2 w x, y ³ R³ y 1 y= x+4 5 2 S 2S ³ 0 ³S sin 2 x y dA 25. u x 4y 0, v x y 0 u x 4y 5, v x y 5 x 1 u 4v , 5 y 1 u v 5 §1· u 2 sin 2 v¨ ¸ du dv © 2¹ S ³0 π x 3π 22S ª 1 § u 3 · 1 cos 2v º « ¨ ¸ » dy 2 ¬2© 3 ¹ ¼S S ª 7S 3 § 1 ·º « ¨ v sin 2v ¸» 12 2 © ¹ ¬ ¼0 7S 4 12 y x−y=0 2 x + 4y = 5 wx wy wy wx wu wv wu wv ³ R³ 26. u u 3x 2 y x 1 u v, 4 wx wy wy wx wu wv wu wv ³ R³ x −1 § 1 ·§ 1 · § 1 ·§ 4 · ¨ ¸¨ ¸ ¨ ¸¨ ¸ © 5 ¹© 5 ¹ © 5 ¹© 5 ¹ 5 0, 16, v 2y x v 2y x y 1 u 3v 8 32 dA 8 1 5 3 4 −1 x + 4y = 0 x−y=5 −2 5 ª1 § 2 · 5 ³ 0 «¬5 ¨© 3 ¸¹u y 0 º v » dv ¼0 32 (2, 5) 3 (4, 2) 2 16 ³0 ³0 100 9 3x + 2y = 16 (−2, 3) 1 8 5 ª2 5 § 2 · 3 2º « ¨ ¸v » ¬ 3 © 3 ¹ ¼0 2y − x = 8 5 8 1 § 3 · 1§ 1 · ¨ ¸ ¨ ¸ 4 © 8 ¹ 8© 4 ¹ 3x 2 y 2 y x §1· uv ¨ ¸ du dv ©5¹ 5 ³0 ³0 x y x 4 y dA 3x 2 y 1 3x + 2 y = 0 2y − x = 0 x −2 −1 §1· u v3 2 ¨ ¸ du dv ©8¹ 1 −1 2 3 4 (0, 0) 8 ³0 8 16v3 2 dv § 2 · 5 2º ¨ ¸16v » ©5¹ ¼0 4096 5 2 © 2010 Brooks/Cole, Cengage Learning Section 14.8 x y, v 27. u wx wy wy wx wu wv wu wv ³ R³ 1 u v,y 2 x y, x 355 1 u v 2 1 2 a u ³ 0 ³ u x y dA Change of Variables: Jacobians §1· u ¨ ¸ dv du © 2¹ y a ³0 a u u du ª2 5 2º « u » ¬5 ¼0 2 52 a 5 v v=u a a x+y=a u 2a x a −a v = −u 28. u x 1, v xy 1 u x 4, v xy 4 x u, y u v y x=1 4 3 xy = 4 2 x=4 wx wy wy wx wu wv wu wv 1 u 1 x 1 2 3 4 xy = 1 ³ R³ 1 xy dA x2 y2 4 4 v §1· ³ 1 ³ 1 1 v 2 ¨© u ¸¹ dv du 2x y 29. u 4 º 1 » du ¼1 u ª1 º « 2 >ln 17 ln 2@ln u » ¬ ¼1 v 1 3 u v y y y= 1x+2 (6, 4) 4 1 3 2v u . (3, 3) y=x R 2 y=x−2 (4, 2) (1, 1) y= 7x x 2 2 8 y= 1x+ 2 3 (2, 7) 6 1 § 17 · ¨ ln ¸ ln 4 2© 2 ¹ 3 u v 1 3 v x Then y 4 2 6 u v x 3x ª1 30. x y v 4 ³ 1 ¬« 2 ln 1 v 6 3 y = −x + 9 4 (6, 3) R y= 1x 2 y x 0, 3y x 6 y x 2, 3 y x 2 2 x 2 4 6 x, y 8 (0, 0) (6, 3) (9, 9) (2, 7) 3, 9 So, T u , v x, y 12 v 3u and y x, y 1 2 1 2 vu. v 3u , 1 2 v u . u, v (1, 1) (0, 2) (4, 2) (–2, 2) (6, 4) (–2, 6) (3, 3) (0, 6) (9, 9) 8 6 1 2 3 y x. Note that: v (− 3, 9) y x and v Then x u, v (0, 0) Let u R u −4 −2 2 4 6 8 10 One side is parallel to the u-axis. © 2010 Brooks/Cole, Cengage Learning 356 Chapter 14 Multiple Integration x2 y2 2 2 a b 31. 2 au a2 u 2 v2 (a) bv 1 b2 2 au , y 2 bv 1, x 1 2 x y 2 a2 b u 2 v2 1 y 1 v 1 b S R x u 1 a (b) w x, y w u, v wx wy wy wx wu wv wu wv ³ S ³ ab dS (c) A ab S 1 2 ab S ab 16 x 2 y 2 32. (a) f x, y R: a b 0 0 x2 y2 d1 16 9 V ³ R³ f x, y dA 4u and y Let x ³ R ³ 16 3v. x 2 y 2 dA 1 u2 1 ³ 1 ³ 2S 1 u2 1 ³0 ³0 2S 12³ 0 12³ 0 2S 16 16u 2 9v 2 12 dv du 1 4 ª 2 4 2 2 º «8r 4r cos T r sin T » dT ¬ ¼0 12³ ª § 1 cos 2T · 9 § 1 cos 2T ·º ¸» dT ¸ ¨ «8 4¨ 2 2 ¹¼ © ¹ 4© ¬ 2S ªS A cos « ¬« 2 r sin T . 16 16r 2 cos 2 T 9r 2 sin 2 T 12r dr dT 7 ª 39 º 12« T sin 2T » 8 16 ¬ ¼0 (b) f x, y r cos T , v Let u ª 39S º 12« » ¬ 4 ¼ 2S 0 ª 2 2 º «8 4 cos T sin T » dT ¬ ¼ 12³ 2S 0 ª 39 7 º cos 2T » dT « 8 ¬8 ¼ 117S x2 y2 º 2» 2 a b »¼ x2 y2 2 d1 2 a b Let x au and y R: ³R ³ f x, y dA r cos T , v Let u Aab ³ 2S 0 bv. 1 ³ 1 ³ 1 u2 1 u2 º u 2 v 2 » ab dv du ¼ r sin T . ªS º ³ 0 cos «¬ 2 r ¼» r dr dT 1 ªS A cos « ¬2 1 4 ª 2r §Sr · § S r ·º Aab « sin ¨ ¸ 2 cos¨ ¸» 2S © 2 ¹ S © 2 ¹¼ 0 ¬S ª§ 2 4 ·º · § 2S Aab «¨ 0 ¸ ¨ 0 2 ¸» S S ¹ © ¹¼ ¬© 4 S 2 Aab S © 2010 Brooks/Cole, Cengage Learning Section 14.8 w x, y 33. Jacobian Change of Variables: Jacobians 357 wx wy wy wx wu wv wu wv w u, v 34. See Theorem 14.5. 35. x u1 v,y w x, y , z w u , v, w 36. x uv 1 w , z uvw 1 v u 0 v1 w u 1 w uv vw uw uv 4u v, y 4v w, z 4 1 w x, y , z w u , v, w 1 v ª¬u 2v 1 w u 2vwº¼ u ª¬uv 2 1 w uv 2 wº¼ u w 1 u v,y 2 37. x 0 0 4 1 1 0 17 w x, y , z w u , v, w 1 1 v u 2v u uv 2 1 u v,z 2 12 12 0 12 1 2 0 2vw 2uw 2uv 2uv>1 4 1 4@ u v w, y 38. x 1 w x, y , z w u , v, w 2uvw uv u v w 2uv, z 1 1 2v 2u 0 1 1 1 1 2u 1 2v 1 2v 2u U sin I cos T , y 39. x w x, y , z w U, T , I U sin I sin T , z u 2v 4v U cos I sin I cos T U sin I sin T U cos I cos T sin I sin T U sin I cos T U cos I sin T cos I 0 U sin I cos I ª¬ U sin I cos I sin T U 2 sin I cos I cos2 T º¼ U sin I ª¬U sin 2 I cos 2 T U sin 2 I sin 2 T º¼ cos I ª¬ U 2 sin I cos I sin 2 T cos 2 T º¼ U sin I ª¬U sin 2 I cos 2 T sin 2 T º¼ 2 2 U 2 sin I cos 2 I U 2 sin 3 I 40. x r cos T , y w x, y , z w r, T , z r sin T , z r sin T sin T r cos T 0 0 0 1 y U 2 sin I z cos T x ,v 3 41. Let u U 2 sin I cos 2 I sin 2 I 1¬ªr cos 2 T r sin 2 T ¼º w x, y 3 0 w u ,v 0 1 x v 2 3, y r 3u . 2 v y 3 y= 2 x 2 v y 1 3 v = 32 u 1 2 v = 3mu B′ y = mx A′ A −3 −1 1 −2 −3 x 3 x2 + y2 = 1 9 B u −1 1 −1 x −3 −1 1 −2 u2 + v2 = 1 −3 u −1 1 3 x2 + y2 = 1 9 −1 u2 + v2 = 1 Region A is transformed to region Ac, and region B is transformed to region Bc. 2 2 3m m 3 9 Note: You could also calculate the integrals directly. Ac Bc © 2010 Brooks/Cole, Cengage Learning 358 Chapter 14 Multiple Integration Review Exercises for Chapter 14 1. x2 ³1 x2 ª¬ xy 1 ln y º¼1 x ln y dy x3 1 ln x 2 x 2y 2y 2. ³y 3. ³0 ³0 ª x3 2º « xy » 3 ¬ ¼y x 2 y 2 dx 1 x 1 10 y 3 3 1 ³ 0 ª¬3xy 3 x 2 y dy dx 1 ³0 x x3 x3 ln x 2 1 x y 2 º¼ 0 y dx ª 43 x3 ¬ 4 x 2 5 x 1 dx 5 x2 2 3 1 xº¼ 0 y=x+1 29 6 2 1 x 1 4. 2 2x ³ 0 ³ x2 2 ³ 0 ª¬x x 2 2 y dy dx 2 ³0 2 1 x4 2 (2, 4) 4 4x 2x 2x ª 4 x3 ¬3 3 y 2x y y 2 º¼ 2 dx x 2 2 y = 2x 3 4 2 x5 º 5 ¼0 dx 2 3 2 88 15 y = x2 1 x 1 5. 9 x2 3 ³0 ³0 3 ³ 0 4x 4 x dy dx 2 3 4 y 9 x 2 dx 4 32 3 ª 4 9 x 2 «¬ 3 º »¼ 0 y= 9 − x2 2 3 3 36 2 1 x 1 6. 2 3 ³ 0 ³ 2 4 y2 4 y2 2³ dx dy 3 ª «y ¬ y 4 y 2 dy 0 4 y= (2, 2) 3 2 yº 4 y 2 4 arcsin » 2 ¼0 3 1 x 1 4S 3 3 2 3 (x − 2) 2 + y 2 = 4 7. 3 (3 x ) 3 ³0 ³0 1 8. 2 3 x 6 2x 2 (6 y ) 2 ³0 ³ y 3 ³ 5 ³ A 25 x 2 25 x 2 2³ 3 dx dy dy dx 5 ³ 0 25 x2 dx dy 1 ³0 dx dy ³ 0 ³ 0 dy dx ³ 2 ³ 0 A 9. 33y ³0 ³0 A 33y 1 ³0 ³0 dy dx 3 3 y dy 1 2 (6 2 0 ³ 4 ³ 5 ³ dy dx (6 y ) 2 2 ³0 ³ y dy dx 3 y ) dy 25 y 2 25 y 2 2³ dx dy 3 5 ª3 y ¬ 1 3 2º y 2 ¼0 3 2 dx dy ª1 6 y ¬2 4 3 2 y 2 3 ³4 ³ 25 y 2 2 º ¼0 3 dx dy 5 ³4 ³ 25 y 2 25 y 2 dx dy 3 25 x 2 dx xº ª 2 « x 25 x 25 arcsin 5 » ¬ ¼ 5 25S 3 12 25 arcsin | 67.36 2 5 © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 14 10. 4 6 x x2 1 0 ³ 0 ³ x2 2 x dy dx 1 y ³ 1 ³ 1 1 y 6 x x2 4 4 ³ 0 ³ x2 2 x dy dx A 1 11. A 4³ 0 A 4³ 0 x 1 x2 ³0 12 (1 ³ y2 1 2 ³0 ³0 13. A ³ 2 ³ x3 14. A ³0 ³ y x 1 5 1 8 1 y ³ 0 ³ 3 9 y 0 1 4 y2 ) 2 9 y 9 y dx dy 64 3 1 3 2º 4 3 » ¼0 dx dy 1 2 5 ³ 0 ³ 0 dy dx ³ 1 ³ dy dx 2 ³ 2 1 x 1 ³0 1 0 ³ 3 ³ x dx dy 4 2 3º x 3 ¼0 ª 4 2 « 3 1 x ¬ 1 3 9 ³ 8 ³ 3 dx dy ª4 x 2 ¬ 8 x 2 x 2 dx 4 ³ x 1 x 2 dx dy dx dx dy 2 y y2 3 ³0 (1 1 4 y 2 ) 2 12. A dy dx x 1 14 3 dy dx y 3 2 ³ 1 ³ y2 1 dx dy dy dx 1 x 2 dy dx 1 1 ³ 0 ³ 1 1 x 1 x 9 2 9 2 dy dx 15. Both integrations are over the common region R shown in the figure. Analytically, 1 2 ³0 ³2y 2 y2 x y dx dy 4 3 4 3 y 2 y = 12 x 2 (2, 1) 2 x 2 ³0 ³0 2 2 ³2 ³0 x y dy dx 359 8 x2 2 x y dy dx 5 3 4 3 2 1 3 4 3 y = 12 1 4 3 2 8 − x2 R x 1 3 2 −1 16. Both integrations are over the common region R shown in the figure. Analytically, 2 5 y ³ 0 ³3y 2 e 3 2x 3 ³0 ³0 x y 85 e5 2 5 dx dy y 5 4 e x y dy dx 5 5 x ³3 ³0 e x y dy dx 3 5 e 5 e3 2 5 e5 e 3 8 5 e 5 2 5 3 (3, 2) 2 1 x 1 17. V 4 x2 4 ³0 ³0 4 ³ 0 ª¬x 4 ³0 2 x 2 y 4 dy dx 1 x4 2 dx 4 x 2 8 dx ª 1 x5 ¬10 4 x3 3 4 8 xº¼ 0 3296 15 3 4 5 16 Average Value x2 4 y 12 y 2 4 yº¼ 0 19. Area R 2 1 2 2 16 x 2 y 2 dy dx 16 ³ 2 ³ 2 2 1 2 ª y3 º 2 «16 y x y » dx ³ 2 16 3 ¼ 2 ¬ 1 2 ª 16 º 64 4 x 2 » dx 16 ³ 2 «¬ 3¼ 2 18. V 3 x ³0 ³0 x y dy dx 3 ³ 0 ª¬xy 3 3 2 x 2 0 ³ 3 ª 1 x3 º ¬ 2 ¼0 x 1 y2º 2 ¼0 dx 1ª 4 x3 16 º x» «64 x 16 ¬ 3 3 ¼ 2 1ª 64 64 º 256 16 «¬ 3 3 »¼ 40 3 dx 27 2 © 2010 Brooks/Cole, Cengage Learning 360 Chapter 14 20. Area R Multiple Integration 9 21. Area R 3 1 3ª 2 y3 º «2 x y » dx ³ 0 9 ¬ 3 ¼0 1 3 3 2 x 2 y 2 dy dx 9³0 ³0 Average Value 35 f f ³0 ³0 60 50 1 ª192 x 150 45 40 ¬ ³ ³ 5 3 ³0 f ³0 f 1 >600 270 125@ 15 25. Volume | base height ª kxe x y y 1 º dx ¬ ¼0 kxe x | 9 2 dx f ª¬ k x 1 e x º¼ 0 6 27 2 3 4 Matches (c) k 2 y 4 (3, 3) 2 (3, 0) 1 ³ 0 ³ 0 xye x y 2 13 qC 3 z 1. 1 P 1ª 125 x º 200 x 10 x3 15 «¬ 3 »¼ 0 576 y x 2 5 y 2 2 xy 5000¼º dx dy | 13,246.67 f kxye x y dy dx So, k 9 1 3ª y3 º 40 y 6 x 2 y « » dx ³ 15 0 ¬ 3 ¼0 1 3 5 40 6 x 2 y 2 dy dx 15 ³ 0 ³ 0 1 3ª 125 º dx 200 30 x 2 15 ³ 0 «¬ 3 »¼ 23. 3 1 ª¬2 x3 9 xº¼ 0 9 15 Average temperature 22. Average 1 3 6 x 2 9 dx 9³0 4 x dy dx | 0.070 26. Matches (c) z 24. 1 1 ª kxy x ³ 0 ³ 0 kxy dy dx ³0 0.25 0.5 0.25 0.25 h x ³0 ³0 1 k 8 y 2 8. x 27. True 8 xy dy dx 0.5 28. False, x dx 29. True 0.25 30. True, ª x2 º « » ¬ 2 ¼0 31. ª kx º « » ¬ 8 ¼0 kx dx 2 ª¬4 xy 2 º¼ dx 0 ³0 ³0 2 4 1 3 1, you have k ³0 ³0 P 3 2 k 8 Because º » dx 2 ¼0 ³ 0 «¬ 1 2 x 1 0.125 x 2 y 2 dy dx 4 ³0 ³0 16 y 2 33. A 2³ 34. A 4³ S S 4 h sec T ³0 ³0 S 2 0 S 2 2 cos T r dr dT 2 sin 2T ³0 r dr dT 4 ³0 ³0 x 2 y 2 dx dy 0 ³0 1 ³0 ³0 1 S ³0 r 3 dr dT 0 S 2 ªr 4 º ³0 S 2 S 2 2 2 ³1 ³1 z 1 dx dy x2 y2 S h3 ªsec T tan T ln sec T tan T ¼º 0 ¬ 6 4 « » dT ¬ 4 ¼0 ª ³ 0 «¬4 4 cos T 2 cos T dT 2³ 1 x dy dx 1 1 1 ³0 ³0 1 x2 dx dy S 4 r 2 dr dT h3 S 4 3 sec T dT 3 ³0 32. 1 ³ 0 ³ 0 x dy dx 2 2 sin 2T dT 8³ S 21 0 S 2 ³0 64 dT 1 cos 2T º » dT 2 ¼ cos 4T dT 2 4 h3 ª 2 ln 6¬ 2 1º ¼ 32S S 1 sin 2T º ª «4T 4 sin T 2 T 4 » ¬ ¼0 9S 2 S 2 sin 4T º ª 4 «T 4 »¼ 0 ¬ 2S © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 14 4³ ³1 0 ³0 36. V 8³ 0 37. (a) x2 y 2 S 2 R ³b 2 r2 r 1 z 2 S 2 h 35. V 2³ r dr dT dz 0 ³0 83 ³ R 2 r 2 r dr dT 2 S 2 h S 2 0 ª R2 r 2 «¬ 0 32 R º dT »¼ b 8 3 9 x2 y2 R 2 b2 39. (a) 9 r 2 cos 2 T r 2 sin 2 T 9 cos T sin T 2 2 2 9 cos 2T 4 −6 6 4³ 4³ S 4 0 S 4 0 3 cos 2 T ³0 3 cos 2 T ³0 9 ³0 0 Mx k³ 0 My k³ 0 9 r r dr dT | 20.392 2 4 ³0 r cos T r sin T r dr dT m Mx My The polar region is given by 0 d r d 4 and 0 d T d 0.9828. So, arctan 3 2 k³ x 288 . 13 y y (8/ 13, 12/ 13) 4 3 S h3 1 3 4S 3 R 2 b2 k 4 16k 55 8k 45 2x ³ 2 x3 xy dy dx 2x ³ 2 x3 xy 2x ³ 2 x3 x 2 2 32 dy dx y dy dx y 32 45 64 55 y = 2x 2 1 § 32 64 · ¨ , ¸ © 45 55 ¹ y = 2x 3 x 1 2 17 k 30 1 2x 392k k ³ ³ 3 y x 2 y 2 dy dx 0 2x 585 1 2x 156k 2 2 k ³ ³ 3 x x y dy dx 0 2x 385 My 936 m 1309 784 Mx m 663 k³ x, y x 2 + y 2 =16 1 dT My m Mx m x, y 3 T | 0.9828 2 1 m y (b) 12 13 8 13 38. tan T r dr dT S 2 ³0 x −4 (c) V 32 3 cos 2T r (b) A h ª § 1 3 ·º «S ¨ 3 z ¸» ¹¼ 0 ¬ © h S ³ z 2 dz 1 z 2 1 dT dz 361 y = 23 x 1 0 2x ³ 2 x3 x 2 y 2 dy dx § 936 784 · , ¨ ¸ © 1309 663 ¹ 2 1 θ x 1 40. 8/ 13 m k³ Mx k³ 4 L h 2 ª2 x L x 2 L2 º «¬ »¼ L h 2 ª2 x L x 2 L2 º »¼ ¬« 0 ³0 0 ³0 kh L § x x2 · 2 2 ¸ dx ¨ ³ L L ¹ 2 0© dy dx 2 y dy dx kh 2 L § x x2 · 2 ¸ dx ¨2 ³ 0 8 L L ¹ © 4 x 3x 2 2 x3 kh 2 L ª x4 º 4 2 3 4 » dx « ³ 8 0 ¬ L L L L ¼ My k³ L 0 ³0 h 2 ª2 x L x 2 L2 º »¼ ¬« y My m Mx m 5khL2 12 24 7 khL 17 kh 2 L 12 80 7 khL L 2 x2 kh 2 ª x3 x4 x5 º 2 3 4» «4 x 8 ¬ 2L 5L ¼ 0 L L kh 2 17 L 10 8 x dy dx kh L § x2 x3 · 2 ¸ dx ¨ 2x ³ 0 L L ¹ 2 © x 7 khL 12 y L kh ª 2 x3 x4 º 2» «x 2¬ 3L 4 L ¼ 0 5L 14 51h 140 17 kh 2 L 80 kh 5 L2 2 12 5khL2 24 h ( 2 x y = h 2 − L − x2 2 L ( x L © 2010 Brooks/Cole, Cengage Learning 362 Chapter 14 ³R ³ y 41. I x 2 Multiple Integration ³R ³ x U 2 Iy I0 Ix I y m ³R ³ U x y a b a b ³ 0 ³ 0 kxy U x, y dA ³ 0 ³ 0 kx x, y dA Iy I0 m x, y dA Iy 1 4 kba 4 m 1 2 kba 2 Ix m 1 6 kb3a 2 Ix m 16,384k 315 128k 15 b 3 3 4 7 2 2 1 fx ³R ³ 1 4 x 2 4 y 2 dA S 2 0 5 ³0 fy dA 1 4r 2 r dr dT 32 5 2 ª 1 4r 2 «¬ º dT »¼ 0 2 ª 101 3 2 1º dT ¬ ¼ Sª 101 101 1º¼ 6¬ 2 7 7 128 21 8 42 21 16 x y 2 44. f x, y ^ x, y : 0 1, f y 2 1 fx 2 2 d x d 2, 0 d y d x` 2 y fy 2 2 4 y2 2 ³ 0 ¬ª2 ³0 ³ y 2 4 y 2 dx dy ª1 «2 2 y ¬ 2 4 y 2 2 ln 2 y 2 4 y2 y 2 4 y2 18 6 2 ln 4 3 2 9 2 ln 2 2 2 4 y 2 º dy ¼ 1 2 4 y2 12 1 º ª 18 18 » «ln 12 ¼ ¬« ª1 « 2 4 18 2 ln 4 ¬ 2 6 2 3 2º 2 » ¼0 2 2º » 12 ¼» 5 2 ln 2 2 3 3 9 y2 45. f x, y S b2 3 2 y ³R ³ 1 S 3³ 0 1 S 3³ 0 16,384 2 3 ³ R ³ y U x, y dA ³ 0 ³ 0 ky dy dx 315 k 2 4 x2 512 2 2 ³ R ³ x U x, y dA ³ 0 ³ 0 kx y dy dx 105 k 16,384k 512k 17,920 512 Ix I y k k 315 105 315 9 2 4 x2 128 ³ R ³ U x, y dA ³ 0 ³ 0 ky dy dx 15 k y fx a 2 2 2 x, f y 4³ 4 x2 512k 105 128k 15 S S 2 a2 2 1 2 kba 2 Iy m fx fx 1 kba 4 4 dy dx 25 x 2 y 2 43. f x, y ka b 2 2b 3a 2 12 a b 1 2 ³ 0 ³ 0 kx dy dx 2 kba x R 1 3 2 kb a 6 dy dx 1 3 2 1 kb a kba 4 6 4 2 42. I x 3 2 0, f y ³R ³ 3 2 y 1 fx y ³0 ³y 2 fy 1 4 y 2 dx dy 2 dA 3 ³0 y ª 1 4 y 2 xº dy ¬ ¼ y 3 ³0 2 y 1 4 y 2 dy 12 43 1 4 y2 32 3 º »¼ 0 1ª 6¬ 37 32 1º ¼ © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 14 4 x2 , f x 46. f x, y 2 x , f y 363 y 0 4 ³R ³ S 0 2 ³ 2 ³ x 1 4 x dA 2 2 2 ³0 ³ x 1 4 x dy dx 2 1 4 x dy dx 2 3 (−2, 2) (2, 2) These integrals are equal by symmetry. 1 2³ S 2 0 2 ³x ³0 1 4 x dy dx 2 ª 12 ln ¬« 50 502 x 2 1 12 32 2 º ¼» 0 1 4x2 xy x y· § ¨ 20 ¸ dy dx 100 5 ¹ © 50 ³0 x −2 2 ª 12 ln ¬ 2 fy 1 50 100 ³ 0 ³ 0 S 1 ª x x 2 2 502 x 2 «20 50 x 200 5 ¬ 2 17 12 17 1º 12 ¼ 502 x 2 | 7.0717 502 x 2 º » dy 10 ¼ 50 32 250 x x3 º 3 » | 30,415.74 ft 30 ¼ 0 xy 100 20 1 fx −1 17 4 2 17 ª § x · 25 2 x4 1 2 2 x 502 x 2 «10¨ x 50 x 50 arcsin ¸ 50 4 800 15 © ¹ ¬ (b) z y=x y = −x ª2 1 4 x 2 x 1 4 x 2 º dx ¬ ¼ 1 4 x2 2 x x 1 4 x2 ³0 ³0 47. (a) V 2 2 2 1 502 x2 48. (a) Graph of f x, y 1 S 100 ³ 0 1002 x 2 y 2 dy dx ª x2 y2 25«1 e ¬ z over region R 1002 x 2 y 2 100 y2 x2 2 100 1002 1000 2 50 ³0 1002 r 2 r dr dT | 2081.53 ft 2 § x 2 y 2 ·º cos 2 ¨ ¸» © 1000 ¹¼ z 50 R 50 x (b) Surface area 50 ³R ³ y 1 f x x, y 2 f y x, y 2 dA Using a symbolic computer program, you obtain surface area | 4540 sq. ft. 49. 3 ³ 3 ³ 9 x2 9 ³ x2 y2 9 x2 2S 3 2S 3 ³0 ³0 2 4 x2 50. ³2 ³ 51. ³0 ³0 ³0 a b 4 x2 c ³0 x2 y2 2 a a 52. 5 ³0 ³0 25 x 2 ³0 25 x 2 y 2 b 1 c3 3 1 bc 3 3 2S ³0 2 r2 2 r 3 dz dr dT 3 ª 3 r5 º «3r » dT 5 ¼0 ¬ 1 2S 2³0 2 ³0 r 5 162 2S dT 5 ³0 324S 5 16 2S dT 3 ³0 dr dT 32S 3 cy 2 cz 2 dy dz 13 b3c bcz 2 dz 1 dz dy dx 1 x y2 z2 2 dz dr dT 9r 2 r 4 dr dT 2S ³0 ³0 ³0 2 ³0 ³0 ³0 x 2 y 2 dz dy dx x 2 y 2 z 2 dx dy dz 9 ³ 0 ³ 0 ³ r2 r x 2 y 2 dz dy dx S 2 S 2 S 2 S 2 1 abc3 3 5 13 ab3c 13 a 3bc 1 abc 3 a 2 b2 c2 U2 ³ 0 ³ 0 ³ 0 1 U 2 sin I d U dI dT ³ 0 ³ 0 >U S 2 ³0 arctan U @0 sin I dI dT 5 S 2 ª¬ 5 arctan 5 cos I º¼ 0 dT S 2 5 arctan 5 © 2010 Brooks/Cole, Cengage Learning 364 Chapter 14 1 53. ³ 1 ³ 54. ³0 ³0 2 1 x2 56. V ³0 S 2 4³ 55. V 1 x2 y2 ³ 1 x2 4 x2 Multiple Integration 1 x2 y2 4 x2 y2 2 cos T ³0 0 S 2 ª4 ³ 0 2³ 0 2³ 0 «3 ¬ S 2 S 2 2 cos T » ¼0 16 r 2 2 sin T ³0 ³0 4³ r dz dr dT 3 2º 4 r2 dT 1 1 r 2 1 r 2 r 3 dz dr dT S 2 0 32 S 3 ³0 r dz dr dT 2³ 32 sin 2 T 4 sin 4 T dT 2 S 2 0 8³ 2 cos T ³0 r 4 r 2 dr dT S 2 1 sin 3 T dT 2 sin T ³0 S 2 0 r 16 r 2 dr dT 8 sin 2 T sin 4 T dT S 2 m 4k ³ S 2 S 4 S 2 cos I ³0 ³0 M xy 4k ³ k³ z x S 4 S 2 cos I ³0 ³0 S 2 S 4 ³0 m 4 kS 24 cos5 I sin I dT dI S 2 1 cos5 I sin I dI kS 2 ³S 4 S 2 ª 1 6 º « 12 kS cos I » ¬ ¼S 4 kS 96 1 4 1· § ¨ 0, 0, ¸ 4¹ © S 2 2k ³ 0 M xz 2k ³ 0 M xy 2k ³ 0 S 2 S 2 a cr sin T ³0 ³0 a cr sin T a cr sin T ³0 ³0 ³0 ³0 S 2 2 2 kca 3 ³ sin T dT kca 3 0 3 3 S 2 a S 2 1 1 2kc ³ ³ r 3 sin 2 T dr dT S kca 4 r 2 sin T dz dr dT kca 4 ³ sin 2 T dT 0 0 0 2 8 S 2 a 1 2 4 S2 2 1 S kc 2 a 4 kc a ³ sin T dT rz dz dr dT kc 2 ³ ³ r 3 sin 2 T dr dT 0 0 0 4 16 r dz dr dT x 0 y M xz m S kca 4 8 M xy S kc 2 a 4 16 x, y, z S 2 ª 2 §1 4 ·º « 3 kS ¨ 4 cos I ¸» © ¹¼S ¬ 0 by symmetry y m z S 2 2 cos3 I sin I dI kS 3 ³S 4 U 3 cos I sin I d U dT dI kS 96 kS 24 M xy x, y, z 58. S 2 29S 2 U 2 sin I d U dT dI 4 S2 S2 cos3 I sin I dT dI k 3 ³S 4 ³ 0 S 2 32 § S 2· ¨ ¸ 3©2 3¹ 32 ª 1 º T cos T cos3 T » 3 «¬ 3 ¼0 ª 1 3§ 1 1 ·º 8«4T 2 sin 2T sin 3 T cos T ¨ T sin 2T ¸» 4 4 2 4 © ¹¼ 0 ¬ 57. 8S 15 4 3 xyz dz dy dx 4 r2 ³0 2S ³0 ³0 ³ x 2 y 2 dz dy dx m 2kca 3 3 3 2kca 3 2kc ³ S 2 0 a ³0 r 2 sin T dr dT 3S a 16 3S ca 32 § 3S a 3S ca · , ¨ 0, ¸ © 16 32 ¹ © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 14 S 2 m k³ 0 M xy k³ 0 59. x S 2 y a S 2 a ³0 ³0 2 kS a 4 16 U cos I U 2 sin I d U dT dI kS a 4 § 6 · ¨ ¸ 16 © kS a 3 ¹ 3a 8 § 3a 3a 3a · ¨ , , ¸ ©8 8 8¹ 500S 3 m 25 r 2 2S 3 ³0 ³0 ³ x 2S 3 4 ³0 ³0 ³ 3 ª1 2S ³0 ³0 32 3 2S 81S 1 4 162S 5 ³0 ³3 ³ 2S ³0 3 3 2S ³0 ³0 25 r 2 4r dT dr r 500S 125 º ª 64 2S « 18 3 3 ¼» ¬ 3 º 2r 2 » ¼0 zr dz dr dT 9 º « 2 r 2 r » dr dT ¬ ¼ M xy m z 25 r 2 500S 3 r dz dT dr 500S ª 1 2S « 25 r 2 3 ¬ 3 y 0 by symmetry M xy kS a 3 6 sin I d U dT dI M xy m z x, y, z 60. S 2 ³0 ³0 U 365 25 r 2 25 r 2 3 3ª 2S 2S ª 81 º « 8 T » ¬ ¼0 162S 1 º 25 r 2 » r dr dT 0 2 ¼ ³ 0 ³ 0 «¬8 zr dz dr dT ª1 4 9 2 º « 8 r 4 r » dT ¬ ¼0 500S 14S 3 3 81 S 4 1 8 1· § ¨ 0, 0, ¸ 8¹ © x, y, z S 2 61. I z 4k ³ 62. I z k³ 63. z f x, y S 0 16 r 2 4 ³3 ³0 0 2S a ³0 ³0 U 2 4k ³ r 3 dz dr dT S 2 0 4 ³3 4kS a 6 9 sin 2 I U U 2 sin I d U dT dI a2 x2 y 2 833S k 3 16r 3 r 5 dr dT z a2 r 2 a−h 0 d r d a 2ah h 2 h a a y x (a) Disc Method S³ V a y ª§ a ª S «a 2 y a 2 y 2 dy y3 º » 3 ¼a h S «¨ a3 « ¬© ª a a h3 º S «a 3 a3 a 2h a 2 h ah 2 » 3 3 3¼ ¬ Equivalently, use spherical coordinates. ah ¬ 3 2S cos 1 a h a ³0 ³0 V (b) M xy z 3 2S cos 1 a h a ³0 ³0 M xy V a ³ a h sec I U a ³ a h sec I 1 2 2 h S 2a h 4 1 2 h S 3a h 3 2 3 a h ·º a3 · § 2 ¸» ¸ ¨¨ a a h ¸ 3¹ 3 © ¹¼» ª h3 º 1 2 S «ah 2 » S h >3a h@ 3 3 ¬ ¼ 2a a2 − x2 y= a a−h x −a a sin I d U dI dT U cos I U 2 sin I d U dI dT 3 2a h 4 3a h 1 2 h S 2a h 4 2 2 2 § 3 2a h · ¸ Centroid: ¨ 0, 0, ¨ 4 3a h ¸¹ © © 2010 Brooks/Cole, Cengage Learning 366 Chapter 14 (c) If h Multiple Integration 3a a, z 2 3 a. 8 4 2a 3 · § Centroid of hemisphere: ¨ 0, 0, a ¸ 8 © ¹ (d) lim z lim ho0 ho0 cos 1 a h a 2S a, I z 64. x 2 y 2 z2 a2 65. ³ ³Q ³ 2S 4 3a h S a 12a a ³0 ³0 (f ) If h Iz 3 4a 2 U 2 sin 2 I (e) x 2 y 2 Iz 2 3 2a h ³ a h sec I a 3S 20a 2 15a 2 3a 2 30 4 5 a S. 15 1 a ³ a ³ x 2 y 2 dV 6 sin I h3 20a 2 15ah 3h 2 S 30 U 2 sin 2 I U 2 sin I d U dI dT 1 z 2 a 2 1 z 2 a 2 ³ 1 y 2 z 2 a 2 1 y 2 z 2 a 2 x 2 y 2 dx dy dz 8 Sa 15 ³0 ³0 ³0 U 2 sin I d U dI dT Because U 6 sin I represents (in the yz-plane) a circle of radius 3 centered at 0, 3, 0 , the integral represents the volume of the torus formed by revolving 0 T 2S this circle about the z-axis. 66. S 2 1 r 2 ³0 ³0 ³0 r dz dr dT 1 r 2 represents a paraboloid with vertex 0, 0, 1 , this integral represents the volume of the solid below the Because z 4 x 2 in the xy-plane. paraboloid and above the semi-circle y 67. w x, y w u, v wx wy wy wx wu wv wu wv 68. w x, y w u, v wx wy wy wx wu wv wu wv 2u 2v 2u 2v 69. w x, y w u, v wx wy wx wy wu wv wv wu 1§ 1 · 1§ 1 · ¨ ¸ ¨ ¸ 2© 2 ¹ 2© 2 ¹ x 1 u v,y 2 1 3 2 3 1 u v u 2 9 x y, v 8uv 1 2 y 3 x y Boundaries in uv-plane x y 3 u 3 x y 5 u 5 x y 1 v 1 x y 1 v 1 1 y dA 5 1 §1 ³ 3 ³ 1 ln¨© 2 u v y = −x + 5 2 Boundaries in xy -plane ³R ³ ln x y=x+1 y=x−1 y = −x + 3 x 2 1 1 ·§ 1 · u v ¸¨ ¸ dv du 2 ¹© 2 ¹ 5 ln 5 5 3 ln u 3 5 1 1 ³ 3 ³ 1 2 ln u dv du 5 3 ³ 3 ln u du >u ln u u@3 5 5 ln 5 3 ln 3 2 | 2.751 © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 14 70. w x, y wx wy wx wy wu wv wv wu w u, v v u u u, y x §1· 1¨ ¸ 0 ©u¹ x, v Boundary in xy -plane 1 u xy Boundary in uv-plane x 1 u 1 x 5 u 5 y 5 4 xy 1 v 1 xy 5 v 5 x ³R ³ 1 x 2 y 2 dA 367 5 5 ³1 ³1 2 §1· du dv 2¨ ¸ 1 u2 v u © u ¹ u 4 arctan v@1 5 y = 1x x=1 3 x=5 5 5 ³1 ³1 1 du dv 1 v2 5 ³1 4 dv 1 v2 1 x y = 1x 1 4 5 4 arctan 5 S Problem Solving for Chapter 14 z 16³ 1. V 16³ R ³ 1 x 2 dA S 4 0 1 ³0 1 r 2 cos 2 T r dr dT 16 >sec T cos T tan T @S0 3 4 16 S 4 1 ª 1 cos 2 T 3 ³ 0 cos 2 T ¬« 82 32 1º dT ¼» 1 2 | 4.6863 y 1 1 R y=x x 1 d ax by Plane c a b , fy c c 2. z fx 1 fx S 3. (a) 2 ³R ³ ³ a2 fy 1 1 a2 b2 2 2 c c a 2 b2 c2 ³R ³ dA c a2 b2 2 dA 2 c c a2 b2 c2 AR c 1 u arctan c. Let a 2 2 u2, u v. a a 1 1 v arctan dv C. 2 2 u 2 v2 2u 2 u2 du u2 Then (b) I1 ³ ³0 ³0 2 2ª « ¬ 2 2 2 2 u2 § ¨ arctan 2u © 2 2 sin T , du 4³ arctan 2 Let u I1 2 S 6 0 u º » du 2 2 u ¼ u v u 2u 2 arctan 2 cos T dT , 2 u 2 § 1 arctan ¨¨ 2 cos T © 2 sin T · ¸ 2 cos T ¹¸ · ¸ du 2u ¹ u 2 2 2 sin 2 T 2 cos T dT 4³ S 6 0 ³0 4 2 2 2u 2 u arctan 2 u2 du 2 cos 2 T . S 6 arctan tan T dT 4T 2 º » 2 ¼0 §S · 2¨ ¸ ©6¹ 2 S2 18 © 2010 Brooks/Cole, Cengage Learning 368 Chapter 14 2 ³ (c) I 2 2 Multiple Integration ª « 2 ¬ 2 u2 4³ § 1 arctan ¨¨ 2 cos T © S 2 S 6 4³ S 2 S 6 ³0 4 2 ³ § 1 sin T · arctan ¨ ¸ dT © cos T ¹ 2 u2 2 2 § arctan ¨¨ © 1 xy xy 1 ³ 0 1 xy dx dy S 2 S 6 1 2 u· ¸ du 2 u 2 ¸¹ " 1 ª1 xy xy ¬ f 1 ¦ ³0 K 0 x y y x ,v 2 2 2x u u v x 2 2y u u v y 2 § 1 sin T · arctan ¨ ¸ dT © cos T ¹ 2 § § 1§S ··· arctan ¨ tan ¨ ¨ T ¸ ¸ ¸ dT 2 2 © ¹ ¹¹ © © 2 ³0 ³0 S 2 S 6 1 sin T 1 sin T 1 sin T ª§ S 2 S 2 · § S 2 S 2 ·º 2 «¨ ¸¨ ¸» 8 ¹ © 12 72 ¹¼ ¬© 4 6 1 4³ 4³ 2 cos T dT 1 sin T 1 sin T 1 cos S 2 T S 2 1 1 xy 2 2 sin T · ¸¸ 2 cos T ¹ 1 cos S 2 T ªS T2º 2« T » 2 ¼S ¬2 1 du 2 2 sin T . § 1§S ·· (d) tan ¨ ¨ T ¸ ¸ ¹¹ © 2© 2 (f) 2 ª § u 2 · § u 2 ·º arctan ¨¨ arctan ¨¨ « ¸ ¸» du ¸ 2 2 ¸ 2 u 2 ¬« © 2u ¹ © 2 u ¹»¼ 2 2 Let u (e) I 2 u º » 2 2 u ¼u v arctan 2 2 ³ I2 2 4³ 1§S · ¨ T ¸ dT 2© 2 ¹ S 2 S 6 2 1 sin T cos 2 T ª18 9 6 1 2 º 2« S » 72 ¬ ¼ 2³ 1 sin T cos T S 2 §S S 6 · ¨ T ¸ dT ©2 ¹ S2 4 2 S 36 9 xy 1 "º dx dy ¼ 2 f yK dy K 1 1 y K 1 ¦ K 0 K 1 1 f 1 ³0 ³0 ¦ f K 0 0 K f K 0 f 1 K 1 1 ¦ ³0 dx dy K 0 ¦ 2 xy x K 1 y K K 1 1 dy 0 1 ¦ n2 2 n 1 (g) u v 2 v 2 w x, y 1 2 1 2 w u, v 1 2 1 2 R y v S 2 0, 0 l 1, 0 1 · § 1 l ¨ , ¸ 2¹ © 2 0, 1 1 · § 1 l ¨ , ¸ 2¹ © 2 1, 1 l 1 1 1 1 0, 0 ( 12 , 12 ) 1 ( S R 1 2, 0) u 2 3 4 −1 x −2 ( 12 , − 12 ) 2, 0 ³ 0 ³ 0 1 xy dx dy ³0 2 2 1 u ³ u 1 2 2 u v 2 2 dv du ³ 2 u 2 2 ³u 1 2 2 1 2 2 u v 2 2 dv du I1 I 2 S2 18 S2 S2 9 6 © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 14 4. A: 5§ 2S r ³ 0 ³ 4 ¨© 16 10 § 2S r r2 · ¨ ¸r dr dT © 16 160 ¹ ³0 ³9 B 9. From Exercise 69, Section 14.3, 1333S | 4.36 ft 3 960 r2 · ¸ r dr dT 160 ¹ f 523S | 1.71 ft 3 960 The distribution is not uniform. Less water in region of greater area. In one hour, the entire lawn receives 10 § 2S r r2 · ¨ ¸r dr dT © 16 160 ¹ ³0 ³0 5. Boundary in xy -plane ³ f e So, f ³0 f 2x u 2 ev v 3 ³0 v 4 Let u w x, y w u, v 2§ v · ¨ ¸ 3© u ¹ 2S 23 ³ S ³ 1 w u, v 2 2S 1§ u · ¨ ¸ 3© v ¹ S 4 8 r2 2 2 2x 6 x ³0 ³0 ³ x 7. V 1 ,x x e v , dx 0 v, u2 f x y °­ke ® °̄0 11. f x, y 8S 4 2 5 3 f f ³ f ³ f f 18 1 1 n n 1 5 2 f ke x y a dx dy f ³0 e y a dy b e x a dx lim ª¬ a e x a º¼ 0 bof (0, 6, 0) 6 1 n y 1 . k ka 2 or a lim nof b 2S xe b of ³ 0 lim b x2 2 lim ª«S e x º» ¼0 b of ¬ dx S. This same volume is given by S x n 1 n º ³ 0 «¬ n 1 y »¼ dy 0 a. 12. By the shell method, V 1 1ª y dx dy f ³0 ³0 x, y dA 6 f dy f ³ f ³ f e 4³ f 0 f ³0 f e x2 y2 dy dx y x2 y 2 2 dy dx f 2 y = e− x 2 4 ³ e x dx ³ e y dy 1 ³0 ³0 x elsewhere So, assuming a, k ! 0, you obtain z 0 ª y n 1 º « » 2 «¬ n 1 »¼ 0 lim S 2 x t 0, y t 0 a f f ³0 n 1y nof § S· 2¨¨ ¸¸ © 4 ¹ 2 0 ³0 dy dz dx 1 2 k ³ e x a dx (3, 3, 0) y dx dy dv. These two integrals are equal to 3 ³0 ³0 x ve v dv u e u 2u du sin I d U dI dT x 8. v, 2u du ³0 ln 1 x dx f ³0 v e v dv (See Problem Solving #9.) 1 3 (0, 0, 0) n n e v dv ³f ln 1 x dx 4 1 2 dx . x f (3, 3, 6) 1 S 4 0 8S 4 2 5 3 3 S 2 2 ³ u 2e u du dA S 2 e x dx f 1 3 r dz dr dT ³ 0 ³ 0 ³ 2 sec I U (b) V ³0 w x, y ³0 ³0 ³2 6. (a) V 1 13 13 ³ R ³ 1 dA A 1 f ³0 1 f x2 ª 1 x2 º « 2 xe » 2 ³ 0 e dx ¬ ¼0 §1· ln ¨ ¸, dv © x¹ 10. Let v y 2§ u · ¨ ¸ 3© v ¹ 2S and 2 dx 1 2 1 23 2 2 2 u 1§ v · ¨ ¸ 3© u ¹ e x x 2e x dx x y 2S . dx 125S | 32.72 ft 3. 12 Boundary in uv-plane 1 2 x 3 1 2 x 4 x2 2 ³0 y y 369 1 n 1 1 n 1 2 4 ª³ e «¬ 0 2 0 0 f So, f ³0 2 x2 e x dx 2 dxº . »¼ x b S 2 . © 2010 Brooks/Cole, Cengage Learning Chapter 14 370 Multiple Integration 13. Essay § 'x · ¨ ¸ 'y © cos T ¹ l w 14. A Δx cos θ sec T 'x 'y P Δy Δy θ Δx Area in xy-plane: 'x 'y 15. The greater the angle between the given plane and the xy-plane, the greater the surface area. So: z2 z1 z4 z3 16. Converting to polar coordinates, f 1 f ³0 ³0 1 x y 2 2 2 dx dy f S 2 ³0 ³0 f ³0 lim t of 1 1 r2 r 1 r t S 2 2 2 §S · ¨ ¸ dr ©2¹ ³0 4 1 r 2 2 t 1 º ªS lim « t of ¬ 4 1 r 2 ¼» 0 1 1 ³0 ³0 17. 1 1 ³0 ³0 x y x y 3 dx dy 3 dy dx 1 2 x y x y r dT dr 2r dr S 4 1 2 The results are not the same. Fubini's Theorem is not valid because f is not continuous on the region 0 d x d 1, 0 d y d 1. 18. The volume of this spherical block can be determined as follows. One side is length 'U . Another side is U 'I . Finally, the third side is given by the length of an arc of angle 'T in a circle of radius U sin I . Thus: 'V | 'U U 'I 'T U sin I U 2 sin I 'U 'I 'T z ρi sin φi Δ θi Δ ρi ρi Δφi y x © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 5 Vector Analysis Section 15.1 Vector Fields.......................................................................................372 Section 15.2 Line Integrals ......................................................................................383 Section 15.3 Conservative Vector Fields and Independence of Path ....................395 Section 15.4 Green’s Theorem ................................................................................402 Section 15.5 Parametric Surfaces............................................................................410 Section 15.6 Surface Integrals .................................................................................418 Section 15.7 Divergence Theorem ..........................................................................427 Section 15.8 Stokes’s Theorem ...............................................................................433 Review Exercises ........................................................................................................440 Problem Solving .........................................................................................................449 © 2010 Brooks/Cole, Cengage Learning C H A P T E R Vector Analysis 1 5 Section 15.1 Vector Fields 1. All vectors are parallel to x-axis. 11. F x, y, z Matches (d) F z 3 yj 4 3 y c 2. All vectors are parallel to y-axis. Matches (c) 2 x 3. Vectors are in rotational pattern. Matches (e) 12. F x, y 4. All vectors point outward. F xi x y 4 y 3 c 2 Matches (b) 1 5. Vectors are parallel to x-axis for y nS . x −3 −2 −1 1 2 3 Matches (a) 6. Vectors along x-axis have no x-component. Matches (f ) i j 7. F x, y F y y 16 x 2 y 2 x2 y2 2 c 16 c 2 F 4 xi yj 13. F x, y 2 c 1 2 x −2 −1 1 2 1 x −4 −2 −4 8. F x, y F 2i x2 y 2 i j 14. F x, y y F 1 x2 y 2 y 10 2 8 2 6 4 1 x −2 −1 1 x 2 −2 2 −2 i jk 15. F x, y, z yi xj 9. F x, y F 5 F z y 3 y 4 y x2 2 4 −4 x −5 5 4 x −4 −5 10. F x, y F 16. F x, y, z yi 2 xj F y y 2 4 x2 xi yj zk x2 y 2 z 2 x2 y2 z 2 2 z 2 c −2 −2 c2 2 x −2 2 2 x y −2 −2 372 © 2010 Brooks/Cole, Cengage Learning Section 15.1 f x, y x2 2 y2 f x x, y 2x 2 f y x, y 4y 1 F x, y 2 xi 4 yj 1 2 xyi y 2 j 8 17. F x, y 21. y Note that f x −2 −1 1 2 Vector Fields 373 F. −1 22. −2 2 y 3x i 2 y 3x j 18. F x, y y 6 f x, y x2 f x x, y 2x f y x, y 12 y F x, y 2 xi g x, y 5 x 2 3 xy y 2 1 y2 4 1 yj 2 4 2 23. x −6 −4 −2 2 4 6 −6 xi yj zk 19. F x, y , z x2 y 2 z 2 24. g x x, y 10 x 3 y g y x, y 3x 2 y G x, y 10 x 3 y i 3 x 2 y j g x, y sin 3 x cos 4 y z 2 g x x, y 3 cos 3x cos 4 y g y x, y 4 sin 3 x sin 4 y G x, y 3 cos 3x cos 4 yi 4 sin 3 x sin 4 yj 1 1 1 2 y 25. 2 x xi yj zk 20. F x, y, z z 2 f x, y , z 6 xyz f x x, y , z 6 yz f y x, y , z 6 xz f z x, y , z 6 xy F x, y , z 6 yzi 6 xzj 6 xyk 1 1 1 2 y 2 x 26. f x, y, z fx fy fz F x, y , z x2 4 y 2 z 2 x x 4 y2 z2 4y 2 x2 4 y 2 z 2 z x2 4 y 2 z 2 x x 4y z 2 2 2 i 4y x 4y z 2 2 2 j z x 4 y2 z2 2 k © 2010 Brooks/Cole, Cengage Learning 374 27. 28. 29. 30. Chapter 15 g x, y , z Vector Analysis z ye x 2 2 g x x, y , z 2 xye x g y x, y , z ex g z x, y , z 1 G x, y , z 2 xye x i e x j k g x, y , z y z xz z x y 2 2 2 z z x2 y g x x, y , z g y x, y , z xz 1 2 z y g z x, y , z G x, y , z § z §1 § y z· xz · x· 1 ¨ 2 ¸ i ¨ 2 ¸ j ¨ 2 ¸k y¹ y ¹ x y¹ © x ©z © z h x, y , z xy ln x y y x 1 2 z x y hx x, y, z y ln x y xy x y h y x, y , z x ln x y xy x y hz x, y, z 0 H x, y , z ª xy º ª xy º y ln x y » i « x ln x y » j « x y x y ¬ ¼ ¬ ¼ h x, y , z hx x, y, z h y x, y , z hz x, y, z H x, y , z arcsin yz xz 1 y2 z2 xy 1 y2 z2 arcsin yz i xz 1 y z 2 2 j xy 1 y2z2 xy 2i x 2 yj 31. F x, y M x arcsin yz xy 2 and N 2 xy x 2 y have continuous first partial M M x cos y have continuous first sin y and N partial derivatives. wM F conservative wy 1 yi xj x2 32. F x, y sin yi x cos yj 33. F x, y derivatives. wN wx k y x 2 and N y 1 i j 2 x x 1 x have continuous first partial wN wx cos y 1 yi xj xy 34. F x, y M wM F is conservative. wy 1 x and N 1 1 i j x y 1 y have continuous first partial derivatives for all x z 0. derivatives for all x, y z 0. wN wx wN wx 1 x2 wM F is conservative. wy 0 wM F is conservative. wy © 2010 Brooks/Cole, Cengage Learning Section 15.1 5 y 2 yi 3 xj 35. F x, y M 5 y3, N wN wx 15 y 2 36. M wM Conservative wy 2 x 2 x e y2 wN wx 2 y 2 x y3 1 37. M x x y 2 2 32 wN wx x2 y2 wM wy z xy 2 w > y@ wy f x x, y 40. F x, y x y 2 32 32 x 1 xy f y x, y 2 x3 y f x, y x y K x f x, y xy k 2y 2y 2y 2y K 15 y 3i 5 xy 2 j w ª5 xy 2 ¼º wx ¬ 45 y 2 z 5 y 2 1 yi 2 xj y2 1 2x i 2j y y 1 y2 2 y2 Not conservative 45. F x, y w ª2 y º wy «¬ x »¼ 2y x2 i 2j x y 2 x w ª x2 º « » wx ¬ y 2 ¼ 2x y2 Not conservative 46. F x, y 3 2 2 xyi x 2 j 2x x y i 2 j x2 y2 x y2 º wª x « 2 2» wy ¬ x y ¼ º wª y « » wx ¬ x 2 y 2 ¼ 2 xy x y2 2 2 2 xy x y2 2 2 2x Conservative Conservative f x x, y ex w ª 2x º « » wx ¬ y 2 ¼ 6x2 y 3x 2 y 2 w 2 ªx º wx ¬ ¼ f x, y w ª1º « » wy ¬ y ¼ 6x2 y f x x, y w >2 xy@ wy x 2e x wM Conservative wy Conservative 41. F x, y f y x, y 44. F x, y 3x 2 y 2i 2 x3 yj w ª2 x3 yº¼ wx ¬ 2 x3 ye x 2y Not conservative y , f y x, y w ª3 x 2 y 2 º¼ wy ¬ 2 xye x w ª15 y 3 ¼º wy ¬ y 2 w > x@ Conservative wx 1 f x x, y 43. F x, y yi xj 39. F x, y 2y 2 x3 ye x 1 y ,N 1 xy 2 xy 1 2 xe x 2y Conservative y Not conservative 38. M 375 2 yi xj 2 xe x w ª 2 x2 y º xe » ¼ wx «¬ wM Conservative wy y ,N x2 y2 wN wx e2 x 2y 2 wª 2 xye x y º» ¼ wy ¬« 15 xy 2 2 2x y e ,N y xe x 42. F x, y Vector Fields 2 xy, f y x, y 2 x , f x, y x y K 2 f x x, y x x2 y 2 f y x, y y x2 y 2 f x, y 1 ln x 2 y 2 K 2 © 2010 Brooks/Cole, Cengage Learning 376 Chapter 15 47. F x, y Vector Analysis e x cos yi sin yj w x ªe cos yº¼ wy ¬ e x sin y w ª e x sin y¼º wx ¬ Conservative e sin y e x cos y f y x, y e x sin y f x, y 48. F x, y 2x x2 y 2 º » 2» ¼ ª 2y w« « 2 wx x y 2 ¬ Conservative º » 2» ¼ f y x, y f x, y 51. F x, y, z curl F curl F w wz xyz xyz xyz 6 2i 3 2j 36k 4i j 3k i 2 2y x2 y 2 curl F 8 xy x2 y 2 3 i j k w wx w wy w wz x 2 z 2 xz yz z 2 x i 0 x 2 j 2 z 0 k 8 xy x2 y2 x 2 zi 2 xz j yzk , 2, 1, 3 50. F x, y, z j 2 3 z 2 x i x 2 j 2 zk curl F 2, 1, 3 7i 4 j 6k 2x x y2 2 2 2y x y2 2 2 1 K x2 y2 e x sin y i e x cos y j, 0, 0, 1 j k w w wx wy e x sin y e x cos y w wz 0 e x cos y e x cos y k 2e x cos y k 2k e xyz i j k , 3, 2, 0 i w wx j w wy k w wz e xyz e xyz e xyz xz xy e xyz i yz xy e xyz j yz xz e xyz k 6i 6 j curl F 3, 2, 0 53. F x, y, z k curl F 2, 1, 3 curl F 0, 0, 1 52. F x, y, z j w wy xz xy i yz xy j yz xz k i curl F i w wx e x cos y K ª 2x w« « 2 wy x y 2 ¬ f x x, y curl F x f x x, y xyz i xyz j xyz k , 2, 1, 3 49. F x, y, z § x· arctan ¨ ¸i ln © y¹ x2 y2 j k i w wx j w wy k w wz § x· arctan ¨ ¸ © y¹ 1 ln x 2 y 2 2 1 ª x y2 x « 2 2 «¬ x y 1 x y 2 º »k »¼ 2x k x2 y2 © 2010 Brooks/Cole, Cengage Learning Section 15.1 i j k w wx w wy w wz yz y z xz x z xy x y ª 1 x2 « «¬ x y 2 ª x2 « «¬ x y 2 º ª y2 »i « «¬ x y x z »¼ x2 º ª 1 »i y 2 « «¬ x y x z »¼ 2 1 2 2 2 º ª z2 »j « «¬ x z y z »¼ y2 2 º ª 1 » j z2 « «¬ y z y z »¼ 1 2 2 2 º »k y z »¼ z2 2 º »k x z »¼ 1 2 sin x y i sin y z j sin z x k 55. F x, y, z i j k w wx w wy w wz sin x y sin y z sin z x curl F cos y z i cos z x j cos x y k x2 y 2 z 2 i j k 56. F x, y, z curl F i j k w wx w wy w wz x2 y 2 z 2 x2 y 2 z 2 xy 2 z 2i x 2 yz 2 j x 2 y 2 zk 57. F x, y, z curl F 377 yz xz xy i j k y z x z x y 54. F x, y, z curl F Vector Fields y zi z x j x yk x2 y 2 z 2 x2 y2 z 2 y 2 z 3i 2 xyz 3 j 3 xy 2 z 2k 58. F x, y, z i j k i j k w wx w wy w wz w wx w wy w wz xy 2 z 2 x 2 yz 2 x2 y 2 z 0 curl F y 2 z3 0 2 xyz 3 3 xy 2 z 2 Conservative Conservative 2 2 f x x, y , z xy z f y x, y , z x 2 yz 2 f z x, y , z x2 y 2 z f x, y , z 1 2 2 2 x y z K 2 xy 2 z 3 K f x, y , z sin zi sin xj sin yk 59. F x, y, z curl F i j k w wx w wy w wz sin z sin x sin y cos yi cos zj cos xk z 0 Not conservative ye z i ze x j xe y k 60. F x, y, z curl F i j k w wx w wy w wz ye z ze x xe y xe y e x i e y ye z j ze x e z k z 0 Not conservative © 2010 Brooks/Cole, Cengage Learning 378 Chapter 15 z xz x i 2j k y y y 61. F x, y, z curl F Vector Analysis i j k w wx w wy w wz z y xz y2 § x §1 § z 1· x · z · ¨ 2 2 ¸i ¨ ¸ j ¨ 2 2 ¸ k y y y y y y © ¹ © ¹ © ¹ 0 x y Conservative f x x, y , z z y f y x, y , z f z x, y , z x y f x, y , z xz K y xz y2 x y i 2 j k x y2 x y2 62. F x, y, z 63. F x, y x 2i 2 y 2 j 2 i j k w wx w wy w wz x x y2 y x y2 1 curl F 2 2 w 2 w x 2 y2 wx wy div F x, y 0 64. F x, y xe x i ye y i div F x, y f y x, y , z x x2 y 2 y x2 y 2 f z x, y , z 1 f x, y , z ³ x2 f x, y , z f x, y , z f x, y , z 66. F x, y, z div F x, y, z w w xe x ye y wx wy xe x e x ye y e y Conservative f x x, y , z 2x 4 y 65. F x, y, z div F x, y, z sin xi cos yj z 2k w w w >sin x@ >cos y@ ª¬ z 2 º¼ wx wy wz cos x sin y 2 z x dx y2 1 ln x 2 y 2 g y, z K1 2 y ³ x 2 y 2 dy 1 ln x 2 y 2 h x, z K 2 2 ³ dz z p x, y K3 1 ln x 2 y 2 z K 2 ln x 2 y 2 i xyj ln y 2 z 2 k wª w wª ln x 2 y 2 ¼º > xy@ ln y 2 z 2 ¼º wx ¬ wy wz ¬ 2x 2z x 2 x2 y2 y z2 © 2010 Brooks/Cole, Cengage Learning Section 15.1 xyzi xyj zk 67. F x, y, z 1 21 div F 2, 1, 1 73. See the definition on page 1064. 4 74. See the definition on page 1066. 75. x 2 zi 2 xzj yzk 68. F x, y, z div F x, y, z 2 xz y div F 2, 1, 3 11 F x, y , z i 3 xj 2 yk G x, y , z xi yj zk FuG e x sin yi e x cos yj z 2k e sin y e sin y 2 z div F 3, 0, 0 0 x x ln xyz i j k 1 1 1 3 2 div F 3, 2, 1 j k 1 3x 2y z 3xz 2 y 2 i z 2 xy j y 3 x 2 k curl F u G 1 1 1 x y z div F x, y, z i x y div F x, y , z 70. F x, y, z 379 yz x 1 div F x, y, z 69. F x, y, z Vector Fields i j k w wx w wy w wz 3xz 2 y 2 z 2 xy y 3 x 2 1 1 i 6 x 3 x j 2 y 4 y k 11 6 9 xj 2 yk 71. See the definition, page 1058. Examples include velocity fields, gravitational fields, and magnetic fields. 72. See the definition of Conservative Vector Field on page 1061. To test for a conservative vector field, see Theorem 15.1 and 15.2. xi zk 76. F x, y, z x 2i yj z 2k G x, y , z i j x 0 z x2 y FuG curl F u G yzi xz 2 x 2 z j xyk z2 i j k w wx w wy w wz yz xz 2 x 2 z xy x 2 xz x 2 i y y j z 2 2 xz z k x x 2z 1 i z z 2x 1 k xyzi yj zk 77. F x, y, z curl F k i j k w wx w wy w wz xyz y z i j k w wx w wy w wz 0 xy xz curl curl F xyj xzk zj yk © 2010 Brooks/Cole, Cengage Learning 380 Chapter 15 Vector Analysis x 2 zi 2 xzj yzk 78. F x, y, z curl F i j k w wx w wy w wz x z 2 xz 2 curl curl F z 2 x i x 2 j 2 zk i j k w wx w wy w wz x 2 i 3xj 2 yk G x, y , z xi yj zk i j k 1 3x 2y x y FuG j x 0 z 2 2 j 2 xk curl F xyzi yj zk i j k w wx w wy w wz xyz y z x x div curl F curl F 3z 2 x Mi Nj Pk and G F G 0 i j k w wx w wy w wz x 2 z 2 xz yz 2 2 0 div curl F 83. Let F xyj xzk x 2 zi 2 xzj yzk 82. F x, y, z z z yzi xz 2 x 2 z j xyk 0 81. F x, y, z 2 z k y div F u G 3xz 2 y 2 i z 2 xy j y 3 x 2 k div F u G i x F x, y , z FuG x 2i yj z 2k G x, y , z yz z 2x 79. xi zk 80. F x, y, z z 2 x i x 2 j 2 zk Qi Rj Sk where M , N , P, Q, R, and S have continuous partial derivatives. M Qi N R j P S k curl F G i j k w wx w wy w wz M Q N R P S ªw º ªw º w w w ªw º N R »i « P S M Q »j « N R M Q »k « P S w w w w w w y z x z x y ¬ ¼ ¬ ¼ ¬ ¼ § wP § wN § wS § wR wN · wM · wM · wR · wQ · wQ · § wP § wS ¨ ¸i ¨ ¸k ¨ ¸i ¨ ¸k ¸j ¨ ¸j ¨ wz ¹ wz ¹ wy ¹ wz ¹ wz ¹ wy ¹ © wx © wx © wy © wx © wy © wx curl F curl G 84. Let f x, y, z be a scalar function whose second partial derivatives are continuous. f wf wf wf i j k wx wy wz curl f i j k w wx w wy w wz wf wx wf wy wf wz § w2 f § w2 f § w2 f w2 f · w2 f · w2 f · ¨ ¸i ¨ ¸j ¨ ¸k wzwy ¹ wzwx ¹ wywx ¹ © wywz © wxwz © wxwy 0 © 2010 Brooks/Cole, Cengage Learning Section 15. 1 85. Let F Mi Nj Pk and G 381 Ri Sj T k. w w w M R N S P T wx wy wz div F G Vector Fields wM wR wN wS wP wT wx wx wy wy wz wz ª wM wN wP º ª wR wS wT º « wx wy wz » « wx wy wz » ¬ ¼ ¬ ¼ div F div G 86. Let F Mi Nj Pk and G FuG div F u G i j k M N P R S T Ri Sj T k. NT PS i MT PR j MS NR k w w w NT PS PR MT MS NR wx wy wz N wT wN wS wP wR wP wT wM wS wM wR wN T P S P R M T M S N R wx wx wx wx wy wy wy wy wz wz wz wz ª§ wP § wN § wS wN · wP · wM · º ª § wT wS · wT · wR ·º § wM § wR «¨ ¸R ¨ ¸T » «M ¨ ¸ N¨ ¸» ¸S ¨ ¸ P¨ wz ¹ wx ¹ wy ¹ ¼ ¬ © wy wz ¹ wx ¹ wy ¹¼ © wz © wz © wx © wx ¬© wy curl F G F curl G 87. F Mi Nj Pk u ª¬f u F º¼ curl f u F curl f curl u F Exercise 83 curl u F Exercise 84 u uF 88. Let F u fF Mi Nj Pk. i j k w wx w wy w wz fM fN fP § wf § wf wP wf wN · wP wf wM · wN wf wM · § wf N f M f M f ¨ P f ¸i ¨ P f ¸k ¸j ¨ N f y y z z x x z z x x y w w w w w w w w w w w wy ¹ © ¹ © ¹ © i ª§ wP wN · § wN wM · º wf § wP wM · f «¨ ¸i ¨ ¸k » ¸j ¨ y z x z x y w w w w w w wx © ¹ ¹ © ¹ ¼ ¬© M 89. Let F div f F Mi Nj Pk , then f F j k wf wy wf wz N P f > u F@ f u F f Mi f Nj f Pk. w w w fM fN fP wx wy wz f wM wf wN wf wP wf M f N f P wx wx wy wy wz wz § wM wN wN · § wf wf wf · f¨ N P¸ ¸¨ M x y z x y w w w w w wz ¹ © ¹ © f div F f F © 2010 Brooks/Cole, Cengage Learning 382 Chapter 15 Vector Analysis Mi Nj Pk. 90. Let F § wP § wN wN · wM · wM · § wP ¨ ¸i ¨ ¸k ¸j ¨ wz ¹ wz ¹ wy ¹ © wx © wy © wx curl F w ª wP wN º w ª wP wM º w ª wN wM º « » « » wx ¬ wy wz ¼ wy «¬ wx wz »¼ wz ¬ wx wy ¼ div curl F w2P w2 N w2P w2M w2N w2M wxwy wxwz wywx wywz wzwx wzwy 0 because the mixed partials are equal In Exercises 91-93, F x , y , z = xi + yj + zk and f x , y , z = F x , y , z 1 ln x 2 y 2 z 2 2 x y z i 2 j 2 k x2 y2 z 2 x y2 z2 x y2 z2 ln f 91. ln f 1 f 92. xi yj zk x2 y 2 z 2 F f2 1 x y2 z2 2 §1· ¨ ¸ ©f¹ x x y z 2 2 32 2 x2 y 2 z 2 93. f n f n x2 + y2 + z2 . = n x2 y 2 z 2 n x2 y 2 z 2 y i x y z 2 2 32 j z x y z 2 2 2 32 xi yj zk k 3 x2 y 2 z 2 F f3 n n 1 x x y z 2 n2 2 x y 2 2 in x2 y 2 z 2 n 1 y x y z 2 2 2 j n x2 y 2 z 2 n 1 z x y2 z2 2 k nf n 2F xi yj zk xi yj 94. (a) F x, y 2 y 2 4 3 2 1 x − 4 − 3 −2 2 3 4 2 3 −2 −3 −4 xi yj (b) G x, y y x2 y 2 4 3 2 1 x − 4 − 3 −2 4 −2 −3 −4 (c) All the vectors are unit vectors. Those of F point away from origin. Answers will vary. 95. True. F x y 16 x 2 y 4 o 0 as x, y o 0, 0 . 96. True. If x, y is on the positive y-axis, then x 0 and y ! 0. So, F x, y F 0, y 97. False. Curl is defined on vector fields, not scalar fields. 98. False. See Example 7. y 2 j. © 2010 Brooks/Cole, Cengage Learning Section 15.2 Line Integrals 383 Section 15.2 Line Integrals °­ti tj, ® °̄ 2 t i 1. r t 0 d t d1 2 t j, x2 y2 16 9 1 cos 2 t sin 2 t 1 6. 1d t d 2 ­ti t 2 j, 0 d t d 2 ° ® 4 t i 4 j, 2 d t d 4 ° 8 t j, 4 d t d 8 ¯ 2. r t ­ti, ° °3i t 3 j, ® ° 9 t i 3 j, ° ¯ 12 t j, 3. r t 0 d t d 3 x y2 9 4 cos t 3 d t d 6 y 3 sin t sin 2 t 6 d t d 9 x2 y 2 5. 2 0 d t d 2S 4ti 3tj, 0 d t d 1 7. r t rc t 4i 3 j 1 ³ C xy ds ³0 9 42 32 dt 4t 3t 1 ³ 0 60t 2 x y 9 9 cos 2 t sin 2 t 4 cos ti 3 sin tj rt 9 d t d 12 ­ti 4 tj, 0 d t d 5 5 °° ®5i 9 t j, 5 d t d 9 ° 14 t i, 9 d t d 14 °̄ 4. r t x2 16 cos 2 t 2 1 ª¬20t 3 º¼ 0 dt 20 1 rc t x2 9 y2 9 3 cos t 3 sin t cos 2 t sin 2 t x y ti 2 t j, 8. r t 1 i j ³C 3 x y ds 2 ³0 3 t 3 2³ 2t 2 0 12 1 2 dt 2t 2 dt 2 3 2 ª¬t 2 2t º¼ 0 3 cos ti 3 sin tj rt 0 d t d 2 0 0 d t d 2S sin ti cos tj 2k , 9. r t rc t ³C S 2 cos t i sin tj x 2 y 2 z 2 ds S 2 ³0 sin 2 t cos 2 t 4 cos 2 t sin 2 t dt S 2 ³0 5dt 5S 2 12ti 5tj 84tk , 0 d t d 1 10. r t rc t ³C 0 d t d 12i 5 j 84k 2 xyz ds 11. (a) r t (b) rc t ³C 1 ³0 2 12t 5t 84t 12 2 52 84 ti tj, 0 d t d 1 i j, rc t x 2 y 2 ds ³0 dt 1 ³0 1 10,080 t 3 85 dt 12. (a) r t (b) rc t 2 1 2 t2 t2 2 dt ³C ªt 4 º 856,800 « » ¬ 4 ¼0 ti 2tj, 0 d t d 2 i 2 j, rc t x 2 y 2 ds 214,200 5 2 ³0 t 2 4t 2 2 1 ªt 3 º 2 2« » ¬ 3 ¼0 2 2 3 ª 5t 3 º « 5 » 3 ¼0 ¬ 5 dt 40 5 3 © 2010 Brooks/Cole, Cengage Learning 384 Chapter 15 13. (a) r t (b) ³C 14. (a) r t (b) ³C 15. (a) r t (b) rc t ³C 16. (a) r t (b) rc t ³C 17. (a) r t (b) Vector Analysis S cos ti sin tj, 0 d t d x 2 y 2 ds S 2 ³0 2 ª¬cos 2 t sin 2 t º¼ 2 cos ti 2 sin tj, 0 d t d x 2 y 2 ds S 2 ³0 sin t 2 cos t 2 S 2 ³0 dt S dt 2 S 2 ª¬4 cos 2 t 4 sin 2 t º¼ 2 sin t 2 2 cos t 2 S 2 ³0 dt 4S 8 dt ti , 0 d t d 1 i , rc t x 4 1 1 1 ³0 y ds ªt 2 º « » ¬ 2 ¼0 t dt 1 2 tj, 1 d t d 9 j, rc t x 4 y ds 1 9 ³1 9 ª8 3 2 º ¬ 3 t ¼1 4 t dt 8 3 27 1 208 3 ­ti, 0 d t d1 ° ® 2 t i t 1 j, 1 d t d 2 ° 3 t j, 2 d t d 3 ¯ ³ C1 x 4 y ds ³ C2 x 4 y ds 1 2 1 ³ 0 t dt 2 ³1 2 ª t2 8 3 2º t 1 » 2 «2t 2 3 ¬ ¼1 ª º ¬ 2 t 4 t 1¼ 1 1 dt 3 ³ C3 x 4 y ds ³2 4 ³C x 4 y ds 1 19 2 8 2 6 3 3 t dt ª 8 « 3 3 t ¬ 3 2º 3 8 3 » ¼2 19 19 2 6 19 2 6 y (0, 1) 19 1 2 C2 C3 6 C1 18. (a) r t (b) ³ C1 ³ C2 ³ C3 0 d t d 2 ­ti, ° °2i t 2 j, ® ° 6 t i 2 j, ° 8 t j, ¯ x 4 y ds (1, 0) 2 d t d 4 4 d t d 6 6 d t d 8 2 ³ 0 t dt 2 y x 4 x 4 ³ C4 x 4 ³C x 4 y ds y ds y ds y ds 4 ³2 2 4 t 2 dt 6 ³4 8 ³6 4 6 t 4 2 dt 16 2 4 3 C3 2 28 2 (2, 2) C4 1 8 t dt 2 4 16 2 3 16 2 16 2 28 2 3 3 C2 C1 8 56 3 x 1 2 2 © 2010 Brooks/Cole, Cengage Learning x Section 15.2 ti, 0 d t d 1, rc t 19. (a) C1 : 0, 0, 0 to 1, 0, 0 : r t ³ C1 t2º »¼ 0 1 1 1 i tk , 0 d t d 1, rc t C2 : 1, 0, 0 to 1, 0, 1 : r t 385 1 ³ 0 2t dt 2 x y 2 z ds i , rc t Line Integrals k , rc t 1 z ³ C2 1 1 ³0 2 x y 2 z ds ª t2 º «2t » 2 ¼0 ¬ 2 t dt 3 2 i tj k , 0 d t d 1, rc t C3 : 1, 0, 1 to 1, 1, 1 : r t 1 (1, 0, 1) j, rc t C 1 (0, 0, 0) (1, 0, 0) ³ C3 1 ³0 2 x y 2 z ds (b) Combining, ³C 1 ³0 t 1 ³0 2 x y 2 z ds 1 ³0 2 x y 2 z ds ³C 2 t º » 3 ¼0 dt ª1 t ¬ 2 x y 2 z ds 2 rc t 2 sin ti 2 cos tj k 4 sin 2 t 4 cos 2 t 1 ³C U 4S 1tº ¼ 2 6 ³0 5ª 64S 3 º «16S » 2 ¬ 3 ¼ (0, 0, 0) 1 1 2 x 1 ³0 2 dt 5 2 6 j k , rc t 2 2 dt 5 3 4S 2 3 | 795.7 2 6 . z rt 2 cos ti 2 sin tj tk , 0 d t d 4S rc t 2 sin ti 2 cos tj k 4 sin 2 t 4 cos 2 t 1 ³C U 4S ³0 t 23. r t rc t Mass 5 x, y, z ds ªt 2 « ¬2 5 dt 4S 8S 1 ªt t2 º 2« » 2 ¼0 ¬3 3 t2 t 5 dt t3 º 5ª «4t » 2 ¬ 3 ¼0 y (0, 1, 0) 1 Mass x, y, z ds 5 4S 4 t 2 dt 2 ³0 k , rc t rc t 5 1 4 cos 2 t 4 sin 2 t t 2 2 (0, 1, 1) C 22. U x, y, z 2 cos ti 2 sin tj tk , 0 d t d 4S y z 1 ª t º «t » 2 ¼0 ¬ 1 1 3 2 rt rc t 1 1 3 1 2 x y2 z2 2 21. U x, y, z Mass j, rc t 2 1 1 t dt (1, 1, 1) x 1 t j 1 t k , 0 d t d 1, rc t C3 : 0, 1, 1 to 0, 0, 0 : r t (b) Combining, 3 1 1 4 3 23 . 6 j tk , 0 d t d 1, rc t C2 : 0, 1, 0 to 0, 1, 1 : r t ³ C3 3 4 2 3 1 tj, 0 d t d 1, rc t 2 x y 2 z ds ³ C2 ª t º «t » 3 ¼0 ¬ 2 t 2 1 dt 2 x y 2 z ds 20. (a) C1 : 0, 0, 0 to 0, 1, 0 : r t ³ C1 3 1 4S º 5» ¼0 8S 2 5 cos ti sin tj, 0 d t d S sin ti cos tj, ³C U S ³0 rc t ³C x, y ds 1 x y ds cos t sin t dt >sin t 11 S cos t @0 2 © 2010 Brooks/Cole, Cengage Learning 386 Chapter 15 Vector Analysis 24. r t t 2i 2tj, 0 d t d1 rc t 2ti 2 j, rc t ³C U Mass ³ C 34 y ds ³ 1 3 0 4 1 ³ 0 3t t rc t 1 2 t2 1 25. r t 4t 2 4 dt 2t 12 32 1 º »¼ 0 rc t ³C U Mass x, y, z ds ³1 S 2 ³ C F dr ³0 12 3xi 4 yj ti C: r t 4t 2 5 dt 4 t 2 j, 2 d t d 2 Ft 3ti 4 4 t 2 j rc t i t 4 t2 j 2 32 3 º » » ¼1 12 3 cos t sin t 4 sin t cos t dt ª sin 2 t º « » ¬ 2 ¼0 30. F x, y k 4t 2 5 ³ C F dr kª 41 41 27º¼ 12 ¬ 26. sin ti cos tj 2 2 1 ³ C kz ds kt 3 cos ti 4 sin tj rc t S 2 4t 2 5 3 Ft dt t 2i 2tj tk , 1 d t d 3 2ti 2 j k , cos ti sin tj, 0 d t d S 2 C: r t 4t 2 4 x, y ds 3xi 4 yj 29. F x, y 31. F x, y, z 2 ³ 2 ti t 2 j 2tk , 0 d t d 1 C: r t 2 cos ti 2 sin tj 3tk , 0 d t d 2S Ft t 3i 2t 2 j 2t 3k rc t 2 sin ti 2 cos tj 3k rc t i 2tj 2k 49 ³C U Mass 13 x, y, z ds ³C ³C k z ds 2S ³0 k 3t 13 dt 2S § 3t 2 ·º 13 ¨ kt ¸» 2 ¹¼ 0 © 13 2S k 6S 2 F dr 32. F x, y, z C: r t Ft rc t ³0 Ft ti tj rc t i j ³ C F dr 1 2 t k, 0 d t d S 2 1 4 sin 2 ti 4 cos 2 tj t 4k 4 2 cos ti 2 sin tj tk S S 1 ³0 t t dt 1 ª¬t 2 º¼ Ft 16 sin t cos ti 4 sin tj rc t 4 sin ti 4 cos tj F dr 1 5· § 2 2 ¨ 8 sin t cos t 8 cos t sin t t ¸ dt 4 ¹ © ª8 3 t6 º 8 3 « sin t cos t » 3 24 ¼ 0 ¬3 1 0 4 cos ti 4 sin tj, 0 d t d C: r t 9 4 2 sin ti 2 cos tj xyi yj 28. F x, y 1 ª 9t 4 º « » ¬ 4 ¼0 t 3 4t 3 4t 3 dt x 2 i y 2 j z 2k ³ C F dr ³ 0 ti tj, 0 d t d 1 C: r t ³C 1 xi yj 27. F x, y 0 xyi xzj yzk rt rc t ª t2 º « » ¬ 2 ¼ 2 3t 4t dt S 2 ³0 S 33. F x, y, z 2 64 sin 2 t cos t 16 sin t cos t dt S 2 ª 64 3 2 º « 3 sin t 8 sin t » ¬ ¼0 40 3 8 S6 8 3 24 3 S6 24 x 2 zi 6 yj yz 2k rt ti t 2 j ln tk , 1 d t d 3 Ft t 2 ln ti 6t 2 j t 2 ln 2 tk dr 16 3 1 · § ¨ i 2tj k ¸ dt t ¹ © ³ C F dr 3 ³1 ªt 2 ln t 12t 3 t ln t 2 º dt | 249.49 ¬ ¼ © 2010 Brooks/Cole, Cengage Learning Section 15.2 xi yj zk 34. F x, y, z rt Ft dr t i tj e k , 0 d t d 2 ti tj e t k 2t 2 e 2t i j et k dt ³ C F dr ³0 rt 2t 2 e 2t cos3 t , y cos3 ti sin 3 tj, 0 d t d cos6 ti cos3 t sin 3 tj 3 cos8 t sin t 3 cos 4 t sin 5 t 3 cos 4 t sin t cos 4 t sin 4 t 3 cos 4 t sin t 2 cos 4 t 2 cos 2 t 1 ³ C F dr S 2 ³0 ªt 2 6º « t » 2 ¬ ¼0 66 xi yj 37. F x, y On C1 , F t ti , r c t ³ C1 F dr On C2 , F t 43 105 yi xj C: counterclockwise along the semicircle 1 2 1 ³ 0 t dt 2 ³1 4 x 2 from 2, 0 to 2, 0 y i 2 t i t 1 j, rc t ³ C 2 F dr 38. F x, y ­ti 0 d t d1 ° ® 2 t i t 1 j, 1 d t d 2 °3 t j 2 d t d 3 ¯ C: r t 2 3 cos 4 t sin t ªcos 4 t 1 cos 2 t º «¬ »¼ ª¬6 cos8 t sin t 6 cos6 t sin t 3 cos 4 t sin t º¼ dt S 2 i j 2 cos ti 2 sin tj, rc t 2 sin ti 2 cos tj Ft 2 sin ti 2 cos tj F rc 4 sin 2 t 4 cos 2 t Work ³ C F dr 4 ³ cos 2t dt 0 2 On C3 , F t 3 t j, rc t ³ C3 F dr 3 ³2 >2 sin 2t@S0 Total work 0 0 xi yj 5 zk 39. F x, y, z j C: r t 2 cos ti 2 sin tj tk , 0 d t d 2S 3 t 3 dt ªt 2 º « 3t » 2 ¬ ¼2 §9 · ¨ 9¸ 2 6 ©2 ¹ 1 1 0 2 2 4 cos 2t S ª¬ t 2 t 1 º¼ dt 46 13 0 d t d S rt ª¬t 2 3t º¼ 1 Work t 6t 5 dt 6 cos8 t sin t 6 cos6 t sin t 3 cos 4 t sin t ª 2 cos9 t 6 cos 7 t 3 cos5 t º « » 7 5 ¼0 ¬ 3 Work 2 2 ³ C F dr ³ 0 S Ft Work ti 2t 3 j sin 3 t from 1, 0 to 0, 1 2 3 cos 2 t sin ti 3 sin 2 t cos tj Work Ft 2t e 2t dt | 6.91 rc t F rc i 3t 2 j x 2i xyj 36. F x, y C: x rc t Work 1 2 ti t 3 j, 0 d t d 2 C: r t t 387 xi 2 yj 35. F x, y x2 y 2 z 2 Line Integrals 0 1 2 rc t 2 sin ti 2 cos tj k Ft 2 cos ti 2 sin tj 5tk F rc 5t Work ³ C F dr 2S ³0 5t dt 10S 2 © 2010 Brooks/Cole, Cengage Learning 388 Chapter 15 Vector Analysis yzi xzj xyk 40. F x, y, z 45. F x, y C : line from 0, 0, 0 to 5, 3, 2 rt 5ti 3tj 2tk , rc t 5i 3j 2k Ft 6t 2i 10t 2 j 15t 2k F rc 90t Work ³ C F dr (a) 0 d t d1 1 r1 t 2ti t 1 j, r1c t 2i j Ft 4t 2i 2t t 1 j ³ C1 F dr 2 ³ 0 90t x 2i xyj 2 8t 2 2t t 1 dt 236 3 Both paths join 2, 0 and 6, 2 . The integrals are 30 dt 3 ³1 1d t d 3 negatives of each other because the orientations are different. 41. Because the vector field determined by F points in the general direction of the path C, F T ! 0 and work will be positive. (b) 42. Because the vector field determined by F points for the most part in the opposite direction of the path C, F T 0 and work will be negative. r2 t 2 3 t i 2 t j, 0 d t d 2 r2c t 2i j Ft ³ C2 F dr 2 43t i 23t 2t j 2 ³0 ª8 3 t ¬ 2 2 3 t 2 t º dt ¼ 236 3 43. Because the vector field determined by F is perpendicular to the path, work will be 0. 44. Because the vector field is perpendicular to the path, work will be 0. 46. F x, y (a) x 2 yi xy 3 2 j t 1 i t 2 j, r1 t r1c t i 2tj 2 t 1 t 2i t 1 t 3 j Ft 2 ³ C1 F dr ³ 0 ª¬ t 1 (b) 0dt d 2 t 2t 4 t 1 º dt ¼ 2 2 256 5 r2 t 1 2 cos t i 4 cos 2 tj, 0 d t d r2c t 2 sin ti 8 cos t sin tj 1 2 cos t Ft S 2 ³ C2 F dr ³0 2 S 2 4 cos 2 t i 1 2 cos t 8 cos3 t j ª 1 2 cos t ¬ 2 4 cos 2 t 2 sin t 8 cos t sin t 1 2 cos t 8 cos3 t dt 256 5 Both paths join 1, 0 and 3, 4 . The integrals are negatives of each other because the orientations are different. 3 yi xj 47. F x, y yi xj 48. F x, y C: r t ti 2tj C: r t ti t 3 j rc t i 2j rc t i 3t 2 j Ft 2ti tj Ft 3t 3i tj F rc 3t 3 3t 3 F rc So, 2t 2t ³ C F dr 0. 0 So, ³ C F dr 0 0. © 2010 Brooks/Cole, Cengage Learning Section 15.2 y· § x3 2 x 2 i ¨ x ¸ j 2¹ © 49. F x, y C: r t ti t 2 j rc t i 2tj Ft § t2 · t 2t i ¨ t ¸ j 2¹ © F rc § t2 · t 3 2t 2 2t ¨ t ¸ 2¹ © So, 3 ³ C F dr ³C x 3y ³C ³C ³C ³C 0 d t d1 y ³ C F dr 0 0. ³0 ³0 1010 ª x2 º 25 x3 » « ¬2 ¼0 202 1 dy 5 y , 0 d y d 10, dx 5 10t , 0 d t d 1 x 10 10 ª y2 º y3 » « 10 ¬ ¼0 5 x, 0 d x d 2 x 75 x 2 dx § y2 · y ¸ dy ¨ 25 © ¹ 10 ª y3 y2 º « » 2 ¼0 ¬ 75 190 or 3 5 dx, 0 d x d 2 2 ³0 xy dx y dy 2 10t , 0 d t d 1 y 3 y x dx y 2 dy ª 5 x3 25 x 2 º « » 2 ¼0 ¬ 3 5 x 2 25 x dx 2 ³0 5 x, dy 2 2 125 3 º x ¼ 3 0 28 ti , 0 d t d 5 xt t, y t dx dt , dy 190 3 5 dx, 0 d x d 2 3 5 x x dx 5 x 5 dx ª7 x 2 ¬ ³C 9 sin t cos t 9 sin t cos t 2 2 xy dx y dy 55. r t 3 sin ti 3 cos tj y , 0 d y d 10 5 5 x or x §y 2· ¨ 3 y ¸ dy 5 © ¹ 10t , x 3 y 2 dx 2t , y 54. x 10 ³0 5 x, dy y Ft So, dy 2 2t , y 53. x 3 cos ti 3 sin tj F rc 10t , 0 d t d 1 y 2t , y 52. x 3 sin ti 3 cos tj rc t 0. 2t , y 51. x C: r t 0 389 xi yj 50. F x, y 2 Line Integrals 125 3 8 2 ³0 14 x 125 x 2 dx 1084 3 56. r t 0 xt 0 dx 2 x y dx x 3 y dy 5 ³ 0 2t dt 25 ³C tj, 0 d t d 2 0, y t 0, t dy dt 2 x y dx x 3 y dy y 2 ³ 0 3t dt 2 ª3t2º ¬ 2 ¼0 y 3 2 2 1 1 x 1 2 3 4 5 −1 −2 x −1 1 © 2010 Brooks/Cole, Cengage Learning 6 390 Chapter 15 Vector Analysis 0 d t d 3 °­ti, ® t 3 3 , 3 d t d 6 i j °̄ 57. r t C1 : x t t, y t dx dt , dy ³ C1 C2 : x t (3, 3) 3 0, 2 0 C2 3 ³ 0 2t dt 2 x y dx x 3 y dy 1 9 C1 x t 3 3, y t 0, dy dx y 1 ³C 6 ³3 2 x y dx x 3 y dy 2 x y dx x 3 y dy ª¬3 3 t 3 º¼ dt 9 45 2 ª 3t 2 º 6t » « 2 ¬ ¼3 45 2 63 2 0 d t d 3 °­tj, ® d t d 5 i j 3 3 , 3 t °̄ 58. r t 3 dt 6 ³ C2 2 y x C1 : x t ³ C1 C2 : x t ³ C2 59. x t ³C t 3, y t ³ 0 3t dt 5 ³ 3 ª¬2 t 2 x y dx x 3 y dy ³ 0 ª¬ 2t 4 ³0 ³C 62. x t dx ³C ªt 3 ¬ 2 5 3t º ¼3 10 2t dt 1 t 2 t 3 3t 2 2t º¼ dt 1 dt , dy 3 12 t 2 12 t 3 2 2t dt 9 2 t 2 ª 3t 4 º t3 2t 2 t » « 3 ¬ 2 ¼0 11 6 dt ª 2t t 3 2 t 3t 3 2 ¬ 4 dt , dy (2, − 3) 47 2 6t 3 t 2 4t 1 dt ³0 dx dt , dy 1 t 3 2 , 0 d t d 4, dx t, y t 3 3º¼ dt 10 27 2 1 t 2 , 0 d t d 1, dx 2 x y dx x 3 y dy t, y t C2 0 2 x y dx x 3 y dy 61. x t 27 2 −3 ³0 ³C −2 3 1 60. x t 3 C1 3 2 x y dx x 3 y dy t, y t 2 −1 2 x y dx x 3 y dy dt , dy dx 1 dt 0, dy dx ³C t 0, y t 3 12 t 2 º dt ¼ 4 ª3t3 1t5 2 t2º 5 ¬2 ¼0 96 1 5 32 16 592 5 2t 2 , 0 d t d 2 4t dt 2 x y dx x 3 y dy 4 sin t , y t 4 cos t dt , dy 2 ³0 2t 2t 2 dt t 6t 2 4t dt 3 cos t , 0 d t d 2 ³0 2 ª6t 4 2 t 3 t 2 º 3 ¬ ¼0 24t 3 2t 2 2t dt 316 3 S 2 3 sin t dt 2 x y dx x 3 y dy S 2 ³0 S 2 ³0 8 sin t 3 cos t 4 cos t dt 4 sin t 9 cos t 3 sin t dt S 2 5 sin t cos t 12 cos 2 t 12 sin 2 t dt ª5 º 2 « 2 sin t 12t » ¬ ¼0 5 6S 2 © 2010 Brooks/Cole, Cengage Learning Section 15.2 63. f x, y 65. f x, y h 1 from 1, 0 to 0, 1 3ti 4tj, 0 d t d 1 rt cos ti sin tj, 0 d t d rc t 3i 4 j rc t sin ti cos tj rc t 5 rc t 1 r ³C ³0 f x, y ds 64. f x, y 5h dt ³C 5h y ³0 S 2 C: x y 2 ti tj, 0 d t d 4 rt cos ti sin tj, 0 d t d rc t i j rc t sin ti cos tj rc t 2 rc t 1 ³0 67. f x, y S 2 Lateral surface area: Lateral surface area: ³C 1 2 1 from 1, 0 to 0, 1 rt 4 ª sin 2 t º « » ¬ 2 ¼0 cos t sin t dt x y 2 C: line from 0, 0 to 4, 4 S 2 f x, y ds 66. f x, y f x, y ds S 2 Lateral surface area: Lateral surface area: 1 391 xy C : x2 y2 C: line from 0, 0 to 3, 4 Line Integrals 2 dt t ³C f 8 2 S 2 x, y ds ³0 cos t sin t dt >sin t cos t @0 S 2 2 h 1 x 2 from 1, 0 to 0, 1 C: y 2 1 t i ª1 1 t º j, 0 d t d 1 ¬ ¼ i 2 1 t j rt rc t rc t 1 41 t 2 Lateral surface area: ³C f x, y ds 1 ³0 h 1 41 t 2 hª 2 5 ln 2 4¬ 68. f x, y C: y rt rc t rc t dt hª «2 1 t 4¬ 1 2 1 41 t ln 2 1 t 1 41 t 2 º »¼ 0 5 º | 1.4789h ¼ y 1 1 x 2 from 1, 0 to 0, 1 2 1 t i ª1 1 t º j, 0 d t d 1 ¬ ¼ i 2 1 t j 1 41 t 2 Lateral surface area: ³C f x, y ds 1 ³ 0 ª¬2 2 1 t º 1 41 t ¼ ª 12 «2 1 t ¬ 1 ª2 2¬ 23 32 2 2³ 1 0 1 41 t ln 2 1 t 1 t ª2 4 1 t ¬ ¬ 5 ln 2 33 64 dt 2 dt 1 ³0 1t 2 1 41 t 2 dt 1 1 41 t 1 ª2 64 « 5 2 ln 2 5º ¼ 5 2 1 41 t 1º 1 4 1 t ¼ 1 ª18 64 ¬ 1 ª46 64 ¬ 5 ln 2 2 º »¼ 0 1 2 ln 2 1 t 1 41 t 2 º »¼ 0 5º ¼ 5 33 ln 2 5 º | 2.3515 ¼ © 2010 Brooks/Cole, Cengage Learning 392 Chapter 15 Vector Analysis 69. f x, y xy 1 x 2 from 1, 0 to 0, 1 C: y You could parameterize the curve C as in Exercises 67 and 68. Alternatively, let x 1 cos t 2 y sin t rt cos ti sin 2 tj, 0 d t d rc t sin ti 2 sin t cos tj rc t cos t , then: 2 S 2 sin 2 t 4 sin 2 t cos 2 t sin t 1 4 cos 2 t Lateral surface area: ³C f S 2 ³0 x, y ds 1 4 cos 2 t sin 2 t and dv Let u ³C f x, y ds S 2 ³0 cos t sin 2 t sin t 1 4 cos 2 t dt 12 sin t cos t , then du ª 1 2 2 «12 sin t 1 4 cos t ¬ 3 2º ª 1 2 2 «12 sin t 1 4 cos t ¬ 32 S 2 » ¼0 1 S 6³0 2 sin 2 t ª 1 4 cos 2 t «¬ sin t cos t º dt »¼ 2 sin t cos t dt and v 1 4 cos 2 t 1 1 4 cos 2 t 120 12 5 2º S 2 » ¼0 32 1 1 4 cos 2 t 12 32 . sin t cos t dt 1 · 1 § 1 5 ¨ ¸ © 12 120 ¹ 120 1 25 5 11 | 0.3742 120 52 x2 y 2 4 70. f x, y C : x2 y2 4 rt 2 cos ti 2 sin tj, 0 d t d 2S rc t 2 sin ti 2 cos tj rc t 2 Lateral surface area: ³C f 2S ³0 x, y ds 4 cos 2 t 4 sin 2 t 4 2 dt 2S 0 ª8 t ¬ 1 cos 2t dt 1 2 2S sin 2t º ¼0 16S 1 y2 71. (a) f x, y rt 2 cos ti 2 sin tj, 0 d t d 2S rc t 2 sin ti 2 cos tj rc t 2 ³C f S 8³ 2S ³0 x, y ds 1 4 sin 2 t 2 dt 2S ª¬2t 4 t sin t cos t º¼ 0 12S | 37.70 cm 2 12S | 7.54 cm3 5 (b) 0.2 12S (c) z 5 4 −3 3 3 y x © 2010 Brooks/Cole, Cengage Learning Section 15.2 1 x 4 x3 2 , 0 d x d 40 C: y rt ti t 3 2 j, 0 d t d 40 rc t i 3 12 t j 2 §9· 1 ¨ ¸t ©4¹ rc t Lateral surface area: ³C f 40 ³0 x, y ds §9· 1 ¨ ¸t , then t ©4¹ Let u 40 1 · § §9· ¨ 20 t ¸ 1 ¨ ¸t dt 4 © ¹ © 4¹ 8 u du. 9 4 2 u 1 and dt 9 1 · § §9· ¨ 20 t ¸ 1 ¨ ¸t dt 4 © ¹ © 4¹ ³1 91 1 2 ª º §8 · «20 9 u 1 » u ¨ 9 u ¸ du ¬ ¼ © ¹ 8 ªu5 179u 3 º « » 81 ¬ 5 3 ¼1 rc t rc t a sin ti a cos tj, ³C y 2 2S ³0 U x, y ds a3 ³ Iy 91 ³C x U 2 2S a3 ³ 1 sin 2t Ix 2S 0 u 4 179u 2 du a cos ti a sin tj, 0 d t d 2S ³C y 2 U x, y ds cos 2 t dt 2S ³0 a4 ³ Iy ³C x U 2 x, y ds 1 2 sin t cos t a a 2 sin 2 t sin t a 2 dt 2S 0 2S ³0 a4 ³ a 3S b sin t rc t a sin ti a cos tj, a 3S a 2 cos 2 t 1 a dt b constant, 3 sin t 2 rc t a sin 2 t dt 91 3 cos ti 3 sin tj 1 sin 2 2t k , 0 d t d 2S 75. (a) Graph of: r t For y 2S ³0 x, y ds 74. r t a 2 sin 2 t 1 a dt 0 8 81 ³ 1 850,304 91 7184 | 6670.12 1215 a cos ti a sin tj, 0 d t d 2S 73. r t Ix 393 20 72. f x, y ³0 Line Integrals sin 3 t dt 0 a 2 cos 2 t sin t a 2 dt 2S 0 cos 2 t sin t dt 0 z b and 3 3 2 2 1 1 4 sin 2 t cos 2 t 1 4 sin 2 t 1 sin 2 t 1 4 2§ b2 · b ¨1 ¸. 9 © 9¹ (b) Consider the portion of the surface in the first quadrant. The curve z r1 t 4 y x 1 sin 2 2t is over the curve 3 cos ti 3 sin tj, 0 d t d S 2. So, the total lateral surface area is 4 ³ f x, y ds C 3 3 4 4³ S 2 0 1 sin 2 2t 3 dt § 3S · 12¨ ¸ © 4 ¹ 9S cm 2 . 2 (c) The cross sections parallel to the xz-plane are rectangles of height 1 4 y 3 1 y 2 9 and base 2 9 y 2 . So, Volume § 3 y2 § y2 ·· 2³ 2 9 y 2 ¨¨1 4 ¨1 ¸ ¸ dy 0 9© 9 ¹ ¸¹ © 27S | 42.412 cm3 . 2 © 2010 Brooks/Cole, Cengage Learning Chapter 15 Vector Analysis 394 ti t 2 j, 0 d t d 1 76. r t rc t x, y i 2tj ³ C F dr 10 ª5 4 4 2 4 4 6 11º¼ 34 ¬ | 16 3 3 sin ti 3 cos tj 77. r t 10 tk , 2S §1 1 · ¨ , ¸ © 4 16 ¹ §1 1· ¨ , ¸ ©2 4¹ §3 9 · ¨ , ¸ © 4 16 ¹ 1, 1 F x, y 5i 3.5i j 2i 2 j 1.5i 3 j i 5j rc t i i 0.5 j i j i 1.5 j i 2j F rc 5 4 4 6 11 0 d t d 2S 175k F 10 · § k ¸ dt ¨ 3 cos ti 3 sin tj 2S ¹ © dr ³C 0, 0 2S ³0 F dr 1750 dt 2S ³ C F dr 78. W 2S ª1750 º « 2S t » ¬ ¼0 ³ C M dx M 15 4 x 2 y N 15 xy 15 x c cx 2 dx dx, dy 2cx dx 1750 ft lb y N dy c 60 15 x 2 c cx 2 1 W ³ 1 ª¬60 15 x Wc 16c 4 2 c cx 2 15 x c cx 2 0 c 1 4 2 cx º dx ¼ 120 4c 8c 2 x parabola −1 82. (a) Work 1 0, the work is 120. yields the minimum work, 119.5. Along the straight line path, y 79. See the definition of Line Integral, page 1070. See Theorem 15.4. y = c ) 1 − x 2) 0 (b) Work is negative, because against force field. (c) Work is positive, because with force field. 80. See the definition, page 1074. 83. False 81. The greater the height of the surface over the curve, the greater the lateral surface area. So, z3 z1 z2 z4 . ³ C xy ds y 4 2 1 ³0 t 2 dt 84. False, the orientation of C does not affect the form. 3 ³C f 2 1 x, y ds. 85. False, the orientations are different. x 1 2 3 4 86. False. For example, see Exercise 32. y x i xyj 87. F x, y rt kt 1 t i tj, rc t k 1 2t i j Work ³ C F dr 1 y 1 kt 1 t i kt 2 1 t j¼º ª¬k 1 2t i jº¼ dt 2 1 kt 1 t k 1 2t kt 1 t º¼ dt 1 ³ 0 ¬ª t ³ 0 ª¬ t 1 ³0 k 0 d t d1 2 2k 2t 3 kt 3 kt 2 3k 2t 2 k 2t kt dt 12 k 12 (0, 1) (0, 0) x 1 −1 2 −1 © 2010 Brooks/Cole, Cengage Learning Section 15.3 Conservative Vector Fields and Independence of Path 395 Section 15.3 Conservative Vector Fields and Independence of Path x 2i xyj 1. F x, y (a) r1 t ti t 2 j, 0 d t d 1 r1c t i 2tj Ft t 2i t 3 j 1 ³ C F dr (b) r2 T ³0 11 15 t 2 2t 4 dt sin T i sin 2 T j, 0 d T d r2c T 2 cos T i 2 sin T cos T j Ft sin 2 T i sin 3 T j ³C S 2 ³0 F dr S 2 sin 2 T cos T 2 sin 4 T cos T dT x 2 y 2 i xj 2. F x, y ti t j, 0 d t d 4 r1c t i 1 Ft t t i tj 2 t (a) r1 T j 2 ³ C F dr 4§ ³0 1 2 ¨t t 2 © ªt 3 t2 t º « » 3 2 3 ¼0 ¬ 11 15 yi xj sec T i tan T j, 0 d T d r1c T sec T tan T i sec 2 T j FT tan T i sec T j ³ C F dr · t ¸ dt ¹ 32 4 (b) r2 w ª sin 3 T 2 sin 5 T º « » 5 ¼0 ¬ 3 3. F x, y (a) r1 t 2 wi j Fw w4 w2 i w2 j F dr 2 ³0 S 3 ³0 S 3 ³0 80 3 ³ S 3 sec T tan 2 T sec3 T dT ªsec T sec 2 T 1 sec3 T º dT ¬ ¼ S 3 0 sec T dT S 3 ¬ªln sec T tan T ¼º 0 w2i wj, 0 d w d 2 r2c w ³C S ln 2 t 1i (b) r2 t 4 2 2º ª ¬2 w w w w ¼ dw 2 ª w6 w4 w3 º « » 2 3 ¼0 ¬3 80 3 r2c t 3 | 1.317 t j, 0 d t d 3 1 1 i j 2 t 1 2 t Ft ³ C F dr ti t 1j 3ª ³0 «2 ¬ 1 3 ³ 2 0 1 3 ³ 2 0 1 3 2³0 t 1º » dt 2 t ¼ t t 1 1 dt t t 1 1 t2 t 1 4 1 4 1 dt dt 2 ª¬t 1 2 º¼ 1 4 ª 1 § 1· « ln ¨ t ¸ 2¹ ¬ 2 © 3 º t2 t » ¼0 1ª §7 · § 1 ·º «ln ¨ 2 3 ¸ ln ¨ ¸» 2¬ © 2 ¹ © 2 ¹¼ 1 ln 7 4 3 | 1.317 2 © 2010 Brooks/Cole, Cengage Learning 396 Chapter 15 Vector Analysis yi x 2 j 4. F x, y 2 t i 3 t j, (a) r1 t r1c t i j Ft 3t i 2t j ³C 0 d t d 3 2 3 ³0 F dr ª 3 t 2 t 2 º dt ¬ ¼ r2c w 1 1 i j w w Fw 3 ln w i 2 ln w j ª 2 § 1 ·º §1· « 3 ln w ¨ w ¸ 2 ln w ¨ w ¸» dw © ¹ © ¹¼ ¬ e3 ³1 e x sin yi e x cos yj 5. F x, y wM wy e x cos y wN wx Because e x cos y wM , F is conservative. wy wM wy 30 x 2 y wN Because wx 69 2 30 x 2 y wM , F is conservative. wy wM wy 1 y2 1 y2 9. F x, y , z curl F 10. F x, y, z 2 ln w 3 Ft 2t 3i t 2 j 1 ³ 0 4t i 3t 2 j Ft 2t 4i t 2 j 1 ³ 0 5t 3 dt 4 dt 1 r1c t i j Ft t 3 e3t t i te3t t j 2 ³ C F dr ³ 0 ª¬« t 3 3t t 2 ªe3t t 2 º ¬« ¼» 0 2 2 2 2 3 e3t t te3t t º» dt ¼ 3 curl F z 0, so F is not conservative. 1 ti t 3 j, 0 d t d 3 3 sin yz i xz cos yz j xy sin yz k 69 2 ye xy i xe xy j ³0 e 0 F is conservative. ti t 3 j, 0 d t d 1 r2c t (a) r1 t º » »¼1 ti t 2 j, 0 d t d 1 i 2tj (b) r2 t 3 3 e 2 xyi x 2 j r1c t wN · ¸ wz ¹ y zi 2 xyzj xy k 2 (a) r1 t 12. F x, y xy y ln zi x ln zj k 8. F x, y, z z curl F z 0 so F is not conservative. x x z z z 2 ³ C F dr wN wM , F is not conservative. z wx wy Because ª 3 ln w « 2 «¬ ³ C F dr 1 x i 2j y y 7. F x, y § wP ¨ © wy 3 2t º » 3 » ¼0 11. F x, y 15 x 2 y 2i 10 x3 yj 6. F x, y wN wx 2 ³ C F dr wN wx 3 2 2 ln w i 3 ln w j, 1 d w d e3 (b) r2 w wN wx ª 3t « 2 ¬« 3 2t dt e0 e0 0 (b) F x, y is conservative because wM wy xye xy e xy wN . wx e xy K . The potential function is f x, y By Theorem 15.7, ³ C F dr 0. © 2010 Brooks/Cole, Cengage Learning Section 15.3 Conservative Vector Fields and Independence of Path yi xj 13. F x, y r1c t i j Ft ti t j ³ C F dr 0 d t d1 (a) r1 t r1c t 0 Ft ti t 2 j, 0 d t d 1 (b) r2 t r2c t i 2tj Ft t 2 i tj ³ C F dr xy 2i 2 x 2 yj 14. F x, y ti tj, (a) r1 t 1 2 13 dt r3c t r2c t i 3t j ³ C F dr i 1 ³ 0 2t 3 dt ln 3 1 t 3 j, 0 d t d 2 3 ³ C F dr ³ 0 «¬9 t 1 12 3 ª¬ln t º¼1 1 j 3 2 ª1 t 3i tj 1 1 2 2 2 t 1 t 3 i t 1 t 3j 9 3 Ft 2 Ft 3 ³1 t dt t 1i ti t 3 j, 0 d t d 1 (c) r3 t 1 ti j, 1 d t d 3 t 1 i 2j t 1 i 2tj t ³ C F dr (b) r2 t ³0 t t3 2 2 2 º t 1 t 3 » dt 9 ¼ 1 2 3 3t 7t 2 7t 3 dt 9³0 2 º 1 ª3t 4 7t 3 7t 2 3t» « 9¬ 4 3 2 ¼0 15. ³C y 2 397 44 27 dx 2 xy dy Because wM wy wN wx y 2i 2 xyj is conservative. The potential function is f x, y 2 y , F x, y xy 2 k . So, you can use the Fundamental Theorem of Line Integrals. 4, 4 (a) ³C y 2 dx 2 xy dy ª¬ x 2 yº¼ 0, 0 (b) ³C y 2 dx 2 xy dy ª¬ x 2 yº¼ 1, 0 64 1, 0 (c) and (d) Because C is a closed curve, 16. ³ C 2x 3 y 1 Because wM wy f x, y 0 ³C y 2 dx 2 xy dy 0. dx 3 x y 5 dy wN wx 3, F x, y 2 x 3 y 1 i 3 x y 5 j is conservative. The potential function is x 2 3 xy y 2 2 x 5 y k . (a) and (d) Because C is a closed curve, ³C 2 x 3 y 1 dx 3x y 5 dy 0. 0,1 (b) ³C 2 x 3 y 1 dx 3 x y 5 dy ª 2 º y2 x 5 y» « x 3 xy 2 ¬ ¼ 0, 1 2 x 3 y 1 dx 3 x y 5 dy ª 2 º y2 x 5 y» « x 3 xy 2 ¬ ¼ 0,1 2, e2 (c) ³C 10 1 3 2e 2 e 4 2 © 2010 Brooks/Cole, Cengage Learning 398 17. Chapter 15 ³ C 2 xy dx Vector Analysis x 2 y 2 dy Because wM wy wN wx 2 xyi x 2 y 2 j is conservative. 2 x, F x, y x2 y The potential function is f x, y y3 k. 3 0, 4 ³C 2 xy dx x 2 y 2 dy ª 2 y3 º «x y » 3 ¼ 5, 0 ¬ (b) ³C 2 xy dx x 2 y 2 dy ª 2 y3 º «x y » 3 ¼ 2, 0 ¬ ³C x 2 y 2 dx 2 xy dy (a) 64 3 0, 4 18. Because wM wy wN wx 64 3 x 2 y 2 i 2 xyj is conservative. The potential function is 2 y , F x, y f x, y x3 3 xy 2 k . (a) ³C x 2 y 2 dx 2 xy dy ª x3 2º « xy » 3 ¬ ¼ 0, 0 (b) ³C x 2 y 2 dx 2 xy dy ª x3 2º « xy » 3 ¬ ¼ 2, 0 8, 4 896 3 0, 2 Because curl F 20. F x, y, z 0, F x, y, z is conservative. The xyz k . potential function is f x, y, z ³C ti 2 j tk , F dr (b) r2 t 8 3 yzi xzj xyk 19. F x, y, z (a) r1 t > xyz@ 0, 2, 0 4, 2, 4 Because curl F ³C 32 t 2 i t j t 2k , 4, 2, 4 ³ C F dr > xyz@ 0, 0, 0 x yz k . cos ti sin tj t 2k , 0 d t d S F dr (b) r2 t 0 d t d 2 0, F x, y, z is conservative. The potential function is f x, y, z (a) r1 t 0 d t d 4 i zj yk 1, 0, S 2 yz@ 1, 0, 0 2 1 2t i S 2tk , 0 d t d 1 ³ C F dr 32 >x >x 1, 0, S 2 yz@ 1, 0, 0 2 2 y x i x2 z j 2 y 4z k 21. F x, y, z F x, y, z is not conservative. (a) r1 t ti t 2 j k , 0 d t d 1 r1c t i 2tj Ft 2t 2 t i t 2 1 j 2t 2 4 k ³ C F dr (b) r2 t r2c t Ft 1 ³0 2 3 2t 3 2t 2 t dt 2 ti tj 2t 1 k , 0 d t d1 i j 4 2t 1 k 2 2 3ti ªt 2 2t 1 º j ª2t 4 2t 1 º k ¬ ¼ ¬ ¼ ³ C F dr 1 ³ 0 ª¬3t t 2 2t 1 2 3 8t 2t 1 16 2t 1 º dt ¼ 1 1 2 3 2 ³ 0 ª¬17t 5t 2t 1 16 2t 1 º¼ dt 3 ª17t 3 º 2t 1 5t 2 4 « 2 2t 1 » 3 2 6 ¬« ¼» 0 17 6 © 2010 Brooks/Cole, Cengage Learning Section 15.3 Conservative Vector Fields and Independence of Path yi xj 3 xz 2k 22. F x, y, z 23. F x, y, z F x, y, z is not conservative. r1c t sin ti cos tj k Ft sin ti cos tj 3t cos tk S ³ 0 ª¬sin S ³0 (a) r1 t >t@0 2 t cos t 3t cos t º¼ dt 2 2 (b) r2 t S S 3ª¬t sin t º¼ 6 ³ t sin t dt 0 0 2 (a) r1 t 5S r2c t 2i S k Ft t 4 cos t 2k Ft 1 2t j 3S 2t 2 1 2t k ³ C F dr ³ 0 3S t 1 2t dt (b) r2 t 3S 3 ³ t 2 2t 3 dt r2c t 3 2 1 0 1 ªt 3 t4 º 3S 3 « » 2 ¼0 ¬3 Ft S3 ³C 3, 2 ª x y 2º ¬ ¼ 1,1 26. ³ C ª¬2 x 27. 3S 2, S 2 ³ C cos x sin y dx sin x cos y dy >sin x sin y@ 0, S 31. ³C y i 2 x y jº¼ dr y dx x dy x2 y 2 x 2 3, 2 ª § x ·º «arctan ¨ ¸» © y ¹¼ 1,1 ¬ x y 2 2 2 dx x y S S 4 12 2S , 0 2 2 dy 0 4i 4 j 16t 2 cos 4t k 1 ³ 0 0 dt 3 yi 3 xj dr 0 >3xy@ 3,0, 80 72 25 1 0 1, 5 2y 2 3 ª¬e x sin yº¼ 0, 0 sin y dx e x cos y dy 2x S 52 0 2 ³ 0 0 dt 4ti 4tj, 0 d t d 1 ³ C F dr 2 25. ³C t 2i t 2 j, 0 d t d 2 2ti 2tj 1 0 y sin zi x sin zj xy cos xk r1c t ³ C F dr 30. 4, 0, 3 ª¬ xye z º¼ 4, 0, 3 1 2t i S tk , 0 d t d 1 (b) r2 t 0 4 8t i 3k , 0 d t d 1 24. F x, y, z S ³C e 4, 0, 3 ª¬ xye z º¼ 4, 0, 3 ³ C F dr ª¬t 3t 2 sin t 6 sin t t cos t º¼ 0 29. 4 cos ti 4 sin tj 3k , 0 d t d S ³ C F dr ª¬1 3t 2 cos t º¼ dt S ³C xye z k . f x, y , z 2 ³ C F dr 28. e z yi xj xyk F x, y, z is conservative. The potential function is cos ti sin tj tk , 0 d t d S (a) r1 t 399 ª º 1 « 2 2» x y ¬ ¼ 7, 5 1 1 26 74 2 481 z 2 y dx 2 x z dy x y dz xz 2 xy yz F x, y, z is conservative and the potential function is f x, y, z (a) > xz 2 xy yz@ 0, 0, 0 (b) > xz 2 xy yz@ 0, 0, 0 > xz 2 xy yz@ 0, 0,1 (c) > xz 2 xy yz@ 0, 0, 0 > xz 2 xy yz@ 1, 0, 0 > xz 2 xy yz@ 1,1, 0 1,1,1 0, 0,1 1, 0, 0 20 2 1,1,1 1,1, 0 0 2 2 1,1,1 0 2 2 2 2 © 2010 Brooks/Cole, Cengage Learning 400 32. Chapter 15 ³ C zy dx Vector Analysis xz dy xy dz yzi xzj xyk is conservative and the potential function is f x, y, z Note: Because F x, y, z xyz k , the integral is independent of path as illustrated below. 33. (a) > xyz@ 1,1,1 0, 0, 0 (b) > xyz@ 0,0, 0,0,10 > xyz@ 0, 0,1 (c) > xyz@ 1,0,0,0,00 > xyz@ 1, 0, 0 > xyz@ 1,1, 0 1 1,1,1 01 1,1, 0 ³ C sin x dx 1 1,1,1 >cos x z dy y dz 0 01 S 2, 3, 4 yz@ 0, 0, 0 34. F x, y, z is conservative: f x, y, z ª¬3 x 2 4 yz 10 z 2 º¼ 0, 0, 0 5, 9 3 2 ¬ª3x y y¼º 0, 0 Work 11 27 9 x 2 y 2i 6 x3 y 1 j is conservative. 35. F x, y 12 1 3x 2 4 yz 10 z 2 3, 4, 0 ³ C F dr 1 x2 y 36. F x, y is conservative. f x, y 30,366 3, 2 Work ª x2 º « » ¬ y ¼ 1,1 9 1 2 7 2 2 cos 2S ti 2 sin 2S tj 37. r t rc t 4S sin 2S ti 4S cos 2S tj at 8S 2 cos 2S ti 8S 2 sin 2S tj Ft ma t W ³ C F dr 1 at 32 ³C S2 S2 4 cos 2S ti sin 2S tj cos 2S ti sin 2S tj 4S sin 2S ti cos 2S tj dt 4 S 3 ³ 0 dt C 0 a1i a2 j a3k 38. F x, y, z Because F x, y, z is conservative, the work done in moving a particle along any path from P to Q is >a1x a2 y f x, y , z 39. F a3 z@P Q q1 , q 2 , q 3 p1 , p 2 , p 3 a1 q1 p1 a2 q2 p2 a3 q3 p3 175 j (a) r t ti 50 t j, 0 d t d 50 50 ³0 F dr (b) r t dr 40. No. The force field is conservative. 41. See Theorem 15.5. i j dt dr ³C JJJK F PQ. ti i ³ C F dr 2 50 t j, 0 d t d 50 1 50 1 25 42. A line integral is independent of path if 8750 ft lbs 175 dt ³ C F dr does not depend on the curve joining P and Q. See Theorem 15.6. 50 t j 50 ³0 175 1 25 50 t dt 50 ª t2 º 7 «50t » 2 ¼0 ¬ 8750 ft lbs © 2010 Brooks/Cole, Cengage Learning Section 15.3 a cos ti a sin tj, 0 d t d 2S , you have x 2 y 2 43. (a) For the circle r t 2S ³ C F dr ³0 Conservative Vector Fields and Independence of Path a cos t · § a sin t i j¸ a sin ti a cos tj dt ¨ 2 a2 ¹ © a 2S ³0 401 a 2 , and sin 2 t cos 2 t dt 2S . (b) For this curve, the answer is the same, 2S . (c) For the opposite overtation, the answer is 2S . (d) For the curve away from the origin, the answer is 0. 44. (a) The direct path along the line segment joining 4, 0 to 3, 4 requires less work than the path 46. Not conservative. The value of negative if the path is below the x-axis. (b) The closed curve given by the line segments joining 4, 0 , 4, 4 , 3, 4 , and 4, 0 satisfies 45. Conservative. 1, 0 to 1, 0 is positive if the path is above the x-axis, and going from 4, 0 to 4, 4 and then to 3, 4 . ³ C F dr ³ C F dr from 47. False, it would be true if F were conservative. z 0. 48. True ³ C F dr is independent of path. 49. True 50. False, the requirement is wM wy wN wx. 51. Let F Mi Nj Then wM wy wf wf i j. wy wx w § wf · ¨ ¸ wy © wy ¹ w2 f wy 2 and wN wx w § wf · ¨ ¸ wx © wx ¹ So, F is conservative. Therefore, by Theorem 15.7, you have w2 f w2 f w2 f . Because 2 wx wx 2 wy 2 § wf ³ C ¨© wy dx · wf dy ¸ wx ¹ ³C 0 you have M dx N dy wM wy wN . wx ³ C F dr 0 for every closed curve in the plane. 52. Because the sum of the potential and kinetic energies remains constant from point to point, if the kinetic energy is decreasing at a rate of 15 units per minute, then the potential energy is increasing at a rate of 15 units per minute. y x i 2 j 2 x y x y2 53. F x, y (a) M 2 y x2 y2 x2 y2 1 y 2 y wM wy N x2 y2 (b) r t F dr x2 y2 x2 y 2 2 x x2 y 2 x 2 y 2 1 x 2 x wN wx So, 2 x2 y 2 wN wx 2 x2 y 2 x2 y2 2 wM . wy cos ti sin tj, 0 d t d S sin ti cos tj sin ti cos tj dt ³ C F dr S ³0 sin 2 t cos 2 t dt >t@S0 S © 2010 Brooks/Cole, Cengage Learning 402 Chapter 15 Vector Analysis cos ti sin tj, 0 d t d S (c) r t sin ti cos tj F sin ti cos tj dt dr ³ C F dr S ³0 S >t@0 sin 2 t cos 2 t dt S cos ti sin tj, 0 d t d 2S (d) r t sin ti cos tj F sin ti cos tj dt dr ³ C F dr 2S ³0 2S >t@0 sin 2 t cos 2 t dt 2S This does not contradict Theorem 15.7 because F is not continuous at 0, 0 in R enclosed by curve C. § x· (e) ¨ arctan ¸ y¹ © 1y 1 x y 2 i x y 2 2 1 x y y x i 2 j x2 y 2 x y2 j F Section 15.4 Green's Theorem 2 0 d t d1 °­ti t j, ® d t d 2 t t 2 2 , 1 i j °̄ 1. r t ³ C y dx 2 x 2 dy 1 ³ 0 ª¬t 2 ³1 ª¬ 2 t dt t 2 2t dt º¼ 4 2 dt 2 t 2 dt º ¼ 2 1 ³0 t 4 2t 3 dt 2 ³1 22t 2 1 ª2 2 t 3 º ªt 5 t4 º « » « » 2 ¼ 0 «¬ 3 »¼1 ¬5 dt 7 2 10 3 By Green's Theorem, § wN ³ R ³ ©¨ wx y wM · ¸ dA wy ¹ 1 1 °­ti tj, ® °̄ 2 t i ³ C y dx 2 x 2 dy x ³ 0 ³ x2 ³0 2. r t 1 30 2 x 2 y dy dx 1 ³ 0 ¬ª2 xy y 2 ¼º x dx x2 1 x 2 2 x 3 x 4 dx ª x3 x4 x5 º « » 2 5 ¼0 ¬3 y=x 1 (1, 1) C2 1 30 C1 y = x2 x 1 0 d t d1 2 t j, 1 d t d 2 1 ³ 0 ¬ªt 1 2 ³ 0 2t 2 dt t 2 dt ¼º dt 2 ª ³ 1 «¬ t 2 2 ª 1 ·º 2§ dt ¸» dt 2 t ¨ © 2 2 t ¹¼ 1 2t 2 3 2º ³ 1 ¬« 2 t 1 ªt 22 2t ª 2t 3 º « » « 3 2 5 ¬ ¼ 0 «¬ 2 1 1 1 3 2 5 30 » dt ¼ 52 2 º » ¼»1 y y= 1 x (1, 1) C2 C1 y=x By Green's Theorem, § wN wM · ³ R ³ ©¨ wx wy ¹¸ dA x 1 1 ³0 ³ x 1 ³0 x 2 x 2 y dy dx 1 ³ 0 ¬ª2 xy y 2 ¼º x x dx 1 2 x3 2 x x 2 dx ª4 5 2 x2 x3 º » « x 2 3 ¼0 ¬5 1 30 © 2010 Brooks/Cole, Cengage Learning Section 15.4 0 d t ­ti ° d t t i j 1 1 ° ® °3 t i j 2 d t °4t j 3 d t ¯ 3. r t 2 d1 d 3 d 4 ³ 0 ª¬0 dt t 2 2 0 º¼ 2 3 ³ 1 dt ³ 2 dt 2 ³1 ª¬ t 1 11 0 1 dt º ¼ 2 3 ³ 2 ª¬1 dt 2 3t 1 1 ³0 ³0 0 0 dt º ¼ 2 y 2 x 2 y dy dx 1 1 2 ³ 0 ª¬2 xy y º¼ 0 dx ³0 (1, 1) C4 C2 x 1 ª¬ x 2 xº¼ 0 2 x 1 dx 1 C1 0 1 0 d t d 3 ­ti ° i j t 3 3 3 d t d 7 ° ® ° 10 t i 4 j 7 d t d 10 ° 10 d t d 14 ¯ 14 t j 4. r t 3 ³ C y dx x dy ³ 0 ª¬0 dt 2 2 t 2 0 º¼ 7 10 ³ 3 9 dt ³ 7 7 ³ 3 ¬ª t 3 16 dt 2 0 9 dt º ¼ 10 ³7 ª16 dt 10 t ¬ 9 7 3 16 10 7 12 § wN ³ R ³ ©¨ wx wM · ¸ dA wy ¹ 3 4 ³0 ³0 ³ C xe § wN ³ R ³ ¨© wx dx e x dy 3 ª¬4 x 16 xº¼ 0 2 y § wN ³ R ³ ¨© wx wM · ¸ dA wy ¹ dx e x dy In Exercises 7–10, 14 t 2 0º ¼ C3 4 (3, 4) C4 y 2 ¼º dx 0 C2 36 48 12 x C1 4 2 sin t , 0 d t d 2S . 2S ³0 ª¬2 cos te 2 sin t 2 sin t e 2 cos t 2 cos t º¼ dt | 19.99 2 ³2 ³ 4 x2 e x xe y dy dx 4 x2 2 wM · ¸ dA wy ¹ 1 ³0 3 xe x 3 x 2e x dx 1 x ³ 0 ³ x3 wN wM wx wy y x dx 2 x y dy e x xe y dy dx 0 ³1 ª ³ 2 ¬«2 6. C: boundary of the region lying between the graphs of y ³ C xe ³ 10 ¬ª0 dt 4 2 cos t and y y 3 ³ 0 ¬ª2 xy 2 x 2 y dy dx ³ 0 >8 x 16@ dx Let x 14 0º ¼ 4 3 5. C : x 2 y 2 2 y By Green's Theorem, ³C ³ 3 ª¬ 4 t C3 1 7. 4 0º ¼ 0 By Green's Theorem, § wN wM · ³ R ³ ¨© wx wy ¸¹dA 403 d 2 1 ³ C y dx x dy Green’s Theorem 4 x 2 e x xe x and y 4 x2 xe 4 x2 º dx | 19.99 ¼» x3 xe x e x dx | 2.936 2.718 | 0.22 1 ³0 3 xe x x3e x dx | 0.22 1. 3 ³0 ³ 3 x y dy x2 2 x ³ 0 ¬ªx dx x 2 2 x dx¼º 3 2 3 ª x 3x º « » 2 ¼0 ¬ 3 3 9 27 2 9 2 (3, 3) y=x 2 y = x 2 − 2x 1 x 1 2 3 4 −1 © 2010 Brooks/Cole, Cengage Learning 404 Chapter 15 Vector Analysis 8. Because C is an ellipse with a ³C 1, then R is an ellipse of area S ab 2 and b ³ R ³ 1 dA y x dx 2 x y dy Area of ellipse 2S . So, Green's Theorem yields 2S . 9. From the accompanying figure, we see that R is the shaded region. So, Green's Theorem yields ³C ³ R ³ 1 dA y x dx 2 x y dy 6 10 2 2 Area of R 56. y 4 (− 5, 3) (5, 3) 2 (− 1, 1) (1, 1) x (− 1, − 1) 4 2 (1, − 1) −2 (− 5, − 3) −4 (5, − 3) 10. R is the shaded region of the accompanying figure. ³C ³ R ³ 1 dA 4 Area of shaded region 2 1 y x dx 2 x y dy 1S 2 11. ³ C 2 xy dx >25 9@ § wN 1 x 8S −5 −4 −3 −2 −1 1 2 3 4 5 −2 −3 −4 −5 ³ R ³ ¨© wx x y dy y wM · ¸ dA wy ¹ 1 x 2 ³ 1 ³ 0 1 x 2 1 ³ 1 > y 2 xy@0 1 2 x dy dx dx 1 ³ 1 ¬ª 1 x 1 ª x3 x4 º x2 «x » 3 2 ¼ 1 ¬ 1 2 3 ³ 1 ¬ª1 x 2 x 2 x ¼º dx 2 x 1 x 2 ¼º dx 2 1 7 6 6 4 3 12. The given curves intersect at 0, 0 and 9, 3 . So, Green's Theorem yields ³C y 2 ³R ³ dx xy dy 9 ³0 ³0 13. ³C x x 2 y 2 dx 2 xy dy 14. In this case, let y ³C y 2 y dA § wN ³R ³ ¨© wx r sin T , x x 2 y 2 dx 2 xy dy 9 ³0 y dy dx ª y2 º « » ¬ 2 ¼0 wM · ¸ dA wy ¹ 4³ 2S 0 dx 4 ³ 4 ³ r cos T . Then dA ³ R ³ 4 y dA x 9 ³0 x dx 2 16 x 2 16 x 2 9 ª x2 º « » ¬ 4 ¼0 81 . 4 4 ³ 4 ¬ª2 y 2 y 2 y dy dx 2 ¼º 16 x 2 16 x 2 dx 0 r dr dT and Green's Theorem yields 1 cos T ³0 r sin T r dr dT 2S 4³ 15. Because § wN ³ R ³ ¨© wx wM wy 2e x sin 2 y wM · ¸ dA wy ¹ 0. 2S 0 1 cos T ³0 r 2 sin T dr dT wN you have wx 4 2S sin T 1 cos T 3³0 16. Because 3 wM wy ª 1 cos T 4 º « » 3 »¼ 0 ¬« dT 2x x y2 2 0. wN , wx you have path independence and § wN ³ R ³ ¨© wx wM · ¸ dA wy ¹ 0. © 2010 Brooks/Cole, Cengage Learning Section 15.4 Green’s Theorem 405 17. By Green's Theorem, ³ C cos y dx ³R ³ xy x sin y dy 1§ 1 ³0 ³ x y sin y sin y dA x ³ 0 ¨© 2 1 x2 · ¸ dx 2¹ x ª x2 x3 º « » 6 ¼0 ¬4 ³ 0 «¬ 2 »¼ y dy dx 1 1 4 6 x 1 ª y2 º dx x 1 12 18. By Green's Theorem, ³C e x 2 2 y dx e y 2 2 ³ R ³ 2 dA x dy 2 ªS 6 ¬ 2 Area of R S 2 3º ¼ 2 60S . 19. By Green's Theorem, ³C ³R ³ 1 3 x 3 y dx x y dy 4>Area Large Circle Area Small Circle@ dA 4>9S S @ 20. By Green's Theorem, ³C y ³R 3 x 2 e y dx e y dy 2 2 y ³ 3x e dA 2 ³1 ³ 2 ³ 1 2 2 2 y 2 16e 16e 2 2 (2, 2) ³ 1 ³ 1 dy dx 3x 2e y dy dx x 1 1 ³ 1 ³ 2 3x e 2 y 2e e 7e e 2 2 dy dx (− 2, − 2) 2e 1 e 2 (2, − 2) (− , − ) (1, − 1) 1 2e 2e . xyi x y j 21. F x, y C: x y 2 1 ³ C xy dx 2S ³0 22. F x, y 1 2 2 (1, 1) (− , ) ³ 2 3x e 7 e e Work (− , ) 3 x 2e y dy dx 2 2 32S x y dy ³R ³ 1 x 1 ªr2 º r2 cos T » dT « 2 2 ¬ ¼0 2S ³0 dA 2S 1 ³ 0 ³ 0 1 r cos T 1 1 cos T dT 2 r dr dT 2S 1 ª1 º « 2T 2 sin T » ¬ ¼0 S ex 3 y i e y 6x j C: r 2 cos T Work ³C e x x3 2 3 y i 6 x 5 23. F x, y ³ R ³ 9 dA 3 y dx e y 6 x dy 2 cos T is a circle with a radius of one. 9S because r y j C : boundary of the triangle with vertices 0, 0 , 5, 0 , 0, 5 Work 24. F x, y ³C x3 2 3 y dx 6 x 5 ³ R ³ 9 dA y dy 25. C: let x A 1 2 225 2 5 5 3 x 2 y i 4 xy 2 j C : boundary of the region bounded by the graphs of y Work 9 ³ C 3x 2 y dx 4 xy 2 dy a cos t , y 1 x dy y dx 2³C 9 ³0 ³0 x x, y 4 y 2 1 dy dx 0, x 9 ³0 9 4 x3 2 3 x1 2 dx 558 5 a sin t , 0 d t d 2S . By Theorem 15.9, you have 1 2S ªa cos t a cos t a sin t a sin t º¼ dt 2³0 ¬ 1 2S 2 a dt 2³0 2S ª a2 º « t» ¬ 2 ¼0 S a2. © 2010 Brooks/Cole, Cengage Learning 406 Chapter 15 Vector Analysis 26. From the figure you see that 3 3 x, dy dx, 0 d x d 2 2 2 x 1 4, dy dx 2 2 0, dx 0. C1 : y C2 : y C3 : x y C2 4 (2, 3) C3 2 C1 1 A 3x − 2y = 0 x 1 2§3 3 · 1 0§ 1 1 · ¨ x x ¸ dx ³ 2 ¨ x 4 ¸ dx 0 2³0 © 2 2 ¹ 2 © 2 2 2 ¹ 2 1 0 4 dx 2³ dx 4 0 2³2 x 2 1, 27. C1 : y 5 x 3, dy C2 : y x 1 2 x dx dy 3 (4, 17) 1 4 1 1 x 2 x x 2 1 dx ³ x 5 5 x 3 dx ³ 1 2 2 4 4 º 1ªx 1 1 « x» >3x@4 2¬ 3 2 ¼1 4 y 15 3 2 5 dx y = 5x − 3 So, by Theorem 15.9 you have A 2y = 8 x 3 1 1 >18@ >9@ 2 2 10 C1 C2 5 y = x2 + 1 (1, 2) 9 . 2 x 1 2 3 4 28. Because the loop of the folium is formed on the interval 0 d t d f, dx 3 1 2t 3 t3 1 2 3 2t t 4 dt and dy t3 1 2 dt , you have A 4 3 ª § 3t 2 · 3 1 2t 1 f «§ 3t · 3 2t t ¨ 3 ¸ ¨ ¸ ³ 2 2 3 2 0 «© t 1 ¹ t 3 1 © t 1¹ t 3 1 ¬ f 2 3 9 ft t 1 dt 2 ³ 0 t3 1 3 9 f t5 t 2 dt 2 ³ 0 t3 1 3 º » dt » ¼ 2 3 f 2 3 3t t 1 dt 2³0 ª 3 º « » «¬ 2 t 3 1 »¼ 0 3 . 2 29. See Theorem 15.8, page 1093. ³ 1 2 C 30. See Theorem 15.9: A x dy y dx. ³ R ³ y dA. Let 31. For the moment about the x-axis, M x ³C Mx y2 dx 2 1 y 2 dx and y 2³C For the moment about the y-axis, M y ³C My x2 dy 2 1 x 2 dy and x 2³C 32. By Theorem 15.9 and the fact that x A 1 2 ³ x dy y dx 1 2 ³ Mx 2A 0 and M y 2 2. By Green's Theorem, 1 y 2 dx. 2A³C ³R ³ x dA. Let My 2A N N x 2 2 and M 0. By Green's Theorem, 1 x 2 dy. 2A³C r cos T , y r sin T , you have r cos T r cos T dT r sin T r sin T dT ³ 1 r2 2 C dT . © 2010 Brooks/Cole, Cengage Learning Section 15.4 2 2 ³ 2 33. A x ª x3 º «4 x » 3 ¼ 2 ¬ 4 x 2 dx Green’s Theorem 407 32 3 1 1 x 2 dy x 2 dy ³ C 1 2A 2 A ³ C2 2 x dx and for C2 , dy For C1 , dy To calculate y , note that y 1 2 32 3 y 2 ³2 1 2 32 3 0. So, x y 2 2 ³2 ª 3 § x 4 ·º « ¨ ¸» «¬ 64 © 2 ¹»¼ 2 x 2 x dx 2 0. y = 4 − x2 3 0 along C2 . So, 2 2 x5 º 3ª 8 x3 » «16 x 64 ¬ 3 5 ¼ 2 3 16 8 x 2 x 4 dx 64 ³ 2 2 2 4 x 2 dx 8 . 5 1 x −2 C2 1 −1 § 8· ¨ 0, ¸ © 5¹ x, y 34. Because A Let x S a2 1 , you have 2A 2 a sin t , 0 d t d S , then area of semicircle a cos t , y x 1 S 2 a cos 2 t a cos t dt S a2 ³ 0 S S ³0 y 1 S 2 a sin 2 t a sin t dt S a2 ³ 0 a a 1 S a2 a S S ³0 cos3 t dt . Note that y 0 and dy S S S ³0 aª cos3 t º «cos t » S¬ 3 ¼0 sin 3 t dt 0 along the boundary y aª sin 3 «sin t S¬ 3 1 sin 2 t cos t dt C1 2 0. S tº » ¼0 0 4a . 3S § 4a · ¨ 0, ¸ © 3S ¹ x, y 1 1 ³0 35. Because A x x3 dx x, dy have y x 2 ³ x 2 dy y 2 ³ y 2 dx C C ª x2 x4 º « » 4 ¼0 ¬2 1 1 , you have 4 2A 2. On C1 you have y x3 , dy 3 x 2 dx and on C2 you y dx. So, 2³ C1 x 2 3 x 2 dx 2 ³ 1 C2 x 2 dx 0 2 ³ x 6 dx 2 ³ x 2 dx 0 1 1 6 2 5 3 0 6³ x 4 dx 2³ x 2 dx 0 1 2 2 7 3 8 15 (1, 1) 1 C2 8 . 21 C1 x 1 §8 8· ¨ , ¸ © 15 21 ¹ x, y 1 2a c 2 0, dy 0 36. Because A C1 : y C2 : y C3 : y ac, you have c x a , dy b a c x a , dy b a 1 2A 1 , 2ac y (b, c) 2a c dx b a c dx. b a C3 x 1 x 2 dy 2ac ³ C 1 ª a 0 2ac «¬³ a y 1 y 2 dx 2ac ³ C 1 ª «0 2ac ¬« x, y C1 −a So, §b ¨ , ©3 b§ b ³a x c 2 c dx ba · ³ a ¨© b a ¸¹ a ³b 2 2 x a dx x2 C2 c º dx b a »¼ 1 ª 2abc º 0 2ac «¬ 3 »¼ 2 º c · 2 ¨ ¸ x a dx» ©b a¹ ¼» a § ³b x a b 3 c2 b a º 1 ª c 2 b a « » 2ac ¬ 3 3 ¼ c . 3 c· ¸ 3¹ © 2010 Brooks/Cole, Cengage Learning 408 Chapter 15 Vector Analysis 37. A 1 2S 2 a 1 cos T 2³0 38. A 1 S 2 a cos 2 3T dT 2³0 2 a 2 S 1 cos 6T dT 2 ³0 2 a 2 ª 3T 1 º 2 sin T sin 2T » 2 ¬« 2 4 ¼0 S a2 ª sin 6T º T « 4¬ 6 »¼ 0 3S a 2 2 a2 3S 2 S a2 4 a cos 3T where 0 d T d S . Note: In this case R is enclosed by r 2S 4S . So, dT d 3 3 39. In this case the inner loop has domain A 2S a 2 2S § 1 cos 2T · ¨1 2 cos T ¸ dT 2 ³0 © 2 2 ¹ dT 1 4S 3 1 4 cos T 4 cos 2 T dT 2 ³ 2S 3 1 4S 3 3 4 cos T 2 cos 2T dT 2 ³ 2S 3 sin T , cos T 1 cos T 40. In this case, 0 d T d 2S and you let u 1 u2 , dT 1 u2 1 >3T 4 sin T sin 2T @42SS 2 3 3 3 3 . 2 S 2 du . 1 u2 Now u f as T S and you have A 9 §1· S 2¨ ¸ ³ © 2 ¹ 0 2 cos T 18³ f 0 2 9³ dT 2du 1 u2 f 0 1 u2 §1 u2 · 4 4¨ 2¸ ©1 u ¹ 1 u2 f f 6 §S · 6 ª u º ª 6 arctan « ¨ ¸ 3© 2 ¹ 3 ¬«1 3u 2 ¼» 0 ¬ 3 41. (a) ³ C1 y 3 ³ R ³ ª¬ 27 3x dx 27 x x3 dy 2S 1 ³0 ³0 (b) You want to find c such that 27c 2 3 c4 2 4 27c 3c 2 c f c fc c Maximum Value: 2S 3 ³0 ³0 C ³0 1 u2 1 3u 2 2 du 2 f 3S 3S 0 3 3 º 3u » ¼0 2 f 0 12 § 1 · ª u º 3 u» ¨ ¸« 3 © 2 ¹ ¬1 3u 2 ¼0 ª 6 arctan « ¬ 3 f 13 23 du 18³ du 2 0 1 3u 2 1 3u 2 18³ 2 f º 3 ³ 1 3u 2 du» ¼0 2 3S . 3 y 2 º¼ dA 27 3r 2 r dr dT 2S ³0 1 ª 27 r 2 3r 4 º « » dT 4 ¼0 ¬ 2 2S ³0 51 dT 4 51 S 2 27 3r 2 r dr dT is a maximum: 3 27 3r 2 r dr dT 243S 2 ­ti, 0 d t d 4 ° i j t 4 4 , 4 d t d 8 ® ° 12 t i 12 t j, 8 d t d 12 ¯ 42. (a) r t ³ C y dx x dy 2 2 4 ³ 0 ª¬0 dt t 0 64 By Green's Theorem, ³R 2 0 º¼ 128 3 8 ³ 4 ¬ª t 4 0 16 dt º ¼ 2 12 ³8 ª 12 t ¬ 2 dt 12 t 64 3 § wN wM · ³ ¨© wx wy ¸¹ dA dt º ¼ 2 y (4, 4) 4 x ³0 ³0 2 x 2 y dy dx 4 ³0 x 2 dx 64 . 3 4 y=x 3 2 1 x 1 2 3 4 © 2010 Brooks/Cole, Cengage Learning Section 15. 4 Green’s Theorem cos ti sin tj, 0 d t d 2S (b) r t ³ C y dx x dy 2 2 2S ³0 2S ³0 2S ³0 ª¬sin 2 t sin t dt cos 2 t cos t dt º¼ cos3 t sin 3 t dt 2S ª sin 3 t cos3 t º cos t «sin t » 3 3 ¼0 ¬ ªcos t 1 sin 2 t sin t 1 cos 2 t º dt ¬ ¼ By Green's Theorem, 1 x 2 1 ³ 1 ³ 2S 1 2r cos T 2r sin T r dr dT 2 2S cos T sin T dT 3³0 x 2 + y 2 =1 1 2 x 2 y dy dx 1 x 2 ³0 ³0 ³C 0 y § wN wM · ³ R ³ ¨© wx wy ¸¹ dA 43. I 409 2 0 3 x −1 1 0. −1 y dx x dy x2 y 2 y x i 2 j. x2 y 2 x y2 (a) Let F wN wx F is conservative because wM wy x2 y 2 x2 y 2 2 . F is defined and has continuous first partials everywhere except at the origin. If C is a circle (a closed path) that does not contain the origin, then ³ C F dr ³ C M dx N dy § wN ³ R ³ ¨© wx wM · ¸ dA wy ¹ 0. a cos ti a sin tj, 0 d t d 2S be a circle C1 oriented clockwise inside C (see figure). Introduce line segments (b) Let r C2 and C3 as illustrated in Example 6 of this section in the text. For the region inside C and outside C1 , Green's Theorem applies. Note that since C2 amd C3 have opposite orientations, the line integrals over them cancel. So, C4 C1 C2 C C3 and ³ C4 F dr ³ C1 F dr ³ C F dr 0. y 3 But, ³ C1 F dr 2S ³0 2S ³0 Finally, ³ C F dr ª a sin t a sin t a cos t a cos t 2 « 2 2 2 2 a t a t a cos sin cos 2 t a 2 sin 2 ¬ sin 2 t cos 2 t dt ³ C1 F dr 2S >t@0 C 2 º » dt t¼ C1 C2 x 4 C3 2S . −2 −3 2S . Note: If C were oriented clockwise, then the answer would have been 2S . 44. (a) Let C be the line segment joining x1 , y1 and x2 , y2 . y dy y2 y1 x x1 y1 x2 x1 y2 y1 dx x2 x1 x2 ³ C y dx x dy ³ x1 ª y2 y1 § y y1 ·º x x1 y1 x¨ 2 « ¸» dx x x 2 1 © x2 x1 ¹¼ ¬ x2 ªª § y2 y1 · º º «« x1 ¨ ¸ y1 » x» x x «¬¬ © 2 1¹ ¼ »¼ x1 x2 ³ x1 ª § y2 y1 · º « x1 ¨ ¸ y1 » dx x x 2 1 © ¹ ¬ ¼ ª § y2 y1 · º « x1 ¨ ¸ y1 » x2 x1 x x 1¹ ¬ © 2 ¼ x1 y2 y1 y1 x2 x1 x1 y2 x2 y1 © 2010 Brooks/Cole, Cengage Learning Chapter 15 410 Vector Analysis 1 y dx x dy 2³C (b) Let C be the boundary of the region A 1 1 1 dA 2³R ³ ³ R ³ dA. So, 1ª y dx x dy 2 ¬«³ C1 ³ R ³ dA ³ C2 y dx x dy " x dyº ¼» ³ Cn y dx where C1 is the line segment joining x1 , y1 and x2 , y2 , C2 is the line segment joining x2 , y2 and x3 , y3 , ", and Cn is the line segment joining xn , yn and x1 , y1 . So, 1 ª x1 y2 x2 y1 x2 y3 x3 y2 " xn 1 yn xn yn 1 xn y1 x1 yn º¼. 2¬ ³ R ³ dA 45. Pentagon: 0, 0 , 2, 0 , 3, 2 , 1, 4 , 1, 1 1ª 2¬ A 0 0 4 0 12 2 1 4 0 0 º¼ 19 2 46. Hexagon: 0, 0 , 2, 0 , 3, 2 , 2, 4 , 0, 3 , 1, 1 1ª 2¬ A 47. Because 0 0 4 0 12 4 6 0 0 3 0 0 º¼ ³ C F N ds ³ C fDN g ds 48. ³C ³ R ³ div F dA, then ³ C f g N ds fDN g gDN f ds ³ R ³ div ³C f 50. F x dx g y dy f g dA ³ C fDN g ds ³ C gDN f ³R ³ 49. 21 2 ³R ³ ªw y f 2 g f g dA. ds f 2 g f g dA ³ R ³ «¬ wx g ³R ³ f div g f g dA º w f x » dA wy ¼ ³R ³ ³R ³ g 2 f g f dA ³R ³ 0 0 dA f 2 g g 2 f dA 0 Mi Nj wN wx wM wN wM wy wx wy ³ C F dr ³ C M dx N dy 0 § wN ³ R ³ ¨© wx wM · ¸ dA wy ¹ ³R ³ 0 dA 0 Section 15.5 Parametric Surfaces ui vj uvk 1. r u , v z xy Matches (e) x y 2 2 2 z , cone Matches (f ) 2y x z , plane 1 2 u v j vk 4. r u , v 4y ui 14 v3 j vk z 3 , cylinder Matches (a) 2 cos v cos ui 2 cos v sin uj 2 sin vk 5. r u , v x y z2 2 ui Matches (b) u cos vi u sin vj uk 2. r u , v 3. r u , v 2 4 cos 2 v cos 2 u 4 cos 2 v sin 2 u 4 sin 2 v 4 cos2 v 4 sin 2 v 4, sphere Matches (d) 4 cos ui 4 sin uj vk 6. r u , v x y 2 2 4, circular cylinder Matches (c) © 2010 Brooks/Cole, Cengage Learning Section 15.5 ui vj 7. r u , v y 2z v k 2 Parametric Surfaces 2 cos v cos ui 4 cos v sin uj sin vk , 12. r u , v 0 d u d 2S , 0 d v d 2S 0 2 2 z 5 4 3 2 x y z 4 16 1 Plane 411 1 −4 −5 −5 z 3 2 5 4 3 3 4 5 5 −3 −4 −5 x −4 y y 5 x 2 sinh u cos vi sinh u sin vj cosh uk , 13. r u , v 2u cos vi 2u sin vj 12 u 2k 8. r u , v x y 1 2 u , 2 z 2 4u z 2 1 8 2 x y 2 0 d u d 2, 0 d v d 2S 2 2 2 z x y 1 4 1 Paraboloid z 2 9 1 6 z 9 4 6 3 6 y 9 x 2u cos vi 2u sin vj vk , 14. r u , v 4 4 0 d u d 1, 0 d v d 3S y z x tan z 2 cos ui vj 2 sin uk 9. r u , v x2 z 2 y x 8 4 4 −4 Cylinder −4 −2 2 z x 2 4 4 y 3 u sin u cos vi 1 cos u sin vj uk , 15. r u , v 5 5 x y 0 d u d S, −3 0 d v d 2S z 5 3 cos v cos ui 3 cos v sin uj 5 sin vk 10. r u , v x2 y 2 9 cos 2 v cos 2 u 9 cos 2 v sin 2 u x2 y 2 z 2 9 25 2 2 cos 2 v sin 2 v 4 3 9 cos 2 v −2 1 −3 3 2 x y z 9 9 25 −2 2 1 −3 2 −1 y 3 x 1 Ellipsoid cos3 u cos vi sin 3 u sin vj uk , 16. r u , v z 0 d u d 5 S 2 , 0 d v d 2S z 2 x 4 3 3 4 y −1 11. r u , v 2u cos vi 2u sin vj u k , 4 z 1 y z 0 d u d 1, 0 d v d 2S x2 y2 x −1 1 3 2 2 16 1 2 x 2 y © 2010 Brooks/Cole, Cengage Learning Chapter 15 412 Vector Analysis For Exercises 17–20, r u, v u cos vi u sin vj u 2 k , 0 d u d 2, 0 d v d 2S . Eliminating the parameter yields z x 2 y 2 , 0 d z d 4. z 5 y 2 2 x u cos vi u sin vj u 2k , 0 d u d 2, 0 d v d 2S 17. s u , v z x2 y 2 The paraboloid is reflected (inverted) through the xy-plane. u cos vi u 2 j u sin vk , 0 d u d 2, 0 d v d 2S 18. s u , v y x2 z 2 The paraboloid opens along the y-axis instead of the z-axis. u cos vi u sin vj u 2k , 0 d u d 3, 0 d v d 2S 19. s u , v The height of the paraboloid is increased from 4 to 9. 4u cos vi 4u sin vj u 2k , 0 d u d 2, 0 d v d 2S 20. s u , v z x2 y 2 16 The paraboloid is "wider." The top is now the circle x 2 y 2 21. z y 26. 4 x 2 y 2 ui vj vk r u, v 22. z 6 x y r u, v 27. z ui vj 6 u v k r u, v 23. y 64. It was x 2 y 2 4 x2 9z 2 xi r x, y 4 x 2 9 z 2 j zk 16 2 cos ui 4 sin uj vk x2 r u, v 28. 4. ui vj u 2k x2 y2 z2 1 9 4 1 r u, v 3 cos v cos ui 2 cos v sin uj sin vk or, cos vi uj 13 u sin vk , r u, v 1u 2 u t 0, 0 d v d 2S 24. x 16 y 2 z 2 r y, z 16 y 2 z 2 i yj zk 29. z 4 inside x 2 y 2 r u, v 30. z v cos ui v sin uj 4k , 0 d v d 3 x 2 y 2 inside x 2 y 2 r u, v ui u t 0, 0 d v d 2S 25. x 2 y 2 r u, v 1 4 u cos vj u sin vk , 25 5 cos ui 5 sin uj vk 9. v cos ui v sin uj v 2k , 0 d v d 3 or, r u, v 9. 31. Function: y x , 0 d x d 6 2 Axis of revolution: x-axis u u cos v, z sin v 2 2 0 d u d 6, 0 d v d 2S x u, y © 2010 Brooks/Cole, Cengage Learning Section 15.5 x, 0 d x d 4 32. Function: y x u, y u cos v, z 0 d u d 4, 33. Function: x u sin v 0 d v d 2S sin u sin v, z u y 1, 0 d y d 2 u 2 1 cos v, y 0 d u d 2, 2u sin vi 3u cos vj ru u , v N 4 y 3z 0 d v d 2S 4 0 0 rv u , v 2u sinh vi 2u cosh vj 1. At 4, 0, 2 , u i j, rv 0, 1 i j k i j k 1 1 0 ru 2, 0 N i j 2k 1 i 8i 8k Tangent plane: x 4 z 2 u j k 2 uv 1. j i 4 j Direction numbers: 1, 0, 1 x z 0 2 4ui vj vk , ru u , v 4i, rv u , v i j k ru u rv 4 0 0 0 1 1 uvk , 1, 1, 1 1 k , rv 1, 1 2 ru 1, 1 u rv 1, 1 ru u rv 39. r u , v 1 and v 0. 0 v i k , rv u , v 2 uv At 1, 1, 1 , u 2 and v 2i 2k , rv 2, 0 0 (The original plane!) ui vj 0 2u cosh vi 2u sinh vj 12 u 2k , 2 cosh vi 2 sinh vj uk 0 and v 16 j 12k 12 ru u , v x y 2z N 4 i jk Tangent plane: x 1 y 1 2 z 1 ru 1, 1 j k i j, rv u , v 1 1 ru u , v i 0 3 Tangent plane: 4 y 6 3 z 4 ru 0, 1 u rv 0, 1 36. r u , v 4i u v i u v j vk , 1, 1, 1 At 1, 1, 1 , u ru 0, 1 § S· 3 j 4k , rv ¨ 2, ¸ © 2¹ § S· § S· ru ¨ 2, ¸ u rv ¨ 2, ¸ © 2¹ © 2¹ 38. r u , v 35. r u , v 0, 6, 4 S 2. 2 and v u 2 1 sin v u, z 413 Direction numbers: 0, 4, 3 2 Axis of revolution: y-axis x rv u , v N 0 d u d S , 0 d v d 2S 34. Function: z 2 cos vi 3 sin vj 2uk § S· ru ¨ 2, ¸ © 2¹ sin z , 0 d z d S sin u cos v, y ru u , v At 0, 6, 4 , u Axis of revolution: z-axis x 2u cos vi 3u sin vj u 2k , 37. r u , v Axis of revolution: x-axis Parametric Surfaces j 1 2 1 2 1 0 0 1 ru u rv 1 k 2 k A 1 j k 4 j 4k 16 16 2 ³0 ³0 4 0 d u d 2, 0 d v d 1 2 du dv 4 2 4 2 2 1 8 2 1 1 i jk 2 2 Direction numbers: 1, 1, 2 Tangent plane: x 1 y 1 2 z 1 x y 2z 0 0 © 2010 Brooks/Cole, Cengage Learning 414 Chapter 15 Vector Analysis 2u cos vi 2u sin vj u 2k , 0 d u d 2, 0 d v d 2S 40. r u , v ru u , v 2 cos vi 2 sin vj 2u k rv u , v 2 u sin vi 2 u cos vj ru u rv i j k 2 cos v 2 sin v 2u 2u sin v 2u cos v ru u rv A 0 16u cos v 16u sin 2 v 64u 2 4 2S 2 ³0 ³0 2 4 2S ³0 4u u 2 4 du dv a cos ui a sin uj vk , 41. r u , v ru u , v a sin ui a cos uj rv u , v k ru u rv a sin u a cos u i j 0 ru u rv A 4u 2 cos vi 4u 2 sin vj 8uk b ª4 2 «3 u 4 ¬ 4u u 2 4 3 2º » dv ¼0 0 1 a du dv 2S ab rv u , v a sin u sin vi a sin u cos vj ru u rv a cos u cos v i j 0 d u d S , 0 d v d 2S k a cos u sin v a sin u a sin u sin v a sin u cos v a 2 sin 2 u cos vi a 2 sin 2 u sin vj a 2 sin u cos uk 0 2 a sin u S ³0 ³0 a 2 sin u du dv 4S a 2 au cos vi au sin vj uk , 0 d u d b, 0 d v d 2S 43. r u , v ru u , v a cos vi a sin vj k rv u , v au sin vi au cos vj ru u rv i j k a cos v a sin v 1 au sin v au cos v ru u rv A 64S 2 2 1 3 a cos ui a sin uj 0 a cos u cos vi a cos u sin vj a sin uk A 4 16 2 8 2S 3 k ru u , v 2S 4 8 8 8 dv 3 0 d u d 2S , 0 d v d b a sin u cos vi a sin u sin vj a cos uk , ru u rv 2S ³0 a 2S ³0 ³0 42. r u , v 2 2S au cos vi au sin vj a 2 uk 0 au 1 a 2 b ³0 ³0 a 1 a 2 u du dv S ab 2 1 a 2 © 2010 Brooks/Cole, Cengage Learning Section 15.5 a b cos v cos ui a b cos v sin uj b sin vk , a ! b, 0 d u d 2S , 44. r u , v ru u , v a b cos v sin ui a b cos v cos uj rv u , v b sin v cos ui b sin v sin uj b cos vk ru u rv i j k a b cos v sin u a b cos v cos u 0 b sin v cos u b sin v sin u b cos v Parametric Surfaces 415 0 d v d 2S b cos u cos v a b cos v i b sin u cos v a b cos v j b sin v a b cos v k ru u rv A b a b cos v 2S 2S ³0 ³0 u cos vi 45. r u , v u sin vj uk , 0 d u d 4, 0 d v d 2S ru u , v cos v sin v i jk 2 u 2 u rv u , v u sin vi ru u rv cos v 2 u u sin v ru u rv u u cos vj i A 2S 4 ³0 ³0 4S 2 ab b a b cos v du dv u j k sin v 1 2 u u cos v 0 u cos vi 1 du dv 4 S 6 17 17 1 | 36.177 ru u , v cos u cos vi j cos u sin vk rv u , v sin u sin vi sin u cos vk ru u rv sin u cos vi cos u sin uj sin u sin vk ru u rv A sin u 2S S ³0 ³0 sin u 1 k 2 1 4 sin u cos vi uj sin u sin vk , 0 d u d S , 46. r u , v u sin vj 0 d v d 2S 1 cos 2 u 1 cos 2 u du dv ª S «2 2 ln ¬« 2 1º » 2 1 ¼» 47. See the definition, page 1102. 50. (a) From 10, 10, 0 48. See the definition, page 1106. (b) From 10, 10, 10 49. Function: z x Axis of revolution: z-axis x u cos v, y u sin v, z r u, v u (d) From 10, 0, 0 u cos vi u sin vj uk 0 d v d 2S u d 0, 51. r u , v (c) From 0, 10, 0 a sin 3 u cos3 vi a sin 3 u sin 3 vj a cos3 uk 0 d u d S, 0 d v d 2S x a sin u cos3 v x 2 3 a 2 3 sin 2 u cos 2 v y a sin 3 u sin 3 v y 2 3 a 2 3 sin 2 u sin 2 v z a cos3 u z 2 3 3 x2 3 y 2 3 z 2 3 a 2 3 cos 2 u a 2 3 ª¬sin 2 u cos 2 v sin 2 u sin 2 v cos 2 u º¼ a 2 3 ª¬sin 2 u cos 2 u º¼ a2 3 © 2010 Brooks/Cole, Cengage Learning 416 Chapter 15 Vector Analysis u cos vi u sin vj vk 52. Graph of r u , v 0 d u d S, 0 d v d S from (a) 10, 0, 0 (b) 0, 0, 10 (c) 10, 10, 10 z z 3 3 −3 y y −3 3 3 3 −3 3 x y x 4 cos v cos ui 53. (a) r u , v 4 2 cos v cos ui (b) r u , v 4 cos v sin uj sin vk , 4 2 cos v sin uj 2 sin vk , 0 d u d 2S , 0 d v d 2S 0 d u d 2S , 0 d v d 2S z z 4 −6 4 −6 6 6 x y −4 8 cos v cos ui (c) r u , v 6 6 x y 8 3 cos v cos ui (d) r u , v 8 cos v sin uj sin vk , 8 3 cos v sin uj 3 sin vk , 0 d u d 2S , 0 d v d 2S 0 d u d 2S , 0 d v d 2S z z 12 9 3 3 12 y x x 12 −9 y −12 The radius of the generating circle that is revolved about the z-axis is b, and its center is a units from the axis of revolution. 54. r u , v (a) If u 2u cos vi 2u sin vj vk , 0 d u d 1, 0 d v d 3S Helix 1: z 2 cos vi 2 sin vj vk r 1, v 10 x2 y2 4 8 0 d z d 3S 4 2 −2 (b) If v 2S : 3 § 2S · r¨ u, ¸ © 3 ¹ y z 3x 2S 3 −2 2 x 2 y Line z ui 2S 3uj k 3 2 1 −2 −2 −1 −1 1 2 x 1 2 y (c)If one parameter is held constant, the result is a curve in 3-space. © 2010 Brooks/Cole, Cengage Learning Section 15.5 20 sin u cos vi 20 sin u sin vj 20 cos uk , 0 d u d S 3, 55. r u , v ru 20 cos u cos vi 20 cos u sin vj 20 sin uk rv 20 sin u sin vi 20 sin u cos vj i ru u rv j Parametric Surfaces 417 0 d v d 2S k 20 cos u sin v 20 sin u 20 cos u cos v 20 sin u sin v 20 sin u cos v 0 400 sin 2 u cos vi 400 sin 2 u sin vj 400 cos u sin u cos 2 v cos u sin u sin 2 v k 400 ¬ªsin 2 u cos vi sin 2 u sin vj cos u sin uk ¼º ru u rv S 400 sin 4 u cos 2 v sin 4 u sin 2 v cos 2 u sin 2 u 2S ³ S ³ dS ³0 ³0 56. x 2 y 2 z 2 Let x S 3 400 sin 4 u cos 2 u sin 2 u 2S 2S S 3 ³ 0 >400 cos u@0 dv 400 sin u du dv ³0 400 sin 2 u 400 sin u 400S m 2 200 dv 1 u ru u , v cos vi sin vj rv u , v u sin vi u cos vj. At 1, 0, 0 , u u 2 1. Then, u sin v, and z u cos v, y 1 and v u 1 2 k 0. ru 1, 0 is undefined and rv 1, 0 j. The tangent plane at 1, 0, 0 is x 1. u cos vi u sin vj 2vk , 0 d u d 3, 0 d v d 2S 57. r u , v ru u , v cos vi sin vj rv u , v u sin vi u cos vj 2k i ru u rv j cos v z k sin v 2 sin vi 2 cos vj uk 0 u sin v u cos v 4π 2 2π ru u rv A 2S 4 u2 3 ³0 ³0 ª §3 S «3 13 4 ln ¨¨ 4 u 2 du dv ¬« © −4 −2 2 4 4 y x ui f u cos vj f u sin vk , a d u d b, 0 d v d 2S 58. r u , v ru u , v i f c u cos vj f c u sin vk rv u , v f u sin vj f u cos vk ru u rv i j k 1 f c u cos v f c u sin v 0 f u sin v f u cos v ru u rv A 13 ·º ¸¸» 2 ¹¼» 2S b ³0 ³a f u f c u i f u cos vj f u sin vk 2 f u 1 ª¬ f c u º¼ f u 1 ª¬ f c u º¼ du dv 2 b 2S ³ f x a 2 1 ª¬ f c x º¼ dx because u x 59. Answers will vary. 60. Answers will vary. © 2010 Brooks/Cole, Cengage Learning 418 Chapter 15 Vector Analysis Section 15.6 Surface Integrals 1. S : z ³S ³ 2. S : z ³S ³ 3. S : z ³S ³ 4 x, 0 d x d 4, 4 15 2 x 3 y, x 2 y z dS 2 1 ³ 1 ³ 2S ³S ³ 1 x2 1 x2 1 0 02 dy dx x 2y 2 x1 2 , wz wy 1 x§ 2 3 2· x ¸ 1 x dy dx 3 ¹ 2 0 5 § 1 ·ª 3 2 » 12 ¨ 3 ¸ ¬ x 1 x ¼0 © ¹ 2S 2 dy dx 2 32 1 1 º 5 x1 2 1 x dx ³ 0 ¼0 24 2 1 ln 4 x2 x 1 3 ln 4 2 2 1 1, 2 wz wy dy dx 1· § ¨x ¸ 2¹ © 1 º x2 x » ¼0 1 1º ln » 4 2¼ 61 2 5 ln 3 2 2 | 0.2536 288 192 1 3³ z 3ª 0 3 3 x y2 º «x » ¬ 2 ¼0 3 dx 2 2 2S 3 3 2 wz wx first octant , 2 r cos T 2r sin T 2 r dr dT x x 2 dx 2 15 2 5 1 ln 18 96 192 3 2 2 3 3 x3 x 2 ³0 1 1· 1 § ¨ x ¸ dx 2¹ 4 © 2 5 ª3 18 48 «¬ 2 xy 1 1 2S ³0 ³0 5 1 32 1 x dx » 12 ³ 0 x ¼0 2 5 § 1 · ª§ 1· ¨ ¸ «¨ x ¸ 18 24 © 2 ¹ ¬© 2¹ ³0 ³0 128 14 1 3 2º 1 3 2º 2 5 1 18 24 ³ 0 ³ S ³ xy dS 15 x y dy dx 14 dy dx x 1 dx 2 5 2 5 1 3 18 24 ³ 0 3 x 4 ³0 12 2 0 2 3 2· x ¸ 1 x1 2 3 ¹ ª1 5 2 «6 x 1 x ¬ 3 0 1 4 9 dy dx 2S x§ 2 ª1 5 2 x 1 x 3 «¬ 4 3 x y 2 0 4 2 ³ 3 dx 4 2 y dy dx 2 ª1 º « 3 sin T 3 cos T T » ¬ ¼0 1 ³ 0 ³ 0 ¨© x 2 y ³ 0 ³ 0 ¨© x 2 y 5. S : z 3 ³0 3, dS 14 ³ 14 dy dx 2 ª1 º « 3 cos T 3 sin T 1» dT ¬ ¼ 2 1 52 x 3³0 wz wy 2, 4 0 0 wz 2 32 x , 0 d x d 1, 0 d y d x, wx 3 x 2 y z dS 2³ 02 dy dx wz wx 0 d y d 4, wz wy 0 2 1 1 x 2 y 15 2 x 3 y wz wx ³0 4. S : z 4 ³0 ³0 wz wy 1, x 2y 4 x 0 d x d 2, 2, x 2 y 2 d 1, x 2 y z dS 3 ³0 ³0 x 2 y z dS wz wx 0 d y d 3, 3 ª x4 9 x2 º 3 « 2x » 2 ¬4 2 ¼0 3 ª 27 º 2 «¬ 4 »¼ 27 3 8 3 3 y y=3−x x © 2010 Brooks/Cole, Cengage Learning Section 15.6 h, 0 d x d 2, 0 d y d 6. S : z 2 ³ S ³ xy dS wz wy 2 x, 2 ³ 0 ³ y xy 4 ³ S ³ xy dS 2 1ª 2 x4 º «2 x » 2¬ 4 ¼0 2 391 17 1 240 1 4 x 2 dx dy 4 ³ 0 ³ 0 xy 1 wz y, 2 wy y2 x2 dy dx 4 4 1 1 x 2 3904 160 5 15 3 10 x 2 y 2 , 0 d x d 2, 0 d y d 2 9. S : z 2 cos x, 0 d x d 2 , 0 d y d S 2 11. S : 2 x 3 y 6 z ³R ³ S x 2 2 xy x2 ³0 ³0 x 2 2 xy dS U x, y , z 2 ³0 ³0 x 2 2 xy dS 10. S : z m 0 1 2 x 4 x 2 dx 2³0 xy dy dx 1 wz xy, 0 d x d 4, 0 d y d 4, 2 wx 8. S : z ³S ³ wz wy 0 2 ³ S ³ xy dS ³S ³ 4 x2 wz wx 1 4 x 2 4 y 2 dy dx | 11.47 x 2 x 2 2 xy first octant z 12 S 2 ³0 1 sin 2 x dy dx 2 13 x x3 4 1 sin 2 x dx | 0.52 1y 2 y 5 x2 y2 x2 y2 y = 4 − 23 x 4 1 13 2 12 2 6 3 4 2x 3 ³ ³0 7 6 0 dA x 2 y 2 dy dx 2 R 1 ³ 6 7 6 0 ªx 2 4 «¬ U x, y , z 1 3 7 ª 4 x3 6« ¬3 16 x 4 1 8 4 6 4 23 x º »¼ 0 x 364 3 1 2 3 4 5 6 −1 kz ³ S ³ kz dS ³R ³ k 13. S : r u , v ru 2x 3 4 23 x º dx »¼ 3 a2 x2 y 2 12. S : z m 419 9 x 2 , 0 d x d 2, 0 d y d x, 7. S : z wz wx ³0 ³0 4 x2 , Surface Integrals i, a2 x2 y2 · ¸ dA a 2 x 2 y 2 ¸¹ ui vj 2vk , 0 d u d 1, a 2 · § ¸ ¨ 2 2 2 ¸ ¨ a x y ¹ © x § a2 x2 y2 ¨ ¨ © ³ R ³ ka dA ka ³ R z 2 · ¸ dA 2 2 2 ¸ a x y ¹ y ³ dA ka 2S a 2 a 2ka 3S a a x 0 d v d 2 j 2k rv i ru u rv ³R ³ k § 1¨ ¨ © j k 2 j k 1 0 0 0 1 2 ru u rv ³S ³ 5 y 5 dS 2 1 ³0 ³0 v 5 5 du dv 2 ³0 2 v5 5 dv ªv2 º 5 « 5v» 2 ¬ ¼0 12 5 © 2010 Brooks/Cole, Cengage Learning y 420 Chapter 15 Vector Analysis 2 cos ui 2 sin uj vk , 0 d u d S 2, 0 d v d 1 14. r u , v 2 sin ui 2 cos uj, ru i ru u rv j ru u rv 15. S : r u , v 1 ³0 ³0 2 cos ui 2 sin uj vk , rv j 0 0 1 4 cos u 4 sin u 16. S : r u , v ru u rv 0 d u d S 2, 0 d v d 1 2 cos ui 2 sin uj 2 S 2 1 ³0 ³0 2 2 cos u 2 sin u 2 du dv 12u cos vi 12u sin vj 16uk x y dS 17. f x, y, z 4 ³0 ³0 S 2 1 4³ >sin u cos u@0 0 1 4³ 2 dv dv 0 8 0 d v d S 4u cos vi 4u sin vj 3uk , 0 d u d 4, S 4 dv k 0 2 x y dS 1 ª sin 2 u º 8³ « » 0 ¬ 2 ¼0 k 2 sin u 2 cos u ru u rv 2 2 cos u 2 sin u 2 du dv 2 sin ui 2 cos uj, ru u rv ³S ³ 1 S 2 S 2 i ³S ³ 2 cos ui 2 sin uj 0 0 4 cos 2 u 4 sin 2 v ³ xy dS ru k k 2 sin u 2 cos u 0 ³S rv 20u 4u cos v 4u sin v 20u du dv 10,240 3 x2 y 2 z 2 S: z x y, x 2 y 2 d 1, ³S ³ f x, y, z dS ³ 1 ³ 1 3³ 1 x 2 1 x 2 1 1 ³ 2 3³ wz wx 2S 0 wz wy 1 ª x 2 y 2 x y 2 º 1 12 12 dy dx ¬ ¼ 1 x 2 1 x 2 3³ 2 2 ¬ª2 x 2 y 2 xy¼º dy dx 1 ªr º r4 cos T sin T » dT « 4 4 ¬ ¼0 2S 0 1 ³0 2r 2 2r cos T r sin T r dr dT 3 2S 1 cos T sin T dT 2 ³0 2S 3ª sin 2T º «T » 2 ¬ 2 ¼0 3S xy z x 2 y 2 , 4 d x 2 y 2 d 16 18. f x, y, z S: z ³S ³ f x, y, z dS ³S ³ 2S xy 2 x y2 4 ³0 ³2 r 1 4 x 2 4 y 2 dy dx 1 4r 2 sin T cos T dr dT 2S 4 ³0 ³2 2S ³0 r 2 sin T cos T r2 ª1 2 «12 1 4r ¬ 3 2º 1 4r 2 r dr dT 4 » sin T cos T dT ¼2 2S ª 65 65 17 17 § sin 2 T ·º « ¨ ¸» 12 «¬ © 2 ¹»¼ 0 0 © 2010 Brooks/Cole, Cengage Learning Section 15.6 19. f x, y, z x2 y2 z 2 S: z x2 y 2 , x2 y 2 d 4 ³S ³ f x, y, z dS ³ 2 ³ 2³ 2 2 ³ ³ 2 4 x2 2 x2 y 2 , x 1 4 x2 x, y, z dS S : x2 y 2 2 · ¸ dy dx x 2 y 2 ¸¹ y 2³ 2S 0 2 ³0 2³ r 2 dr dT 2S 0 2S 2 ªr3 º « » dT ¬ 3 ¼0 32S 3 ª16 º « 3 T» ¬ ¼0 y2 d 1 ³S ³ x y ³S ³ 2 x2 y2 2 x y 2 2 2 x y 2 2 2 § 1 ¨ ¨ © 2 2 x2 y 2 2 · § ¸ ¨ 2 2 ¸ ¨ x y ¹ © · ¸ dy dx 2 2 ¸ x y ¹ x 2³ dy dx ³ S y x 2 y 2 dy dx 2³ S 0 2 cos T ³0 r 2 dr dT S ª16 § sin 3 T ·º « ¨ sin T ¸» 3 ¹¼ 0 ¬3© 16 S 1 sin 2 T cos T dT 3 ³0 0 9, 0 d x d 3, 0 d y d 3, 0 d z d 9 9 y 2 , 0 d y d 3, 0 d z d 9. Project the solid onto the yz-plane; x x, y, z dS 3 9 3 9 ³ 0 ³ 0 ¬ª 9 ³0 ³0 324 ³ y 9 z 2 3 2 dz dy 9 § z 3 ·º « ¨ 9 z ¸» dy 2 3 ¹»¼ «¬ 9 y © 0 ³0 §S · 972¨ 0 ¸ ©2 ¹ ª § y ·º «972 arcsin ¨ 3 ¸» © ¹¼ 0 ¬ dy 2 3 3 9 y2 0 2 · ¸ 0 2 ¸ 9 y ¹ y 3ª dz dy 9 y2 3 3 § y z ¼ 1¨ ¨ © 2º 2 486S x2 y 2 z 2 22. f x, y, z S : x2 y2 9, 0 d x d 3, 0 d z d x 9 x2 . Project the solid onto the xz-plane; y f x, y, z dS 3 x 3 x ³0 ³0 ³0 ³0 3 ³0 Let u 2 · § ¸ ¨ ¨ x 2 y 2 ¸¹ © x x2 y 2 z 2 21. f x, y, z ³S ³ § 1¨ ¨ © 2 2 x2 y2 x2 y 2 dy dx x2 y 2 x 2 y 2 dy dx 16 S cos3 T dT 3 ³0 ³S ³ f 2 x2 y2 4 x2 4 x2 x y 2 421 x2 y2 z 2 20. f x, y, z ³S ³ f x y 2 4 x2 2 2³ S: z 4 x2 2 Surface Integrals x 2 , dv § ªx2 9 x2 z 2 º 1 ¨ ¬ ¼ © 9 z2 3 9 x2 § x3 · ¨9x ¸ dx 3¹ 9 x © x 9 x2 2 1 2 dx, then du 3 ª27 9 x 2 º ªª x 2 ¬ ¼ 0 «¬¬ 2 dz dx x 3ª § z 3 ·º 3 9z « ¨ ¸» dx 2 3 ¹¼ 0 ¬ 9 x © ³0 dz dx 3 2 · ¸ 0 2 9 x ¹ x 3 ³ 0 27 x 9 x 2 x dx, v 3 9 x2 º ¼0 2 1 2 dx 3 ³0 x 3 9 x2 1 2 dx 9 x2 . 3 ³0 º 2 x 9 x 2 dx» ¼ 2 ª 2 «81 3 9 x ¬ 3 2º 3 » ¼0 81 18 99 © 2010 Brooks/Cole, Cengage Learning Chapter 15 422 Vector Analysis 3 zi 4 j yk 23. F x, y, z 1 x y S: z y first octant x y z 1 G x, y , z G x, y, z 1 y = −x + 1 i j k R ³S ³ F N dS ³R 1 x 1 ³ F G dA ³0 ³0 3 z 4 y dy dx 1 1 x ³0³0 1 1 x ³0³0 x 1 ª¬3 1 x y 4 yº¼ dy dx 1 xi yj S: z 3x 2 y z 6 G x, y , z G x , y , z ³ S ³ F N dS 3 3 x 2 2 ³0 ³0 ³0 1 x2 y 2 , 3 x 2 y dy dx ª¬3 xy y 2 º¼ 0 dx ³0 2 º 9 ª x3 « 4 x» 4 ¬3 ¼0 2 xi 2 yj k ³ R ³ F G dA ³R ³ 2 x 2 2 y 2 z dA ³R ³ 2 x 2 2 y 2 1 x 2 y 2 dA 2S 2S ³0 § 9 ·§ 16 · ¨ ¸¨ ¸ © 4 ¹© 3 ¹ 1 ³0 ³0 9 2 x 4 dx 4 2 ³0 2 ³R ³ 1 2 ª § 3 · § 3 · º «3 x¨ 3 x ¸ ¨ 3 x ¸ » dx 2 ¹ © 2 ¹ ¼» ¬« © 2 z t 0 x y z 1 2 ³ S ³ F N dS 3 3 x 2 2 xi yj zk G x , y , z ³ R ³ F G dA 43 0 G x, y , z 3i 2 j k dx 0 ³ 2 2 x 2 dx 25. F x, y, z 6 3x 2 y, first octant S: z y 2 ¼º 1 2 ³ ª 1 x 3x 1 x 1 x º dx 0¬ ¼ 24. F x, y, z 1 x 1 ³ 0 ¬ª y 3xy 1 3x 2 y dy dx 12 x 2 y 2 dA r 2 1 r dr dT 1 ªr 4 r2 º « » dT 2 ¼0 ¬4 2S ³0 3 dT 4 3S 2 y x2 + y2 ≤ 1 z R 6 x 1 3 2 R 3 y 6 y = 3 − 3x 2 6 x xi yj zk 26. F x, y, z S : x y z2 2 z 2 36 36 x y 2 first octant y 2 x2 + y2 = 62 6 5 G x, y , z G x , y , z F G ³ S ³ F N dS z 36 x 2 y 2 x 36 x y 2 x 2 36 x 2 y 2 2 ³ R ³ F G dA i 4 3 y 36 x y 2 y2 36 x 2 y 2 ³R ³ 2 j k 1 1 2 3 4 5 6 36 x 2 y 2 36 36 x y x 36 z 2 R 2 2 dA S 2 6 ³0 ³0 36 36 r 2 r dr dT improper 108S © 2010 Brooks/Cole, Cengage Learning Section 15.6 x2 y 2 , x2 y 2 d 4 y x 2 + y2 ≤ 4 x y z 2 G x, y , z G x , y , z 2 2 xi 2 yj k ³ S ³ F N dS 1 ³ R ³ F G dA ³R ³ 8 x 6 y 5 dA 2S 2 ³ 0 ³ 0 >8r cos T 2S ³0 2S ³0 R x −1 1 −1 6r sin T 5@ r dr dT 2 ª 8 r 3 cos T 2r 3 sin T 5 r 2 º dT 2 ¼0 ¬ 3 ª 64 cos T 16 sin T 10º dT ¬ 3 ¼ 2S ª 64 sin T 16 cos T 10T º ¬ 3 ¼0 20S xi yj 2 zk 28. F x, y, z y a a2 x2 y 2 S: z z G x, y , z x 2 + y2 ≤ a 2 a2 x2 y2 −a x G x, y, z a2 x2 y 2 x F G 2 a2 x2 y 2 ³ S ³ F N dS y i y 2 ³ R ³ F G dA ³R ³ 3 x 2 3 y 2 2a 2 2S 0 a2 x2 y2 r3 a ³0 a r ª 2S ª 3«³ « r 2 0 ¬ ¬« 3³ 3 x 3 y 2a 2 dA a2 r 2 2S a 2S 0 2 2 a r2 3 2S 2 3 a dT 2a 2 ³ a dT 0 3 2 a2 x2 y2 ³0 ³0 dr dT 2a 2 ³ 2 3r 2 2a 2 a2 r 2 r dr dT r a ³0 a r2 2 dr dT a º 2S 2 2 2º ª » dT » 2a ³ 0 ¬ a r ¼ 0 dT ¼ 0 »¼ 3 2º a 0 x y i yj zk 29. F x, y, z 16 x 2 y 2 , z 0 z x y 16 2 G x, y , z G x , y , z F G 2S 0 2 x −a 2 2 a2 x2 y 2 a2 x2 y2 a j k a2 x2 y2 3³ S: z 423 4i 3 j 5k 27. F x, y, z S: z Surface Integrals 2 2 xi 2 yj k 2x x y 2 y2 z ³ S ³ F N dS 2 x 2 2 xy 2 y 2 16 x 2 y 2 x 2 y 2 2 xy 16 ³ R ³ F G dA 2S 4 ³0 ³0 2S ³0 r 2 2r 2 cos T sin T 16 r dr dT 4 ªr 4 º r4 cos T sin T 8r 2 » dT « 2 ¬4 ¼0 (The flux across the bottom z 2S ³ 0 >192 128 cos T sin T @ dT 2S 2 ¬ª192 64 sin T ¼º 0 384S 0 is 0) © 2010 Brooks/Cole, Cengage Learning 424 Chapter 15 Vector Analysis 4 xyi z 2 j yzk 30. F x, y, z z S: unit cube bounded by 1 x 0, x 1, y 0, y 1, z 0, z 1 S1 : The top of the cube N k, z 1 ³ S1 ³ F N dS 1 ³0 ³0 y 1 1 2 dy dx y 1 1 1 x S 2 : The bottom of the cube N k , z 0 1 ³ S2 ³ F N dS 1 ³0 ³0 y 0 dy dx 0 y dy dz 2 S3 : The front of the cube N i, x 1 1 ³ S3 ³ F N dS 1 ³0 ³0 4 1 S 4 : The back of the cube N i , x 0 1 ³ S4 ³ F N dS 1 ³0 ³0 4 0 0 y dy dx S5 : The right side of the cube N j, y 1 1 ³ S5 ³ F N dS 1 ³0 ³0 z 2 dz dx 1 3 S6 : The left side of the cube N j, y ³ S6 ³ F N dS 0 1 1 ³0 ³0 z 2 13 dz dx So, ³ S ³ F N dS 31. E S: z 1 2 0 2 0 1 3 1 3 5 . 2 yzi xzj xyk 1 x2 y 2 ³ S ³ E N dS ³R ³ E g x x, y i g y x, y j k dA § yzi xzj xyk ¨ ¨ © ³R ³ § 2 xyz © 1 x y ³ R ³ ¨¨ 2 2 x 1 x2 y 2 · xy ¸ dA ¸ ¹ i ³ R ³ 3xy dA · j k ¸ dA ¸ 1 x2 y 2 ¹ y 1 ³ 1 ³ 1 x2 1 x2 3xy dy dx 0 © 2010 Brooks/Cole, Cengage Learning Section 15.6 1 x2 y 2 S: z ³ S ³ E N dS g x, y ³R ³ E g x x, y i g y x, y j k dA § xi yj 2 zk ¨ ¨ © ³R ³ § x2 © 1 x y ³ R ³ ¨¨ 2 ³R ³ 2 x 1 x y 2 1 x y 2 2 · j k ¸ dA ¸ 1 x y ¹ y i 2 2 2 2 1 x y 2 2 2 x2 y 2 ³R ³ dA 2 · 2 z ¸ dA ¸ ¹ y2 x y 2 1 x y2 2 1 x y 2 2S 1 ³0 ³0 dA 2 2 r2 8S 3 r dr dT 1 r2 x2 y 2 , 0 d z d a 33. z m ³S Iz ³S ³ k ³ k dS k³ r m Iz 2³ 2³ ³ · § ¸ ¨ ¨ x 2 y 2 ¸¹ © x ³R ³ k x2 y2 2 · ¸ dA x 2 y 2 ¸¹ y 2k ³ 2 dA 2S 0 k³ a ³0 r ³ R 2kS a 4 2 2ka 4 2S 4 dr dT 3 2 kS a 2 2 dA a2 2 2kS a 2 a 2m 2 a2 a2 x2 y 2 ³ k dS S S ³k ª 2ka « r 2 ¬ 35. x 2 y 2 2k ³ R ³ 2k ³ R ³ § 1¨ ¨ © a a x y 2k ³ r a2 r 2 a2 r 2 1 2 2 · § ¸ ¨ 2 2 2 ¸ ¨ a x y ¹ © x 2 x 2 y 2 dS r 2 , dv Let u R dA 2 2 ³ x2 y2 dr , du 2 2 a r2 3 2ka ³ a » 2S ¼0 r a ³0 a r 2 a a x y 2 2 2 2 2ka ª ¬ dr dT 2ka ³ 2S a a 2 r 2 º 2S ¼0 r3 a ³0 a r2 2 2 a 4S ka 2 3 2 2 a m 3 dA 0 2 4S ka 2 dr dT use integration by parts a2 r 2 . 2r dr , v 3 2º 2S 0 2 · ¸ dA 2 2 2 ¸ a x y ¹ y §2 · 2ka¨ a 3 ¸ 2S ©3 ¹ a2 , 0 d z d h U x, y , z r R 2 § 1 ¨ ¨ © x 2 y 2 dS 34. x 2 y 2 z 2 y 425 xi yj 2 zk 32. E z Surface Integrals z 1 h a2 x2 Project the solid onto the xz-plane. Iz 4³ S³ 4a 3 ³ x 2 y 2 1 dS h a x 2 h a 0 ³0 § 2 2 º ª 2 ¬x a x ¼ 1 ¨ © a 1 a 0 ³0 4³ 2 dx dz hª xº 4a 3 ³ «arcsin » dz 0 a ¼0 ¬ 2 · ¸ 0 2 2 a x ¹ x §S · 4a 3 ¨ ¸ h ©2¹ 2 a dx dz a y x 2S a 3h © 2010 Brooks/Cole, Cengage Learning Chapter 15 426 36. z Vector Analysis x2 y 2 , 0 d z d h z Project the solid onto the xy-plane. Iz ³S ³ 2S ³0 ³0 h 1 4h 60 37. S : z h ³ h ³ x 2 y 2 1 dS r 2 1 4r 2 r dr dT 32 S h x2 x2 y2 h x2 1 4 x 2 4 y 2 dy dx ªh 2S « 1 4h ¬12 S 32 S ª 1 4h 60 ¬ ª¬10h 1 4h º¼ 60 1 1 4h 120 2S » 120 ¼ 5 2º y 6h 1 1º ¼ 32 x 16 x 2 y 2 , z t 0 F x, y , z 0.5 zk ³ S ³ UF N dS ³ R ³ UF 0.5 U ³ 2S 0 ³ R ³ 0.5U zk g x x, y i g y x, y j k dA ³ R ³ 0.5U z dA 4 ³0 ³ R ³ 0.5U 16 x 2 y 2 dA 0.5U ³ 16 r 2 r dr dT 2 xi 2 yj k dA 2S 0 64 dT 64SU 16 x 2 y 2 38. S : z F x, y , z 0.5 zk ³ S ³ UF N dS ³ R ³ UF g x x, y i g y x, y j k dA ª ³ R ³ 0.5U zk «« x ¬ 16 x y ³ R ³ 0.5 U z dA 0.5 U ³ 2S 0 4 ³0 2 ³R ³ 0.5U 2 i n x, y, z dS lim ' o0 ¦f º j k » dA »¼ 16 x y y 2 2 16 x 2 y 2 dA 16 r 2 r dr dT 0.5 U ³ 39. The surface integral of f over a surface S, where S is g x, y , is defined as given by z ³S ³ f h 2S 0 64 dT 3 64SU 3 z 43. (a) 4 −6 −6 xi , yi , zi 'Si . (page 1112) i 1 See Theorem 15.10, page 1112. 40. A surface is orientable if a unit normal vector N can be defined at every nonboundary point of S in such a way that the normal vectors vary continuously over the surface S. 41. See the definition, page 1118. x 6 6 −4 y (b) If a normal vector at a point P on the surface is moved around the Möbius strip once, it will point in the opposite direction. 4 cos 2u i 4 sin 2u j (c) r u , 0 This is circle. z See Theorem 15.11, page 1118. 4 42. Orientable −2 2 2 x y −4 (d) (construction) (e) You obtain a strip with a double twist and twice as long as the original Möbius strip. © 2010 Brooks/Cole, Cengage Learning Section 15.7 44. (a) ru rv Divergence Theorem 427 i j 2uk 2vi j ru u rv i j k 1 1 2u 2v 1 2ui 4uvj 1 2v k 0 ru u rv is a normal vector to the surface. u 2i u v 2 j u v k (b) F u , v F ru u rv (c) x 3 y 1 z 4 2u 3 4uv u v 2 u v 1 2v u v2 ½ ° u v ¾ ° u2 ¿ 1 4i 8 j 3k ru u rv (e) v 2 not in domain 4i 3j k ru u rv 2, 1 F 2 u ru u rv at P. ru u rv (d) Calculate F F 3, 1, 4 u 2u 3 4u 2v 4uv3 v u 2v 2 2uv 89 ru u rv ru u rv 1 16 24 3 89 ³ S ³ F N dS ³R ³ F 1 2 ³ 1 ³ 0 37 89 37 89 89 ru u rv dA 2u 3 4u 2v 4uv 3 v u 2v 2 2uv du dv 1 § ³ 1 ¨©8v 3 4v 2 26v · 6 ¸ dv 3 ¹ 44 3 Section 15.7 Divergence Theorem 1 dA. 1. Surface Integral: There are six surfaces to the cube, each with dS z 0, N k , FN z2, ³ S1 ³ 0 dA z a, N k, FN z2, ³ S2 ³ a x 0, N i , FN 2 x , ³ S3 ³ 0 dA x a, N i, FN 2 x, ³ S4 ³ 2a dy dz y 0, N j, FN 2 y, ³ S5 ³ 0 dA y a, N j, FN 2 y , ³ S6 ³ 2a dA So, ³ s ³ F N dS a 4 2a 3 2a 3 Divergence Theorem: Because div F ³³³ div F dV Q a a a ³ 0 ³ 0 ³ 0 2 z dz dy dx 2 0 a a ³0 ³0 a dA 2 dx dy a4 0 a a ³ 0 ³ 0 2a dy dz 2a 3 0 a a ³ 0 ³ 0 2a dz dx 2 a 3 a4. 2 z , the Divergence Theorem yields a a ³0 ³0 a 2 dy dx a4. © 2010 Brooks/Cole, Cengage Learning Chapter 15 428 Vector Analysis 2. Surface Integral: There are three surfaces to the cylinder. Bottom: z 0, N ³ S1 ³ 0 dS 0 ³ S2 ³ h k, F N h, N Top: z 2 ru u rv z2 4S h 2 2 cos ui 2 sin uj vk , 0 d u d 2S , 0 d v d h 2 sin ui 2 cos uj, rv ru z2 h 2 Area of circle dS Side: r u ,v k 2 cos ui 2 sin uj F ru u rv 8 cos 2 u 8 sin 2 u z 2S h ³ S3 ³ F N dS So, k , F N ³0 ³0 ³ s ³ F N dS 8 cos 2 u 8 sin 2 u du dv 0 4S h 2 0 2S ³ ³ ³ 2 z dV 2 h ³ 0 ³ 0 ³ 0 2 zr dz dr dT Q h 4S h 2 . 2 2 2z Divergence Theorem: div F 0 2z 4S h . 2 2 x y 3. Surface Integral: There are four surfaces to this solid. 0, N z ³ S1 ³ 0 dS 6 z ³0 dx dz z 2 6 z dz 36 y 2 x, dS 62y ³0 ³0 ³0 x 2y z 6 z dx dz dA i , F N 3 ³ S3 ³ y dS So, 2 y z , dS ³0 ³0 0, N ³ S4 ³ j, F N 6 ³ S2 ³ z dS x z 0 0, N y k , F N 6, N y dz dy 3 dz dy 6 y 2 y 2 dy i 2j k ,F N 6 2 x 5 y 3z dz dy ³ s ³ F N dS 3 dA 62y ³0 ³0 0 36 9 45 Divergence Theorem: Because div F 9 2 x 5 y 3z , dS 6 18 x 11y dx dy 6 dA z 3 ³0 90 90 y 20 y 2 dy 45 6 18. 1, you have 3 ³³³ dV Q Volume of solid 1 Area of base u Height 3 1 9 6 3 y 6 18. x © 2010 Brooks/Cole, Cengage Learning Section 15.7 Divergence Theorem 429 xyi zj x y k 4. F x, y, z S: surface bounded by the planes y 4 x and the coordinate planes 4, z Surface Integral: There are five surfaces to this solid. k , F N 0, N z ³ S1 ³ 4 ³ S4 ³ xy dS So, 32 3 1 > xy x y@, dS 2 4 4 ³0 ³0 xy x y dy dx 32 32 0 128 3 3 64 4 x 4 32 3 dx 0 Divergence Theorem: Because div F ³0 ³0 ³0 Q 64 xy 1 > xy x y@ 2 dA 2 4 dx 2 2 i k , FN 2 ³³³ div F dV 4 x 8 dx 2 2 0 4 x 4 ³0 z dz dx 4 ³S ³ F N dS 4 0 z ³ 0 ³ 0 0 dS 4, N 4 x 4 ³ z dz dx i, F N 0, N ³ S5 ³ 4 x 4 ³0 ³0 ³ x y dy dx z j, F N 4, N x z 4 x 4 ³0 ³0 ³ S3 ³ z dS x 4 j, F N ³ S2 ³ z dS y 4 ³0 ³0 x y dS 0, N y x y 2 dA 128 64. y , you have 64. y dz dy dx xzi yzj 2 z 2k 5. F x, y, z Surface Integral: There are two surfaces. Bottom: z k , F N 0, N ³ S1 ³ F N dS ³ R³ 2z 2 2 z 2 ³³ 0 dA dA 0 z Side: Outward unit normal is N 2 xi 2 yj k 1 4x2 4 y 2 1 −1 FN 1 ª¬2 x z 2 y z 2 z º¼ 2 4x 4 y 1 ³ S2 ³ F N dS 2 2 ³ S2 ³ ª¬2 x 2S 2 ³ 0 ³ 0 ª¬«2r 1 2 ³³³ div F dV Q 2S 1 2S 1 ³0 ³0 ³0 2 1 1 x y −1 y 2 z 2 z 2 º¼ dA 2 1 r 2 2 1 r 2 º r dr dT ¼» z z 4z Divergence Theorem: div F 1 r 2 2 2S 1 ³0 ³0 2S 1 dT 2 S ª3 3 1º « 2 2 2 » dT ¬ ¼ S 2r 2r 3 dr dT ³0 6z 6 z r dz dr dT ³0 ³0 3 1 r 2 2 r dr dT 2S 1 ³0 ³0 3 6r 2 3r 4 r dr dT 2S ³0 © 2010 Brooks/Cole, Cengage Learning 430 Chapter 15 Vector Analysis xy 2i yx 2 j ek 6. F x, y, z x 2 y 2 and z S: Surface bounded by z 4 Surface Integral: There are two surfaces. Top: z 4, N k, F N e ³ S1 ³ F N dS Side: z ³ S2 16S e area circle e ³ F N dS x x2 y 2 , g x g ( x, y ) ª « «¬ ³ S2 ³ x2 y 2 x2 y 2 x2 y 2 x2 y2 º e» dA »¼ x2 y 2 y , gy x2 y2 ³0 ³0 2S ³0 So, 7. Because div F ³³³ div F dV Q 2S 4 4 ³0 ³0 ³r ³³³ div F dV Q a a a a a ³0 ³0 ³0 Q a a a 2a 2 2 xa 4 3 a 2S a 2S a a ³0 ³0 Q a ³0 S /2 1 a6 3 dx 2S S /2 ³0 ³0 ³0 2S ³0 256 dz 5 512S 5 a 2 2 3 ¬ªa x 2a x¼º 0 2a 2 x 2a 3 dx 3a 4 . a a2 x2 2 xa 3 3 2a 3 xya dy dx 2a 3 34 a 5 . 2 U sin I cos T U sin I sin T U cos I U 2 sin I dI dT d U 1 U sin T cos T dT d U 2 a2 x2 a ³0 ³0 2 U 5 sin T cos T sin 3 I cos I dI dT d U y z y 2S ³³³ 3 dV ³0 r5 º 4 «r » dz 5 ¼0 ¬ 2 xyz , a ³³³ 2 xyz dV ³a ³ 11. Because div F 3 xa 3 2 2 x 2 x 2 xyz ³0 ³0 Q 4 2S ª 4r 3 r 4 dr dz 2 xz 2 2 3 xy dz dy dx ³0 ³0 ³0 ³³³ div F dV ³0 ³0 2ax 2ay a 2 dy dx Q 10. Because div F 4 2 x 2 y 2 z dz dy dx ³0 ³0 ³0 a ³³³ div F dV 2S r 2 r dz dr dT 2 xz 2 2 3 xy, you have ³0 9. Because div F § 512 · 16e ¸ S ¨ © 5 ¹ 2 x 2 y 2 z , you have ³0 ³0 8. Because div F ª 2048 sin 2 T cos 2 T º 8e» dT « 5 ¬ ¼ y2 x2 Divergence Theorem: div F Q ¨ © 512 S. 5 ³ S ³ F N dS ³³³ div F dV · cos 2 T r 2 sin 2 T e ¸ r dr dT r ¹ 4 § 2r 2 2S a ª§ ³ 0 ««¨© U 5 · sin 2 T º ¸ ¬ 2 ¹ 2S » dU ¼» 0 2 0. z , you have ³0 a2 x2 y2 ª a 2r r3 º » dr dT « 2¼ ¬ 2 z dz dy dx 2S ³0 2S a ³0 ³0 ³0 a a2 r 2 ª a 2r 2 r4 º » dT « 8 ¼0 ¬ 4 zr dz dr dT 2S ³0 a4 dT 8 S a4 4 . 3, you have 3 Volume of Sphere 3ª¬ 43 S 33 º¼ 108S . © 2010 Brooks/Cole, Cengage Learning Section 15.7 12. Because div F 4 y2 2 ³ 0 ³ 2 ³ Q 7 25 y 2 5 ³³³ 2 y dV ³ 0 ³ 5 ³ 25 y 2 Q 2S 256 x 2 16 2S ³0 8 6 ³³³ 4 y 6 4 2 4 y2 0. 7 ª 4 ³ 0 «¬ 3 25 y 2 dy dz 25 y 2 3/2 º 5 » dz ¼ 5 0. 4 y ³ 1/2 x2 y 2 x 2 y 2 e z dz dy dx 2S 262,104 S 5 100e8 dT 16 ³0 ³0 r 2 e z r dz dr dT 8r 3 re8 12 r 4 re r /2 dr dT 200e8S . 4 x 2 dz dy dx 6 4 ³ 0 ³ 0 4x 2 4 y dy dx 6 ³ 0 32 x 2 dx 2304. 3e z , you have 3e z dz dy dx 6 4 ³ 0 ³ 0 3¬ªe 4 y 1¼º dy dx 6 ³0 3 e 4 5 dx 18 e 4 5 . y 4 x. Use spherical coordinates. y 4 x dV Q 4 S 2S 4 S 2S 4 S ³0 ³0 ³0 U sin I sin T U sin I cos T 4 U 2 sin I dT dI d U ³0 ³0 ³0 ³ 0 ³ 0 8SU 18. div F 5 ³ 0 ³ 2 0 dy dz dy dz 4 x 2 , you have ez ez ez ³0 ³0 ³0 dV Q 17. div F 4 ³0 ³0 ³0 16. Because div F z 131,052 5 3x 2 x 2 0 15. Because div F ³³³ 3e 5 8 256 x 2 ³ 0 ³ 0 ³ r /2 Q 7 ³ 0 ³ 5 4 y 2 y dx dy dz 16 Q dV 4 y2 2 y , you have ³0 ³ x 2 y 2 e z dV 2 ³0 ª 2x2 º ³ 2 «¬ 2 »¼ 2 y 2 x 2 e z , you have 14. Because div F ³³³ 4 x 5 xz dx dy dz 4 y2 1 2y 1 13. Because div F ³³³ 431 xz , you have 5 ³³³ xz dV Divergence Theorem U 3 sin 2 I sin T U 3 sin 2 I cos T 4 U 2 sin I dT dI d U 2 4 ³ 0 16SU sin I dI d U 2 dU 1024S 3 2 ³ S ³ F N dS ³³³ div F dV ³³³ 2 dV . Q Q The surface S is the upper half of a hemisphere of radius 2. Because the volume is ³ S ³ F N dS 1 4S 2 3 23 16S /3, you have 32S . 3 2 Volume 19. Using the Divergence Theorem, you have ³ S ³ curl F N dS ³³³ div curl F dV Q curl F x, y, z i j k w wx w wy w wz 4 xy z 2 div curl F So, ³³³ div 6 yi 2 z 2 z j 4 x 4 x k 6 yi 2 x 2 6 yz 2 xz 0. curl F dV 0. Q © 2010 Brooks/Cole, Cengage Learning Chapter 15 432 Vector Analysis 20. Using the Divergence Theorem, you have ³ S ³curl F N dS ³³³ div curl F dV Q i j k w wx w wy w wz xy cos z yz sin x xyz curl F x, y, z z y cos x z x sin z y cos x x sin z Now, div curl F x, y, z ³ S ³ curl F N dS xz y sin x i yz xy sin z j yz cos x x cos z k. ³³³ div 0. So, 0. curl F dV Q 21. See Theorem 15.12. 22. If div F x, y, z ! 0, then source. If div F x, y, z 0, then sink. If div F x, y, z 0, then incompressible. 23. (a) Using the triple integral to find volume, you need F so that wM wN wP div F 1. wx wy wz xi, F So, you could have F yj, or F zk. For dA dy dz consider F xi, x f ( y, z ), then N For dA dz dx consider F yj, y f ( x, z ), then N For dA dx dy consider F zk , z Correspondingly, you then have V (b) v a a ³ 0 ³ 0 x dy dz Similarly, a a ³0 ³0 a a ³ 0 ³ 0 a dy dz a f ( x, y ), then N ³ S ³ F N dS a ³0 a a ³ 0 ³ 0 z dx dy y dz dx 2 dz i f y j f zk 1 f y2 f z2 f xi j f zk 1 f x2 f z2 f xi f y j k 1 f x2 f y2 ³ S ³ x dy dz and dS 1 f y2 f z2 dy dz. and dS 1 f x2 f z2 dz dx. and dS ³ S ³ y dz dx 1 f x2 f y2 dx dy. ³ S ³ z dx dy. a3 a3. xi yj zk 24. F x, y, z 111 Divergence Theorem: div F ³³³ 3 dV 3 Volume of cube 3 3 Q Surface Integral: There are six surfaces. x 0: N i, FN x, ³S1 ³ 0 dS 0 x 1: i, FN x, ³S2 ³ 1 dS 1 y 0: N j, FN y, ³S3 ³ 0 dS 0 y 1: j, FN y, ³S4 ³ 1 dS 1 z 0: N k , F N z, ³S5 ³ 0 dS 0 z 1: k, z, ³S6 ³ 1 dS 1 So, N N N ³ S ³ F N dS FN 111 3. © 2010 Brooks/Cole, Cengage Learning Section 15.8 25. Using the Divergence Theorem, you have ³³³ div 433 curl F dV . Let Q Mi Nj Pk F x, y , z § wP § wN wN · wM · wM · § wP ¨ ¸i ¨ ¸k ¸j ¨ w w w w w wy ¹ y z x z x © ¹ © ¹ © curl F w2P w2 N w2P w 2M w2N w 2M wxwy wxwz wywx wywz wzwx wzwy div curl F ³ S ³ curl F N dS So, ³ S ³ curl F N dS Stokes’s Theorem ³³³ 0 dV 0. Q a1i a2 j a3k , then div F 26. If F x, y, z 0. 0. So, ³ S ³ F N dS ³³³ div F dV ³ S ³ F N dS ³³³ div F dV 30. 3V . Q xi yj zk , then div F ³ S ³ F N dS ³ S ³ f DN g dS ³S ³ 3. ³³³ 3 dV Q 28. If F x, y, z 29. 0. Q xi yj zk , then div F 27. If F x, y, z 1 F ³³³ 0 dV Q 1 F 1 F ³³³ div F dV Q ³ S ³ f g N dS 3. Q ³³³ div f g dV ³³³ ³³³ dV Q ³³³ Q ³ S ³ f DN g dS ³ S ³ gDN f fDN g gDN f dS 3 F ³³³ 3 dV Q f 2 g f g dV Q dS f 2 g f g dV Q ³³³ f divg f g dV ³³³ ³³³ g 2 f g f dV Q f 2 g g 2 f dV Q Section 15.8 Stokes's Theorem 2 y z i e z j xyzk 1. F x, y, z i j k w wx w wy w wz 2y z ez xyz curl F xz e z i yz 1 j 2k curl F curl F 4. F x, y, z x 2 i y 2 j x 2k 2. F x, y, z i j k w wx w wy w wz x2 y2 x2 curl F 2xj 2 zi 4 x 2 j arctan xk 3. F x, y, z i j k w wx w wy w wz 2z 4 x 2 arctan x 1 · § ¨2 ¸ j 8 xk 1 x2 ¹ © x sin yi y cos xj yz 2k i j k w wx w wy w wz x sin y y cos x yz 2 z 2i y sin x x cos y k © 2010 Brooks/Cole, Cengage Learning 434 Chapter 15 Vector Analysis ex 5. F x, y, z curl F e 2 y2 i ey 2 z2 j k w wx w wy w wz e xz 2 ze z x 2e y2 z2 y2 z2 2S i yzj 2 ye x2 y2 x2 y 2 ³ C F dr ³ 0 k 2S ³0 k 0 1 x 2 j y 2k i j k w wx w wy w wz x dy 3 sin t dt , y 3 sin t , dy 3 cos t dt ª¬ 3sin t 3sin t 3cos t 3cos t º¼ dt 18S 9 dt Double Integral: g x, y 9 x2 y2 , g x 2 x , g y 2 y 2k curl F curl F 0, dz z ³ C y dx 3 cos t , dx x i yzj 2 ye arcsin yi 6. F x, y, z ³ C F dr xyz y2 z2 9, Line Integral: i x2 y2 7. C : x 2 y 2 j xyzk ³ S ³ curl F N dS ³ R ³ 2 dA 2 area circle 18S sin 2 t cos 2 t dt 2S . 2 Area of circle of radius 1 2S . z 9 1 x2 arcsin y y2 ª x 2 yi « «¬ 1 x 2 º »k 1 y »¼ ª x 2 yi « «¬ 1 x 2 º »k 1 y 2 »¼ y z, N x z, P 8. In this case, M Line Integral: Letting x ³ C F dr 1 2 1 ³C y z dx x z dy x y dz F F 2 xi 2 yj 2 zk 2 Now, because curl F 2 x 2z 2k , you have cos t dt and 1, z 0, dz ³ C y dx ³ C y dx 0. x dy x dy 2S ³0 xi yj zk. x2 y 2 z 2 1 x2 y 2 , zx Because z 2 sin t dt , dy y x 2 y 2 z 2 1. Double Integral: Consider F x, y , z Then N 4 C x y and C is the circle x 2 y 2 sin t , you have dx cos t , y 4 x x , and z y z ³S ³ y , dS z 1 x2 y2 2 dA 2 z z §1· ³ R ³ 2 z¨© z ¸¹ dA ³ R ³ 2 dA curl F N dS 1 dA. z 9. Line Integral: From the figure you see that C1 : z 0, dz 0 C2 : x 0, dx 0 C3 : y 0, dy 0 2 0 12 ³ C F dr ³ C xyz dx y dy z dz ³ C1 y dy ³ C2 y dy zdz ³ C3 z dz ³ 0 y dy ³ 2 y dy ³ 0 ³S ³ 12 6 x 6 y curl F N dS 0 ³ 12 z dz xyj xzk Double Integral: curl F Letting z z dz g x, y , g x 2 2 x ³0 ³0 2 z 6 gy. curl F >6i 6 j k @ dA ³R ³ ³ 0 ª¬6 xy 12 ³R ³ ª¬6 xy x 12 6 x 6 y º¼ dy dx 2 0 12 xy 6 x 2 yº¼ 2 x 0 (0, 0, 12) 6 xy xz dA 2 2 x ³0 ³0 C3 C2 12 xy 12 x 6 x 2 dy dx (2, 0, 0) dx 0 x 4 (0, 2, 0) C1 4 y © 2010 Brooks/Cole, Cengage Learning Section 15.8 C2 : z y ,x 0, dx C3 : y a, z a 2 , dy C4 : z 2 y ,x 0, dz a, dx a 2 C3 2 y dy 0 dz 0, dz 435 z 10. Line Integral: From the figure you see that C1 : y dz 0, z 0, dy 0 2 Stokes's Theorem C2 C1 2 y dy. a a C4 x y So, ³ C F dr ³C z ³ C1 0 dx ³ C2 2 y dx x 2 dy y 2 dz 2 0 ³a 2y 3 0 ³a a dy 4 dx a ³0 2 yj k 1 4 y2 0 4 dx a ³ C4 ª¬a 2 dy 2 y 3 dyº¼ a5 a3 a3 1 a . 0, you have 1 4 y 2 dA. and dS Furthermore, curl F 2 yi 2 zj 2 xk. So, ³S ³ ³R ³ curl F N dS ³ C3 a ª¬a 4 xº¼ ª¬a 2 yº¼ a 0 a 2 2 y 3 dy Double Integral: Because S is given by y 2 z N dy 3 a ³0 4 yz 2 x dA a a ³0 ³0 a ª¬ a 4 x ax 2 º¼ 0 a 4 2ax dx a a ³0 ³0 4 yz 2 x dA a5 a3 4 y 3 2 x dydx a3 1 a 2 . 11. These three points have equation: x y z 2. i jk Normal vector: N curl F 3i j 2k ³ S ³ curl F N dS ³R ³ 6 dA 6 area of triangle in xy -plane 6 2 12. Let A 0, 0, 0 , B UuV UuV N 2i 2 j 2 2 z i j k w wx w wy w wz z2 2x y2 G x, y JJJK AB JJJK AC i j k , and V 2k , and 2 dA. Because curl F 2x k , you have x2 y 2 ³S ³ curl F N dS ³R ³ 0 dS 0. 2 yi 2 zj 2k 1 x 2 y 2 , Gx ³ S ³ curl F N dS 0, 0, 2 . Then U i j . 2 x y and dS So, F x, y, z 13. curl F 1, 1, 1 , and C 12 ³R ³ 1 1 2 y ³ R ³ ª¬4 xy 4 y 1 x 2 yi 2 zj 2k 2 xi 2 yj k dA ³ 1 ³ ³ 1 4 2 x , G y 1 x 2 1 x 2 2 y 2 2º¼ dA ª¬4 xy 4 y 4 x 2 y 4 y 3 2º¼ dy dx 1 x 2 dx 1 2 ªarcsin x x 1 x 2 º ¬ ¼ 1 2S © 2010 Brooks/Cole, Cengage Learning Chapter 15 436 4 xzi yj 4 xyk , S : 9 x 2 y 2 , z d 0 14. F x, y, z curl F 4 xi 4 x 4 y j x2 y 2 z 9 G x, y , z G x , y , z ³S ³ Vector Analysis 2 xi 2 yj k ³ R ³ ª¬8 x curl F N dS 3 ³ 3 16 x 15. curl F z i j k w wx w wy w wz z2 y z ³ S ³ curl F N ³R ³ § 2 zj ¨ ¨ © x 4 x y 2 4 x2 y 2 j k w wx w wy w wz x2 z2 xyz G x , y , z ³S ³ x 2 yz i G x, y , z z 32 9 x2 4 x2 y2 2 9 x2 ª¬8 x 2 8 xy 8 y 2 º¼ dy dx 0 dx y , Gy 4 x2 y 2 · j k ¸ dA ¸ 4 x y ¹ y i ³R ³ dA x 2i z 2 j xyzk , S : z 16. F x, y, z 16 3 9 x2 2 zj ³R ³ curl F 9 x2 2 4 x 2 y 2 , Gx G x, y 3 ³ 3 ³ 2 y 4 x 4 y º¼ dA 2 2 2 4 x2 y2 2y 4 x2 y 2 dA 2 ³ 2 ³ 4 x2 4 x2 2 y dy dx 0 4 x2 y2 xz 2 z i yzj 4 x2 y2 x 4 x2 y 2 curl F N dS i y 4 x2 y 2 ª z x 2 x ³ R ³ «« ¬ 4 x2 y 2 ³ R ³ ª¬ x x 2 j k º » dA 4 x 2 y 2 »¼ y2 z 2 ³ 2 ³ y 2 º¼ dA ª 2 y3 º ³ 2 «¬ x y 2 xy 3 »¼ 2 ª 2 ª 8 2 ³ 2 «¬ 3 x 2 x 2 2 x y 2 dy dx 4 x2 4 x2 2 ³ 2 «¬2 x 4 x2 dx 4 x2 4 x2 4x 4 x2 2 4 x2 3 4 x2 4 x 4 x2 8 3 ª 8 § 1 ·ª 2 « 3 ¨ 8 ¸ « x 2 x 4 © ¹¬ ¬ º 4 x 2 » dx ¼ º 4 x 2 » dx ¼ xº 4 4 x 2 16 arcsin » 4 x 2 2¼ 3 ª§ 1 · º 4 1 4 «¨ 3 ¸ 8S 3 2S 3 8S 3 2S » ¬© ¹ ¼ 32 2 8 § 1 ·ª x ºº 2 ¨ ¸ x 4 x 4 arcsin » » 3 © 2 ¹¬« 2 ¼ ¼ 2 0 © 2010 Brooks/Cole, Cengage Learning Section 15.8 i w wx j w wy k w wz 1 2 ln x 2 y 2 arctan x y 1 curl F G x , y , z 2i 3 j k ³ R ³ x2 curl F N dS S 2 4 sin T cos T i j k w wx w wy w wz yz 2 3y x2 y2 z G x, y , z 16 x x G x, y, z 16 x 2 2 yi y 2 x j zk ª ³0 ³0 4 ³0 16 over x 2 y 2 16 2 xy 16 x 16 x2 2 º z » dA ¼ ª 2 xy « ¬ 16 x 2 ª ³ R ³ «¬ 2 xy 16 x º 16 x 2 » dy dx ¼ ª x 16 x 2 16 x 2 º dx ¬ ¼ º 16 x 2 » dA ¼ 2 4 ³0 ª 1 2 « 16 x 3 ¬ ª x y2 « 2 16 x ¬ 4 32 16 x x3 º » 3 ¼0 º 16 x 2 y» ¼0 16 x 2 dx 64 · § 64 · § ¨ 64 ¸ ¨ ¸ 3¹ © 3¹ © 64 3 xyj xzk x 2 , Gx G x, y ³ S ³ curl F N ³R ³ 2 x, G y 0 a ³ R ³ xz dA xyj xzk 2 xi k dA a ³0 ³0 x x 2 dy dx a5 4 xyzi yj zk 20. F x, y, z i j k w wx xyz w wy y w wz z xyj xzk S: the first octant portion of z ³S ³ 8 3 i k ³ R ³ «¬ curl F N dS curl F ³0 S 2 ª8 sin 3 T º « » ¬ 3 ¼0 8 sin 2 T cos T dT 2 4 z 2r sin T r dr dT r2 S 2 2 sin T dr dT S : the first octant portion of x 2 z 2 19. curl F 2 sin 2T ³0 ³0 yzi 2 3 y j x 2 y 2 k 18. F x, y, z ³S ³ S 2 2y dA y2 ³0 ³0 curl F ª 2y º « x 2 y 2 »k ¬ ¼ 2x 3 y z 9 G x, y , z ³S ³ ª 1y y º « »k 2 2 2 x y2 » «¬1 x y ¼ 2 sin 2T in the first octant. 9 2 x 3 y over one petal of r S: z 437 x x 2 y 2 i arctan j k y ln 17. F x, y, z Stokes's Theorem curl F N dS x 2 over x 2 y 2 ³ R ³ xz dA a ³0 x 3 ³R ³ x a 2 x 2 dx 3 dA a 2 . You have N a ³0 ³0 a 2 x2 ª 1 2 2 2 « 3 x a x ¬ 2 xi k 1 4 x2 and dS 1 4 x 2 dA. x3 dy dx 32 2 2 a x2 15 5 2º a » ¼0 2 5 a 15 © 2010 Brooks/Cole, Cengage Learning 438 Chapter 15 i j 2k 21. F x, y, z curl F Letting N Vector Analysis S: x y 2 i j k curl F w wx w wy w wz z 0 y 2 i j k w wx w wy w wz 1 1 2 zi yk 22. F x, y, z 0 ³S ³ k , you have curl F N dS 0. 1 Letting N k , curl F N i j 0 and ³ S ³ curl F N dS 0. 23. See Theorem 15.13. 24. curl F measures the rotational tendency. See page 1135. 25. (a) ³ S ³ curl> f g @ N dS (Stokes's Theorem) ³ C f g dr f g f wg wg wg i f j f k wx wy wz i j k w wx w wy w wz f wg wx f wg wy f wg wz curl f g ªª § w 2 g · § wf ·§ wg ·º ª § w 2 g · § wf ·§ wg ·ºº «« f ¨ ¸ ¨ ¸¨ ¸» « f ¨ ¸ ¨ ¸¨ ¸»» i ¬«¬ © wywz ¹ © wy ¹© wz ¹¼ ¬ © wzwy ¹ © wz ¹© wy ¹¼¼» ªª § w 2 g · § wf ·§ wg ·º ª § w 2 g · § wf ·§ wg ·ºº «« f ¨ ¸ ¨ ¸¨ ¸» « f ¨ ¸ ¨ ¸¨ ¸»» j ¬«¬ © wxwz ¹ © wx ¹© wz ¹¼ ¬ © wzwx ¹ © wz ¹© wx ¹¼»¼ ªª § w 2 g · § wf ·§ wg ·º ª § w 2 g · § wf ·§ wg ·º º «« f ¨ ¸ ¨ ¸¨ ¸» « f ¨ ¸ ¨ ¸¨ ¸» » k ¬«¬ © wxwy ¹ © wx ¹© wy ¹¼ ¬ © wywx ¹ © wy ¹© wx ¹¼ ¼» ª§ wf ·§ wg · § wf ·§ wg ·º ª§ wf ·§ wg · § wf ·§ wg ·º ª§ wf ·§ wg · § wf ·§ wg ·º «¨ ¸¨ ¸ ¨ ¸¨ ¸» i «¨ ¸¨ ¸ ¨ ¸¨ ¸» j «¨ ¸¨ ¸ ¨ ¸¨ ¸»k ¬© wx ¹© wz ¹ © wz ¹© wx ¹¼ ¬© wx ¹© wy ¹ © wy ¹© wx ¹¼ ¬© wy ¹© wz ¹ © wz ¹© wy ¹¼ (b) i j k wf wx wf wy wf wz wg wx wg wy wg wz So, ³ C f g dr ³C f f dr f u g ³ S ³ curl > f g @ N dS ³S ³ ³C f g g f dr u g @ N dS . f u f N dS using part a 0 because f u f (c) ³ S ³ >f ³C 0. f g dr ³C g f dr ³S ³ f u g N dS ³S ³ ³S ³ f u g N dS ³ S ³ f g u f N dS u g N dS using part a 0 © 2010 Brooks/Cole, Cengage Learning Section 15.8 26. f x, y, z xyz , g x, y, z (a) g x, y, z ³ C ¬ª f 4 x2 y 2 z, S : z xyzk 0 d t d 2S 2 cos ti 2 sin tj 0k , x, y, z g x, y, z º¼ dr (b) f x, y, z 0 yzi xzj xyk g x , y , z k f u g i j k yz xz xy 0 0 1 x N 4 x2 y 2 xzi yzj y i j k 4 x2 y 2 2 dS § 1¨ ¨ © ¬ f ³ S ³ ª x, y, z u g x, y, z º¼ N dS · § ¸ ¨ ¨ 4 x 2 y 2 ¸¹ © x 2 · ¸ dA 4 x 2 y 2 ¸¹ y ª 2 x2 y 2 4 x2 y 2 2S ³0 ³0 ai bj ck , then i because C u r 1 C u r dr 2³C 4 x2 y 2 4 x2 y2 ¬ 2 2 x2 z ³ S ³ «« ³S ³ 27. Let C 439 k f x, y , z g x , y , z rt Stokes's Theorem dA º » 4 x 2 y 2 »¼ y2z 2 4 x2 y 2 dA dA 2r 2 cos 2 T sin 2 T 4 r2 2 ³0 r dT dr 1 curl C u r N dS 2 ³S ³ ª « ¬ 2S §1 ·º ¨ sin 2T ¸» dr ¹¼ 0 4 r2 © 2 2r 3 1 2 C N dS 2³S ³ 0 ³ S ³ C N dS j k a b c x z y and curl C u r bz cy i az cx j ay bx k i j k w wx w wy w wz 2 ai bj ck 2C. bz cy cx az ay bx e y zi 28. (a) F x, y, z z From the figure you have 1 C1 : r1 t ti , 0 d t d 1, r1c i C2 : r2 t i tj, 0 d t d 1, r2c j C3 : r3 t 1 t i j, 0 d t d 1, r3c i C4 : r4 t 1 t j, 0 d t d 1, r4c j ³ C F dr ³ C1 F r1c dt ³ C2 F r2c dt ³ C3 F r3c dt ³ C4 F r4c dt z 0, N ³ S ³ curl F N dS (0, 1, 0) 1 x 1 C3 y dt 0 ³ 0 e C2 (1, 1, 0) 1 ³0 e 0 1 1 0 dt 0 1 e e y z j e y zk Double Integral: curl F G x, y (0, 0, 0) C4 C1 (1, 0, 0) k ³ R ³ e y dA 1 1 ³ 0 ³ 0 e y dx dy 1 ³ 0 e y dy 1 ª¬e y º¼ 0 1e © 2010 Brooks/Cole, Cengage Learning Chapter 15 440 Vector Analysis z 2 i x 2 j y 2k (b) F x, y, z From the figure you have 2 cos ti 2 sin tj 4k , C: r t 0 d t d 2S . 2S ³ C F dr ³ C M dx N dy P dz ³ 0 x2 y2 , g x, y ³ S ³ curl F N dS ³0 ³R ³ gx 2 x, 2S ³0 4 2 yi 2 zj 2 xk 2 xi 2 yj k dA 2 2 ªª16 sin T ¬¬ C y 2 2 xº¼ dA ³ 0 ³ 0 ª¬4 r sin T r cos T 2S z 2y gy ³ R ³ ª¬4 xy 4 y x 16 º 3¼ 4 r sin T r 2 2 r cos T º¼ r dr dT cos T 128 5 sin T º dT ¼ x 4y z 2 x S: z = y 4 − x 2 − 4y 2 2 1 M , N , P exists, then ³S ³ 0 2 2 cos t , sin t , 0 , 0 d t d 2S , be the boundary of S. Let C : r t If F 2 z 4, z t 0 2 −2 −2 0 29. Let S be the upper portion of the ellipsoid 2 ª¬32 sin t 8 cos3 t º¼ dt 2 yi 2 zj 2 xk Double Integral: curl F z 2S ª16 2 sin t 4 cos 2 t 2 cos t 0º dt ¬ ¼ curl F N dS by i ³ C F dr Stokes's Theorem ³ C G dr by iii sin t 2 cos t , , 0 2 sin t , cos t , 0 dt 4 4 2S ³0 y 1 2 x C 1 2S 2 sin 2 t 2 cos 2 t dt 4³0 S So, there is no such F. Review Exercises for Chapter 15 xi j 2k 1. F x, y, z x 2 12 22 F 2 x 2 xy z 2 3. f x, y, z x2 5 f F x, y , z 4 x y i xj 2 zk z x 2e yz 4. f x, y, z 3 2 xe yz i x 2 ze yz j x 2 ye yz k F x, y , z 2 xe yz 2i xzj xyk 2 3 x 4 5. Because wM wy From M i 2 yj 2. F x, y F y N 1 4 y2 U 1 x 2 wU wx wU wy wN wx, F is conservative. y x and 2 1 x, partial integration yields y x h y and U y x g x which y suggests that U x, y 5 4 3 2 6. Because wM wy x −1 −2 −3 −4 −5 2 4 y x C. 1 y 2 z wN wx, F is not conservative. © 2010 Brooks/Cole, Cengage Learning 0 Review Exercises for Chapter 15 wM wy 7. Because wU wx From M wN wx 2 xy and 2 xy, F is conservative. xy 2 x 2 and N wU wy U 1 2 2 x3 x y h y 2 3 x y y , partial integration yields 2 2 11. Because wM wy 1 y2 z wN wM , wx wz wN wz x y2z2 wP , wy 1 yz 2 wP , wx F is conservative. From M and U 441 wU wx 1 , yz wU wy N x , y2z wU wz P x yz 2 you obtain 1 2 2 y3 x y g x. 2 3 x3 3. So, y 3 3 and g x So, h y 1 2 2 x3 y3 x y C. 2 3 3 U x, y 8. Because wM wy 6 y 2 sin 2 x conservative. From M 2 y 3 sin 2 x and N wU wy U y 3 cos 2 x h y and U y 3 1 cos 2 x g x which suggests that 3 y 2 1 cos 2 x , you obtain y3 , g x h y wM wy U x h x, y f x , y , z yz wM wy 8 xy and wN wx 4 x, (a) div F wM wN z , so F is wy wx (a) div F wM wz wN wz wP 2z , wx wP 6y z , wy wM wz wN , wx y cos z z wP , wx x 2 i xy 2 j x 2 z k : 2 x 2 xy x 2 i j k w wx w wy w wz x2 xy 2 x2 z (b) curl F 2 xz j y 2k y2 j z2 k : 14. Because F x, y, z 10. Because 4x x K. yz F is not conservative. (b) curl F not conservative. wM wy wN , wx sin z C , and y 1 cos 2 x C. 9. Because x g x, z , yz U 13. Because F x, y, z 3 U x, y x f y, z , yz 12. Because wN wx, F is wU wx U 2 y 2z i j k w wx w wy w wz 0 y2 z2 0 F is not conservative. 15. Because F (a) div F (b) curl F 16. Because F (a) div F (b) curl F cos y y cos x i sin x x sin y j xyzk : y sin x x cos y xy xzi yzj cos x sin y sin y cos x k xzi yzj 3x y i y 2 z j z 3x k : 17. Because F 311 2i 3 j k 5 (a) div F (b) curl F arcsin xi xy 2 j yz 2k : 1 1 x2 2 xy 2 yz z 2 i y 2k © 2010 Brooks/Cole, Cengage Learning 442 Chapter 15 Vector Analysis 2 x 2 sin y cos y (a) div F (b) curl F 22. (a) Let x ³C 1 ³ 0 20t t, y 2 2S ³0 x 2 y 2 ds 2 1. 2S dt 4 4t , y C3 : x 0, y xy ds 1 sin t , y cos t , dy dt ³C x 2 y 2 ds y dt 2t , 0 d t d 1, ds 2 t , 0 d t d 2, ds 4 ³0 0 dt 41 dt. 20 41 3 41 dt 0, 0 d t d 4, ds C2 : x dx dt 1 ³0 4 2 5 dt ³ C 2x 3t , y ³0 1 ªt 2 t3 º 16 5 « » 3 ¼0 ¬2 0 dt C3 8 5 . 3 C2 (4, 0) x C1 3 4 1 cos t , 0 d t d 2S cos t sin t , ds 2S ³0 cos t t sin t , y 25. (a) Let x 2 8t 8t 2 2 5 dt y = − 12 x + 2 (0, 2) 2 ª 1 sin t ¬ 2 sin t 2S ³0 ª cos t t sin t ¬ dt 2 dt 2S ³0 ª¬1 2 sin t sin 2 t 1 2 cos t cos 2 t º¼ dt 2S 2 cos t 2 sin t @0 dx dt t cos t , dy dt 6S t sin t 2 sin t t cos t º t 2 cos 2 t t 2 sin 2 t dt ¼ 2S ³0 2S 2 1 2S 2 ª¬t 3 t º¼ dt 0 d t d 1. 1 ³ 0 ª¬ 6t 3t 3 y dx x 2 y dy 2S ³0 S 2 ³0 1 ³0 27t 9t dt 1 18t 2 º¼ 0 S 2 , dx 18 3 cos t dt , 0 d t d 2S . ª¬ 6 cos t 3 sin t 3 sin t 3 cos t 6 sin t 3 cos t º¼ dt sin t t sin t , 0 d t d 2 x y dx x 3 y dy 3t 6t 3 º¼ dt 3 sin t dt , dy 3 sin t , dx 2 x y dx x 2 y dy cos t t sin t , y >3t sin t t cos t , 0 d t d 2S , 3t , 3 cos t , y 2 2 1 cos t º dt ¼ 2 2S x 2 y 2 ds 3 dt ³ 0 >3 2 sin t 2 cos t@ dt ³C cos t § 1 1 · z¨ 2 2 2 ¸ x y © ¹ 4t , 0 d t d 1, then ds 5t , y (b) C1 : x 26. x 2 125 3 0 d t d 2S , sin t , sin t then ds z z 2 2z x2 y ³ C xy ds ³C 9t 2 16t 2 5 dt 1 1 i j y x (b) curl F (b) Let x cos t , y (b) Let x z z i j z 2k : x y (a) div F ³C 1 ³0 x 2 y 2 ds 5 dt. 1 2x 2 y k x2 y2 20. Because F 24. x 9 16 dt ª t3 º «125 » 3 ¼0 ¬ 2x 2 y 1 x2 y 2 2x 2y 2 1 x2 y 2 x y2 (b) curl F 23. x ³C 0 d t d 1, 4t , ln x 2 y 2 i ln x 2 y 2 j zk : (a) div F ³C 3t , y then ds 0 19. Because F So, 21. (a) Let x x 2 y i x sin 2 y j: 18. Because F t cos t dt , dy 2S ³0 9 dt 18S cos t t cos t sin t dt ªsin t cos t 5t 2 6t 2 cos 2 t t 1 sin 2 t 2t 3 º dt | 1.01 ¬ ¼ © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 15 27. ³C 2 x y ds, r t a cos3 ti a sin 3 tj, 0 d t d xc t 3a cos 2 t sin t yc t 3a sin 2 t cos t ³C 2 a cos3 t a sin 3 t S 2 xc t 2 yc t 2 9a 2 5 dt ti t 2 j t 3 2k , 0 d t d 4 28. r t xc t ³C S 2 ³0 2 x y ds 1, yc t C: y 3 12 t 2 2t , zc t 4 ³0 x 2 y 2 z 2 ds t 2 t4 t3 1 4t 2 9 t dt | 2080.59 4 3 sin x y 29. f x, y 12 x y 30. f x, y 2 x from 0, 0 to 2, 4 x 2 from 0, 0 to 2, 4 C: y rt ti 2tj, 0 d t d 2 rt ti t 2 j, 0 d t d 2 rc t i 2j rc t i 2tj rc t 5 rc t Lateral surface area: ³C f ³ 0 ª¬3 sin t x, y ds 2 0 2t º¼ 5 dt ³C f >3 sin 3t@ dt 1 ª º 5 «3t cos 3t » 3 ¬ ¼0 1 1º ª 5 «6 cos 6 » 3 3¼ ¬ F rt t 2i t 2 j, rc t 2ti 2tj 1 ³ 0 ª¬t 1 0 d t d1 2 ³ 0 6t 5 t 2 2t 2 t 2 t 2 2t º¼ dt dt 1 t 6 º¼ 0 1 4 cos t 3 sin t i 4 cos t 3 sin t j, 0 d t d 2S 2S 2S ³0 ª 7 sin 2 t º «12t » 2 ¼0 ¬ 12 7 sin t cos t dt 24S ª¬ 2 sin t i 2 cos t j k º¼ dt 2 cos t i 2 sin t j tk , 0 d t d 2S ³ C F dr 34. x 1 4t 2 dt | 41.532 ª¬ 4 sin t i 3 cos tjº¼ dt ³ C F dr 33. dr 12 t t 2 xyi 2 xyj ³ C F dr 5 19 cos 6 | 13.446 3 2 ³0 x, y ds 31. F x, y 2 F 1 4t 2 Lateral surface area: 2 5³ 32. dr 443 2S ³0 2 t, y t dt 2S 2 2 t, z dr ª «i j ¬ F 4 2t 4t t 2 , 0 d t d 2 º k » dt 4t t ¼ 2t 2 4t t 2 i 4t t 2 2 t j 0k 2 ³ C F dr 2 ³0 t 2 dt ªt 2 º « 2t » 2 ¬ ¼0 2 © 2010 Brooks/Cole, Cengage Learning 444 Chapter 15 Vector Analysis y zi x z j x yk 35. F x, y, z t, y Curve of intersection: x rt ti tj 2t 2k , rc t i j 4tk 2 ³ 0 ª¬ t 2t ³ C F dr 2 sin t , y 36. Let x 2t 2 0 d t d 2 2 t 2t 2 2t 4t º¼ dt 2 ³ 0 ª¬12t 2 2 2t º¼ dt ª¬4t 3 t 2 º¼ 0 36 4 sin 2 t , 0 d t d S . 2 cos t , z ª¬ 2 cos t i 2 sin t j 8 sin t cos t k º¼ dt dr F t2 t2 t, z 0i 4 j 2 sin t k S ³ C F dr ³0 37. For y x 2 , r1 t For y 2 x, r2 t ³ C xy dx ª8 cos t ¬ 8 sin t 16 sin 2 t cos t dt 16 3 S sin 3 t º¼ 0 16 ti t 2 j, 0 d t d 2 y y = 2x 4 2 t i 4 2t j, 0 d t d 2 ³ C1 xy dx x 2 y 2 dy x 2 y 2 dy 32 100 3 ³ C2 xy dx 3 (2, 4) C2 x 2 y 2 dy y = x2 2 4 3 1 C1 x 38. ³ C F dr ³C ³ C F dr 3 4 4S 2 4S xi y j is conservative. ª1 x2 ¬2 Work 4, 8 2 y3 2 º 3 ¼ 0, 0 1 2 10 sin ti 10 cos tj 40. r t F 2 2 cos t 2t sin t i 2 sin t 2t cos t j, 0 d t d S rt 39. F 1 2 x y dx 2 y x dy 16 2 3 8 3 83 2 2000 5280 tk S 2 3 4 2 10 sin ti 10 cos tj 25 S tk , 0 d t d 33S 2 20k 25 · § k¸ ¨10 cos ti 10 sin tj 33S ¹ © S 2 500 250 ³ C F dr ³ 0 33S dt 33 mi ton dr 41. ³ C 2 xyz dx 42. ³ C y dx 43. (a) ³C y 2 x dy 1 dz z 4, 4, 4 1 ³ 0 ª¬ 1 t dx 2 xy dy 1 ³C y 2 So, 4 y 2i 2 xy j ³ C F dr 42 2 2 2 16 ln 4 3 2 1 3t 1 t º dt ¼ 2t 1 2 3t 2 4t 1 ¼º dt ª ³ 1 «¬t 1 dx 2 xy dy (c) F x, y 6 ª¬ xy ln z º¼ 0, 0,1 ³0 3 t (b) 1, 3, 2 ª¬ x 2 yz º¼ 0, 0, 0 x 2 z dy x 2 y dz 2t t 1 º » dt 2 t¼ f where f x, y 11 2 4 ³1 1 ³0 t t dt 9t 2 14t 5 dt 4 2 ¬ªt ¼º1 1 3 2 ¬ª3t 7t 5t ¼º 0 15 15 xy 2 . 15. © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 15 a T sin T , y 44. x a 1 cos T , 0 d T d 2S 1 x dy y dx. 2³C (a) A 445 y Because these equations orient the curve backwards, you will use 1 y dx x dy 2³ 1 2S 2 1 2S a ªa 1 cos T 1 cos T a 2 T sin T sin T º¼ dT ³ 0 0 dT 2³0 ¬ 2 0 a 2 2S ª1 2 cos T cos 2 T T sin T sin 2 T º¼ dT 2 ³0 ¬ a 2 2S 2 2 cos T T sin T dT 2 ³0 a2 6S 3S a 2 . 2 A 45. 1 2S 3 a 1 cos T 2A³0 1 y 2 dx 2A³C 1 § wN 1 ³ C y dx 2 x dy ³ 0 ³ 0 ¨© wx 1 1 ³0 ³0 46. ³ C xy dx ³ C xy 2 2 ³0 ³0 x 2 y 2 dy ³C y dx x y dy dx x 4 3 dy 2 48. 1 3 49. ³ C xy dx x 2 dy , 0 d v d 2S § wN ³ R ³ ¨© wx 1 4 1 ³ 1 ³ x 2 1 a2 x2 a2 x2 1 ³ 1 0 4 y dy dx 0 wM · ¸ dA wy ¹ 2 x x dy dx ³ 1 > xy@x2 1 dx x x3 dx 1 ª x2 x4 º « » 4 ¼ 1 ¬2 32 1 x 2 3 13 4 x1 3 3 1 x2 3 32 2 y dy dx dx 1 ³ 1 ª¬ 43 x 13 ª 8 x 2 3 1 x 2 3 ¬« 7 sec u cos vi 1 2 tan u sin vj 2uk S a ³a ³ x 2 y 2 dx 2 xy dy ³ a 0 dx 2 x x dy dx ³ 1 ³ 1 x 2 3 3 2 1 0 d u d ³C 5 a. 6 1 2 xy 2 xy dA ³ 1 83 x 51. r u , v 1 a 3 5S 2 3 S a2 1 cos T dT § wN wM · ³ R ³ ¨© wx wy ¸¹ dA 2 ³R ³ 50. 2π a a 2 1 dy dx 2 47. 2 wM · ¸ dy dx wy ¹ ³ 0 2 x dx 2 x C2 S a. From Section 15.4, (b) By symmetry, x y C1 52 0 32 1 x2 3 y y 2 º¼ 3 2 dx 1 x 2 3 16 35 1 x2 3 52. r u , v 52 1 º ¼» 1 0 e u 4 cos vi e u 4 sin vj u k 6 0 d u d 4, 0 d v d 2S z z 2 6 −4 2 2 4 x 2 4 y x 2 y −2 © 2010 Brooks/Cole, Cengage Learning 446 Chapter 15 Vector Analysis z 53. (a) z (b) z (c) 3 3 3 −4 −4 −4 2 4 4 4 y 2 3 y 4 3 4 2 −3 −4 3 y 4 −2 x −2 −3 −3 −3 (d) 2 −1 x −2 x 3 −2 −4 −3 −4 −3 z 3 −4 4 −2 1 −4 −3 3 2 3 y 4 −2 x −3 § S· The space curve is a circle: r¨ u , ¸ © 4¹ (e) ru rv 3 2 3 2 cos ui sin uj 2 2 2 k 2 3 cos v sin u i 3 cos v cos u j 3 sin v cos u i 3 sin v sin u j cos v k ru u rv i j k 3 cos v sin u 3 cos v cos u 0 3 sin v cos u 3 sin v sin u cos v 3 cos 2 v cos u i 3 cos 2 v sin u j 9 cos v sin v sin 2 u 9 cos v sin v cos 2 u k 3 cos 2 v cos u i 3 cos 2 v sin u j 9 cos v sin v k ru u rv 9 cos 4 v cos 2 u 9 cos 4 v sin 2 u 81 cos2 v sin 2 v Using a Symbolic integration utility, (f ) Similarly, S 4 S 2 ³0 ³0 ru u , v i j rv u , v i j cos vk i j k 1 1 0 2S ru u rv du dv | 14.44. ru u rv dv du | 4.27. u v i u v j sin vk , 54. S : r u , v ru u rv S 2 ³S 4 ³ 0 9 cos 4 v 81 cos 2 v sin 2 v 0 d u d 2, 0 d v d S cos vi cos vj 2k 1 1 cos v ru u rv ³ S ³ z dS 2 cos 2 v 4 S rv u , v 2 cos 2 v 4 du dv ª 2« 6 ¬« § 2 ln ¨¨ © 2 ·º ¸» 2 ¸¹¼» 6 6 u cos vi u sin vj u 1 2 u k , 0 d u d 2, 0 d v d 2S 55. S : r u , v ru u , v 2 ³ 0 ³ 0 sin v z 2 cos vi sin vj 3 2u k u sin vi u cos vj 3 ru u rv i j k cos v sin v 3 2u u sin v u cos v ru u rv ³S ³ u x y dS 2u 3 2S x y 3 −2 2u 3 u cos vi 2u 3 u sin vj uk 0 2 1 2 u cos v u sin v u ³0 ³0 −3 −3 2u 3 2 1 du dv 2 2S ³0 ³0 cos v sin v u 2 2u 3 2 1 dv du © 2010 Brooks/Cole, Cengage Learning 0 Review Exercises for Chapter 15 56. (a) z aa z x2 y 2 , 0 d z d a2 a z 0 x2 y2 (b) S : g x, y U x, y m k R³ x2 y 2 x2 y2 k ³ S ³ e x, y , z k³ 2 a2 a2 a z 447 ³R ³ k dS x2 y2 2S a 2 1³ 0 1 a ³0 r 2 x2 y 2 1 g x2 g 2y dA a2 x2 a2 y2 dA 2 2 x y x y2 k³ 2 dr dT k a 2 1³ 2S 0 a3 dT 3 R ³ 2 k 3 a2 1 y a a x x 2 y 2 dA a 2 1 a 3S x 2i xyj zk 57. F x, y, z Q: solid region bounded by the coordinates planes and the plane 2 x 3 y 4 z 12 Surface Integral: There are four surfaces for this solid. z 0, N k , FN z, ³ S1 ³ 0 dS 0 y 0, N j, FN xy, ³ S2 ³ 0 dS 0 x 0, N i, FN x2 , ³ S3 ³ 0 dS 0 2i 3j 4k , dS 29 §1· § 9 · 1 ¨ ¸ ¨ ¸dA © 4 ¹ © 16 ¹ 2x 3y 4z 12, N ³ S4 ³ F N dS 1 2 x 2 3 xy 4 z dA 4 ³R ³ 1 6 4 2x 3 2 x 2 3xy 12 2 x 3 y dy dx 4³0 ³0 29 dA 4 2 2 1 6 ª 2 § 12 2 x · 3 x § 12 2 x · § 12 2 x · § 12 2 x · 3 § 12 2 x · º 2 12 2 x x « ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ » dx 4 ³ 0 «¬ © 3 ¹ 2© 3 ¹ 3 ¹ 3 ¹ 2© 3 ¹ »¼ © © 1 6 x3 x 2 24 x 36 dx 6³0 6 º 1 ª x4 x3 12 x 2 36 x» « 6¬ 4 3 ¼0 Divergence Theorem: Because div F ³³³ div F dV Q 6 12 2 x 3 6 12 2 x 3 ³0 ³0 ³0 ³0 12 2 x 3 y 4 ³0 66 2x x 1 3x 1, Divergence Theorem yields 3 x 1 dz dy dx § 12 2 x 3 y · 3x 1 ¨ ¸ dy dx 4 © ¹ 12 2 x 3 1 6 3 º ª 3 x 1 «12 y 2 xy y 2 » 4³0 2 ¬ ¼0 dx 2 ª 1 6 § 12 2 x · 3 § 12 2 x · º 3 x 1 «4 12 2 x 2 x¨ ¨ » dx ¸ ¸ ³ 4 0 3 ¹ 2© 3 ¹ »¼ © ¬« 1 62 3 3 x 35 x 2 96 x 36 dx 4³0 3 6 º 35 x3 1 ª3x 4 48 x 2 36 x» « 3 6¬ 4 ¼0 66. © 2010 Brooks/Cole, Cengage Learning 448 Chapter 15 Vector Analysis xi yj zk 58. F x, y, z Q: solid region bounded by the coordinate planes and the plane 2 x 3 y 4 z Surface Integral: There are four surfaces for this solid. (0, 0, 3) z 0, N k , F N z, ³ S1 ³ 0 dS 0 y 0, N j, FN y, ³ S2 ³ 0 dS 0 x 0, N i, FN x, ³ 0 dS 0 2x 3y 4z ³ S4 ³ S3 2i 3 j 4k , dS 29 12, N 1 2 x 3 y 4 z dy dx 4³R ³ ³ N F dS Triple Integral: Because div F ³³³ div F dV ³³³ 3 dV Q 12 z (0, 4, 0) x y (6, 0, 0) §1· § 9 · 1 ¨ ¸ ¨ ¸ dA © 4 ¹ © 16 ¹ 29 dA 4 6 ª x2 º 3«4 x » 3 ¼0 ¬ 6§ 2x · 3³ ¨ 4 ¸ dx 0 3¹ © 1 6 12 2 x 3 12 dy dx 4³0 ³0 36 3, the Divergence Theorem yields 3 Volume of solid Q ª1 º 3« Area of base Height » ¬3 ¼ 1 6 4 3 2 36. cos y y cos x i sin x x sin y j xyzk 59. F x, y, z y 2 over the square in the xy-plane with vertices 0, 0 , a, 0 , a, a , 0, a S: portion of z Line Integral: Using the line integral you have: C1 : y 0, dy 0 C2 : x 0, dx 0, C3 : y a, dy C4 : x a, dx ³ C F dr ³C y 2 , dz z 0, z 0, 0 2 2 y dy a , dz y , dz z cos y y cos x dx sin x x sin y dy xyz dz ³ C1 dx ³ C2 0 ³ C3 a 2 y dy 2 0 ³ 0 dx ³ a ³ C4 cos a a cos x dx cos a a cos x dx a ³0 sin a a sin y dy ay 3 2 y dy sin a a sin y dy a ³ 0 2ay 4 dy a ª y5 º a 0 a > x cos a a sin x@a > y sin a a cos y@0 «2a » ¬ 5 ¼0 2a 6 a a cos a a sin a a sin a a cos a a 5 Double Integral: Considering f x, y, z z 2a 6 5 1 C3 z y 2 , you have: C4 C1 N So, f f ³S ³ 2 yj k 1 4 y2 curl F N dS 1 4 y 2 dA, and curl F , dS a a ³0 ³0 2y 2 z dy dx a a ³0 ³0 2y 4 xzi yzj. dy dx a ³0 y x 2a 5 dx 5 C2 a a 2a 6 . 5 © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 15 449 x z i y z j x 2k 60. F x, y, z S: first octant portion of the plane 3x y 2 z 12 Line Integral: C1 : y 0, dy 0, z C2 : x 0, dx 0, z C3 : z 0, 0, y ³ C F dr dz ³C 12 3x , dz 2 12 y , dz 2 12 3x, dy 3 dx 2 1 dy 2 3 dx x z dx y z dy x 2 dz ª 12 3 x § 3 ·º x 2 ¨ ¸» dx 2 © 2 ¹¼ ³ C1 «¬x 0§ 12 § 3 5 · x 6 ¸ dx ³ ¨ y 0 2 ¹ ©2 12 3 x y z Double Integral: G x, y, z 2 3 1 G x , y , z i jk 2 2 curl F i 2x 1 j 3 ³ 4 ©¨ 2 x 2 ³S ³ 4 4 ³0 ³ C3 ª¬x 10 x 36 dx 12 3x 3 º¼ dx 8 z (0, 0, 6) x (4, 0, 0) y (0, 12, 0) 12 3 x xi yj zk , then div curl F 61. If curl F · 6 ¸ dy ¹ ³0 ³0 curl F N dS 12 y º dy 2 ¼» ª ³ C2 ¬« y 4 ³0 x 1 dy dx 111 3x 2 15 x 12 dx 8 3, contradicting Theorem 15.3. Problem Solving for Chapter 15 25 1. (a) T x y2 z2 2 N xi dA 1 x2 ³ S ³ kT N dS Flux yi zk @ 1 x2 k 1 dS > xi 32 25k ³ ª x2 « R³« 2 x y2 z2 ¬ ª 12 1 x2 « 25k ³ 32 1 2 ³ 0 « 2 2 2 1 x2 ¬ x y z 12 25k ³ (b) r u , v ru 1 y 2 32 sin u , 0, cos u , rv 1 x 2 12 dy dx º » dA z x2 y 2 z 2 3 2» ¼ º 1 x2 » dy dx 32 12 1 x 2 »¼ x2 y 2 z 2 25k ³ 1 1 0 1 y 2 32 dy ³ 1 12 1 2 1 x 2 12 dx § 2 ·§ S · 25k ¨¨ ¸¸¨ ¸ © 2 ¹© 3 ¹ 25k 2S 6 0, 1, 0 cos u , 0, sin u 25 x y z 2 2 T ru u rv Flux 1 1 ³0 1 x2 12 cos u , v, sin u ru u rv T 1 2 12 32 1 32 > xi 25 v 1 2 2S 3 ³ 0 ³S 3 2 32 25k v 1 2 32 yj zk @ 25 v 1 2 cos 2 u sin 2 u du dv 32 25 v 1 2 25k >cos ui vj sin uk@ 32 2S 6 © 2010 Brooks/Cole, Cengage Learning 450 Chapter 15 Vector Analysis 1 x2 y2 , 2. (a) z wz wx x 1 x y 2 2 2 § wz · § wz · ¨ ¸ ¨ ¸ 1 dA © wx ¹ © wy ¹ dS 25 T x y2 z2 2 N 32 2 xi yj 1 x2 y 2 k ³S ³ kT Flux k³ R (b) r u , v k³ N dS R 25 ³ 1 x y 2 1 x2 y2 25 xi yj zk x 1 x2 y 2 · j k ¸ 1 x2 y 2 ¸ 1 x2 y 2 ¹ y i xi yj zk ³ 25 xi 25k ³ dA 2 y 1 § ¨ ¨ © § wz · § wz · ¨ ¸ ¨ ¸ 1 x w © ¹ © wy ¹ wz wy 1 x2 y2 xi yj zk wz wz i jk wx wy 2 , 2 yj zk xi yj zk 2S 0 1 1 ³0 1 r2 r dr dT 1 1 x2 y 2 dA 50S k sin u cos v, sin u sin v, cos u ru cos u cos v, cos u sin v, sin u rv sin u sin v, sin u cos v, 0 ru u rv ru u rv sin 2 u cos v, sin 2 u sin v, sin u cos u sin 2 v sin u cos u cos 2 v sin u 25k ³ Flux 2S 0 S 2 ³0 sin u du dv 50S k 3 cos t , 3 sin t , 2t 3. r t rc t 3 sin t , 3 cos t , 2 , rc t 2S Ix ³C y 2 z 2 U ds ³0 Iy ³C x 2 z 2 U ds ³0 Iz ³C x 2 y 2 U ds ³0 2S 2S 13 9 sin 2 t 4t 2 13 dt 9 cos 2 t 4t 2 13 dt 9 cos 2 t 9 sin 2 t 1 13S 32S 2 27 3 1 13S 32S 2 27 3 13 dt 18S 13 2 2t 3 2 t2 , t, 2 3 4. r t rc t t , 1, 2t1 2 , rc t U ds 1 t 1 dt 1t t 1 1 1 § t4 Iy ³C x 2 z 2 U ds ³ 0 ¨© 4 Ix ³C y 2 z 2 U ds ³ 0 ¨© t Iz ³C x 2 y 2 U ds ³ 0 ¨© 4 1§ 2 1 § t4 8 3· t ¸ dt 9 ¹ 49 180 8 3· t ¸ dt 9 ¹ 5 9 · t 2 ¸ dt ¹ 23 60 © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 15 5. w 1 f ww wx ww wy ww wz x y z n 2 32 z x y z 2 52 2 y 2 x2 z 2 x2 y 2 z 2 52 2 z 2 x2 y2 x2 y 2 z 2 52 w2w w2w w2w wx 2 wy 2 wz 2 2w 32 2 x2 y 2 z 2 w2w wz 2 y x2 y2 z 2 2 x2 y 2 z 2 w2w wy 2 32 x2 y2 z 2 2 ³C y 2 x 0 1 is harmonic. f Therefore w 6. w2w wx 2 1 2 451 § wN ³ R ³ ¨© wx dx x n dy wM · ¸ dA wy ¹ For the line integral, use the two paths C1 : r1 x xi, a d x d a xi C2 : r2 x ³ C1 y dx x n dy n ³ C2 y a 2 x 2 j, x n (a) For n 2a a ³a dx x dy § wN wM · ¸ dA wy ¹ ª 2 2 «a x ¬ a ³ a ³ 0 a2 x2 ³ 1 2 C n2 x n y = a2 − x2 º » dx 2 2 a x ¼ x C2 ª¬nx n 1 ny n 1 º¼ dy dx C1 −a x a 1, 3, 5, 7, both integrals give 0. (b) For n even, you obtain 4 16 n 2: a 3 n 4: a 5 3 15 (c) If n is odd then the integral equals 0. 7. y 0 n ³ R ³ ©¨ wx a a to x x dy y dx ³ 2S 1 2 0 ³ 6: n 32 7 a 35 n 8: 256 9 a 315 ª¬a T sin T a sin T dT a 1 cos T a 1 cos T 2S 1 a2 2 0 ª¬T sin T sin 2 T 1 2 cos T cos 2 T º¼ dT dT º¼ ³ 2S 1 a2 2 0 T sin T 2 cos T 2 dT 3 S a 2 So, the area is 3 S a 2 . 8. ³ 1 2 C x dy y dx 2³ S 2 0 ª 1 sin 2t cos t sin t cos 2t º dt ¬2 ¼ 2 2 3 So, the area is 43 . 9. (a) r t rc t W (b) r t rc t W tj, 0 d t d 1 j 1 ³ C F dr ³0 ti j j dt 1 ³ 0 dt 1 t t 2 i + t j, 0 d t d 1 1 2t i j F dr 1§ ³ 0 ¨© 2t t 1 ³ 0 ¬ª 1 2t 2 i ª t t2 «¬ 2 1º j¸· 1 2t i j dt »¼ ¹ 2t t 2 t 4 2t 3 t 2 1 ¼º dt 1 ³0 t 4 4t 2 2t 1 dt 13 15 © 2010 Brooks/Cole, Cengage Learning 452 Chapter 15 Vector Analysis c t t 2 i tj, 0 d t d 1 (c) r t rc t c 1 2t i j F dr c t t 2 t c 1 2t c2 t t 2 2 1 1 c 2t 4 2c 2t 2 c 2t 2ct 2 ct 1 1 1 c 15 6 dW dc d 2W dc 2 1 ! 0 c 15 5 minimum. 2 x3 y 2 potential function. f x, y f 2, 4 f 1, 1 8 16 1 S ab 12. Area 3x 2 y 2i 2 x3 yj is conservative. 10. F x, y Work 1 2 1 c c 1 30 6 5 0 c 2 ³ C F dr W rt a cos ti b sin tj, 0 d t d 2S rc t a sin ti b cos tj 127 12 b sin ti 12 a cos tj F 11. v u r a1 , a2 , a3 u x, y , z a2 z a3 y , a1 z a3 x, a1 y a2 x curl v u r 2a1 , 2a2 , 2a3 W 2v v u r dr 13. F x, y ³ S ³ curl v u r m M x, y i N x , y j 3mxy x2 y2 wM wy x y 3mxy x 2 y 2 52 ª 5 3mxy « x 2 y 2 ¬ 2 3mx x 2 y 2 x y 2 wN wx 2 7 2 wN wx 52 1 ab 2 2S S ab ª5 y 2 x 2 y 2 º ¬ ¼ 7 2 7 2 7 2 ª3 xyi 2 y 2 x 2 jº ¬ ¼ 5 2 º 2 y » x2 y 2 ¼ ª 5 m 2 y 2 x 2 « x 2 y 2 ¬ 2 mx x 2 y 2 2 m 2 y 2 x2 x2 y2 52 mx x 2 y 2 So, 7 2 m 2 y 2 x2 N F dr ³ S ³ 2v N dS . N dS 2 M 2S ³0 1 ab 2 Same as area. By Stokes's Theorem, ³C ª 1 ab sin 2 t 1 ab cos 2 t º dt 2 ¬2 ¼ F dr 5 2 3mx 3mx x 2 4 y 2 x2 y2 72 5 2 º 2x » x2 y2 ¼ 5 2 2mx ª 2 y 2 x 2 5 x 2 y 2 2 º ¬ ¼ 3 x 2 12 y 2 3mx x 2 4 y 2 x2 y 2 72 wM and F is conservative. wy © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 6 Additional Topics in Differential Equations Section 16.1 Exact First-Order Equations...............................................................454 Section 16.2 Second-Order Homogeneous Linear Equations................................464 Section 16.3 Second-Order Nonhomogeneous Linear Equations .........................472 Section 16.4 Series Solutions of Differential Equations ........................................480 Review Exercises ........................................................................................................491 Problem Solving .........................................................................................................500 © 2010 Brooks/Cole, Cengage Learning C H A P T E R 1 6 Additional Topics in Differential Equations Section 16.1 Exact First-Order Equations 1. 2 x xy 2 dx 3 x 2 y dy wM wy wN wx wM wy wM wy 2 xy f x, y 0 3 x g c y f y x, y 2 y 3x g c y x g y x cos y wN cos y wx wM wN Not exact z wy wx 4. ye xy dx xe xy dy wN wx wM wy ³ M x, y dx ³ 2 x 3 y dx x 2 3 xy g y 3. x sin y dx x cos y dy wM wy e xy xye xy 0 x 2 3 xy y 2 C1 x 2 3xy y 2 C 6. ye x dx e x dy 0 wM wy wN Exact wx ex f x, y ³N ye x g c x g x C1 f x, y ye x C1 ye x ³e x, y dy f x x, y 0 2y y 2 C1 f x, y x ye x g x dy ye x g c x e xy xye xy wM wy wN Exact wx f x, y 0 C 7. 3 y 2 10 xy 2 dx 6 xy 2 10 x 2 y 6 y 20 xy ³M 0 wN Exact wx ³ 3y x, y dx 2 10 xy 2 dx 3xy 2 5 x 2 y 2 g y f y x, y 6 xy 10 x 2 y g c y gc y f x, y 2 g y 6 xy 2 10 x 2 y 2 y C1 3 xy 2 5 x 2 y 2 2 y C1 3xy 2 5 x 2 y 2 2 y 454 0 wN Exact wx 3 wN Exact wx wN y wx wM wN Not exact z wy wx wM wy 5. 2 x 3 y dx 2 y 3 x dy 2 xy 2. 1 xy dx y xy dy wM wy 0 C © 2010 Brooks/Cole, Cengage Learning Section 16.1 8. 2 cos 2 x y dx cos 2 x y dy wM wy 0 12. xe wN wx 2 sin 2 x y wM wy 2 sin 2 x y Exact ³ 2 cos 2 x y dx f y x, y 0 g y 9. 4 x 6 xy 2 dx 4 y 6 xy dy e 0 12 xy wN wx 6 y x2 y2 1 x2 y2 e g y 2 gc y ye dx 2 xye xy 2 4 xy 3 y e xy wN wx 2 xy y e wN wx 0 dy x2 y2 C1 2 0 2 xy x y 3 2 xy x y 3 Not exact 2 14. ye y cos xy dx e y x cos xy sin xy dy 3 xy 2 Not exact y x dx 2 dy 11. 2 x y2 x y2 y 2 x2 x2 y 2 f x, y f y x, y ³M 2 0 x, y dx § x· arctan ¨ ¸ © y¹ § x· arctan ¨ ¸ C1 © y¹ wN wx e y >cos xy xy sin xy y cos xy@ wN Exact wx ³ M x, y dx y ³ ye cos xy dx gc y 0 g y C1 e y sin xy g y e y sin xy xe y cos xy g c y f y x, y x gc y x2 y2 x gc y x y2 e y cos xy ye y cos xy xye y sin xy f x, y § x· arctan ¨ ¸ g y © y¹ 0 wM wy wM wy wN Exact wx 2 f x, y gc y C wM wy wM wy wM wy x2 y 2 dx § y · § x · 13. ¨ ¸ dx ¨ ¸ dy x y © ¹ © x y¹ Not exact 10. 2 y e wN Exact wx x2 y2 2 wM wy 0 dy 1 x2 y 2 e C1 2 f x, y 3 455 x, y dx g y C 3 2 xy 2 C1 sin 2 x y C1 sin 2 x y ye x2 y 2 x2 y 2 ³M sin 2 x y g y cos 2 x y g c y f x, y 2 xye ³ xe cos 2 x y g c y f y x, y dx ye f x, y ³ M x, y dx f x, y x2 y2 Exact First-Order Equations f x, y e y sin xy 0 g y C1 e y sin xy C1 C C © 2010 Brooks/Cole, Cengage Learning 0 456 Chapter 16 Additional Topics in Differential Equations 15. (a) and (c) 17. (a) and (c) 4 y y 6 4 −6 4 6 9 −9 2 x −4 x −4 −4 2 −2 4 −6 −2 −4 (b) −4 §1· 0, y¨ ¸ © 2¹ 2 x tan y 5 dx x 2 sec 2 y dy wM wy ³M 4 (b) wN Exact wx 2 x sec 2 y f x, y S x y wM wy ³ 2 x tan y 5 x, y dx x 2 2 y dx x y 2 32 dx ³M f x, y x 2 tan y 5 x g y 2 x sec y §1 S · f¨ , ¸ ©2 4¹ 1 5 4 2 C x y2 y 2 C x2 y 2 11 4 Answer: x 2 tan y 5 x y f y x, y C 11 4 16. (a) and (c) f x, y x2 y2 f 3, 4 32 42 1 2 2 x dx gc y gc y 0 g y C 25 5 5 or x 2 y 2 x2 y2 Solution: y dx x2 y2 g y 0 g y x 2 tan y 5 x f x, y x y2 2 1 2 x y2 2³ 2 gc y x ³ x, y dx x 2 sec2 y g c y f y x, y 3 wN Exact wx xy 2 0, y 4 dy x y2 2 C 25 4 18. (a) and (c) 4 2 8 6 −6 − 12 12 x −4 4 −4 −8 (b) (b) 2 xy dx x 2 cos y dy wM wy S 0, y 1 wN Exact wx 2x f x, y ³ M x, y dx f y x, y x2 gc y x 2 y sin y C f 1, S C S Answer: x y sin y 2 wM wy f x, y ³ 2 xy dx gc y cos y g y sin y C1 2 1 f y x, y ³M 5 x, y dx 2 y dx x gc y gc y f x, y 0, y 4 wN Exact wx ³x x2 y g y x 2 cos y x 2 y sin y C1 f x, y x y dx y x dy 2 x3 xy g y 3 y2 x y2 g y y3 C1 3 x3 y3 xy C1 3 3 x3 y3 C xy 3 3 43 C f 4, 5 Solution: x3 y 3 3 xy 129 S © 2010 Brooks/Cole, Cengage Learning C Section 16.1 19. y dx ª¬ln x 1 2 yº¼ dy x 1 wM wy f x, y ³M f y x, y ln x 1 g c y ³M f x, y ³ 2y g y y 2 C1 y ln x 1 y C1 y ln x 1 y 2 4: 4 ln 2 1 16 C C 16 x3 xy 2 C1 3 x3 xy 2 3 y3 x y dx 2 dy x2 y2 x y2 0 x3 xy 2 3 x2 y 2 ³M f x, y 2 1 ln x 2 y 2 g y 2 gc y ln x 2 y 2 16 x, y dx ³e sin 3 y dx 3x 0 gc y 1 3x e sin 3 y g y 3 0 g y 1 3x e sin 3 y C1 3 f x, y 3x e sin 3 y 3x 2y 1 g y y 2 y C1 0 Solution: e sin 3 y dx x 2 y 3 x 2 y 2 y C1 3: 9 3 C 6 C 6 24. 2 xy 2 4 dx 2 x 2 y 6 dy 0 4 xy f y x, y wN Exact wx ³ M x, y dx 2 ³ 2 xy 4 dx x2 y 2 4x g y 2x2 y gc y 2x2 y 6 gc y g y C1 f x, y 6 6 y C1 x 2 y 2 4 x 6 y C1 x2 y2 4 x 6 y y 1 C S: C gc y f x, y e3 x cos 3 y g c y f y x, y 2 2 y x2 1 Solution: x 2 y 3 x 2 y 2 y wM wy wN Exact wx ³M 0 ³ 2 xy 9 x x, y dx x2 gc y f y x, y y0 21. e3 x sin 3 y dx e3 x cos 3 y dy f x, y 36 x 2 y 3x 2 y 2 y ln 16 3e3 x cos 3 y C wN Exact wx ³M f x, y C Solution: x 2 y 2 y0 C1 C ln x 2 y 2 12 x 2 y 3x3 g y 0 g y 4: ln 16 C1 12 2x f x, y 1 ln x 2 y 2 C1 2 f x, y wM wy wM wy y gc y x2 y 2 f y x, y y0 1: 9 3 23. 2 xy 9 x 2 dx 2 y x 2 1 dy x, y dx x ³ x 2 y 2 dx 0 g y C Solution: x3 3 xy 2 wN Exact wx x3 xy 2 g y 3 x 2 y 2 dx f x, y 16 2 xy x, y dx 2 xy g c y g c y Solution: y ln x 1 y 2 wM wy 0 f y x, y C 457 wN Exact wx 2y 2 f x, y 20. wM wy y ln x 1 g y x, y dx gc y y2 22. x 2 y 2 dx 2 xy dy 0 wN Exact wx 1 x 1 Exact First-Order Equations C 8: 1 64 4 48 13 C Solution: 0 x2 y 2 4x 6 y 13 © 2010 Brooks/Cole, Cengage Learning 458 Chapter 16 Additional Topics in Differential Equations 25. y dx x 6 y 2 dy wN wx wM wy M k Integrating factor: e ³ Exact equation: 28. 5 x 2 y 2 dx 2 y dy 0 2 y y dy wM wy wN wx N k y eln y 2 § x · 1 dx ¨ 2 6 ¸ dy y y © ¹ gc y 6 g y 6 y C1 x 6y y 0 Integrating factor: e ³ g y C1 y x x 2 g y C1 2 x h x dx 2 dx h x eln cos x 1 x2 0 gc y 0 g y C1 x sin x cos x y sin x 30. 2 x 2 y 1 dx x3 dy 0 wM wy wN wx N 1 x dx h x eln 1 x Integrating factor: e ³ h x dx h x eln x 2 5x gc y 0 g y C1 y g y x 1 x2 0 gc y 0 g y C1 x 2 y ln x C 31. y 2 dx xy 1 dy 0 wN wx wM wy M k Integrating factor: e ³ C 0 x 2 y ln x g y f x, y y· 1 § Exact equation: ¨ 5 2 ¸ dx dy x x © ¹ f x, y 1 x 1· § Exact equation: ¨ 2 xy ¸ dx x 2 dy x¹ © 0 0 C C 2 x cos x x sin x cos x y sin x g y f x, y eln x C Exact equation: x y cos x dx sin x dy h x 0 0 tan x hx Integrating factor: e ³ wM wy wN wx N y x 0 hx Integrating factor: e ³ 0 y g y x 27. 5 x 2 y dx x dy 5x gc y 29. x y dx tan x dy y· 1 § Exact equation: ¨ 2 x 2 ¸ dx dy x x © ¹ 0 e x 5 x 2e x 10 xe x 10e x y 2e x g y f x, y wM wy wN wx N wM wy wN wx N gc y dx y 2e x 5 x 2e x 10 xe x 10e x 26. 2 x 3 y dx x dy x2 h x Exact equation: 5 x 2 y 2 e x dx 2 ye x dy C f x, y 1 hx Integrating factor: e ³ 1 y2 x g y y f x, y 0 y dy 1 y k y eln 1 y § 1· Exact equation: y dx ¨ x ¸ dy y¹ © 1 y 0 xy g y f x, y 1 y gc y g y ln y C1 xy ln y C © 2010 Brooks/Cole, Cengage Learning Section 16.1 32. 35. 4 x 2 y 2 y 2 dx 3x3 4 xy dy x 2 2 x y dx 2 dy 0 wM wy wN wx N h x 1 2 hx Integrating factor: e ³ g y x2 4 x3 y 3 2 xy 4 dy 3 x 4 y 2 4 x 2 y 3 dy dx 2e x2 dy 0 2 x2 2 x 4 y ex 2 g y 0 0 g y C1 C1 x y x2 y 4 4 3 x 2x 4 y e 33. 2 y dx x sin x2 y dy wN wx wM wy M gc y sin g y 2 cos Exact equation: k y e ln 1 3 x 2 y 3 5 x 4 y 2 dx 3 x3 y 2 2 x5 y dy 1 y 0 g y C1 x y x5 y 2 3 3 C 37. y 5 x 2 y dx 2 xy 4 2 x3 dy y y C1 y Exact equation: § y2 § y 1 · x· ¨ 2 2 ¸ dx ¨ 2 2 3 ¸ dy y ¹ y ¹ © x © x C dx 0 h x e ln 1 x3 1 x3 § 2 y § 3y · 1· Exact equation: ¨ 3 3 ¸ dx ¨ 2 1¸ dy x ¹ © x © x ¹ 3 y3 1 g y 2 2x2 x 1 g y y C1 2 0 gc y 0 g y C1 y2 x 2 x y C 38. y 3 dx xy 2 x 2 dy 0 Integrating factor: x 2 y 2 Exact equation: C 0 y2 x 2 g y x y f x, y 3 x hx Integrating factor: e ³ gc y 0 Integrating factor: x 2 y 3 wM wy wN wx N 1 y3 y 2x2 x2 gc y yx g y 34. 2 y 3 1 dx 3 xy 2 x3 dy f x, y 0 0 x 3 y 3 x5 y 2 g y f x, y y y y x cos 0 Integrating factor: x 2 y 0 § x sin y · y dy ¨ ¸dy ¨ y y ¸¹ © Exact equation: 2 2 y dy C 36. 3 y 2 5 x 2 y dx 3 xy 2 x3 dy 1 2y k Integrating factor: e ³ f x, y C 0 x4 y3 x2 y 4 g y f x, y gc y 2 0 Integrating factor: xy 2 ex 2 Exact equation: x 2 x y e f x, y 459 Exact equation: dx 2 gc y Exact First-Order Equations f x, y gc y g y y 1 x y §1 y 1 · dx ¨ 2 ¸ dy x2 y ¹ ©x 0 y g y x 1 2 y 1 C1 y C © 2010 Brooks/Cole, Cengage Learning 460 Chapter 16 Additional Topics in Differential Equations 39. y dx x dy 0 wM wy wN wx (a) 1 y 1 , 2 dx dy 2 x x x 0, (b) 1 1 x , dx 2 dy y2 y y 0, (c) 1 1 1 , dx dy xy x y (d) 1 y x , dx 2 dy x2 y2 x2 y 2 x y2 wM wy 0, x2 y 2 x y 2 2 1 x2 wM wy 1 y2 wM wy wN wx 0 0, wN wx 2 40. axy 2 by dx bx 2 y ax dy wM wy Exact equation: wN wx 2axy b, 0 wN wx 2bxy a, wM wy wM only if a wx b. Integrating factor: x m y n ax m 1 y n 2 bx m y n 1 dx bx m 2 y n 1 ax m 1 y n dy wM wy ½ a n 2 x m 1 y n 1 b n 1 x m y n ° a n 2 ° ¾ b m 2 x m 1 y n 1 a m 1 x m y n ° b n 1 °¿ wN wx 2 b a ½° abn b 2 m ¾ a b °¿ abn a 2 m an bm bn am 2b a a b 2ab a 2 a 2 b 2 a b 2a b a b n y dy dx x y 2 y x 2 2 2 i x y y dy x dx 2b a a b a b bn 41. F x, y a m 1 aa b 2 m § 2b a · bn a¨ ¸ © a b¹ bm 2 2b b a a b m 2 0 0 x x y 2 2 j b 2a b a b x y 2 dy dx x dy y dx 0 xy C C 2 i y x y2 2 j y x Family of hyperbolas Family of circles 4 4 c=4 x 42. F x, y c=9 −6 6 6 −6 c=1 −4 −4 © 2010 Brooks/Cole, Cengage Learning Section 16.1 § x · 4 x 2 yi ¨ 2 xy 2 2 ¸ j y ¹ © 43. F x, y 45. 3 wM wy 8y dy 2 y4 1 2 dx x ln 2 y 4 1 §1· ln ¨ 2 ¸ ln C ©x ¹ 2 x2 y 4 x2 3y2 C1 2 x 2 2 xy 3 y 2 C g y C Particular solution: x 2 2 xy 3 y 2 3 −3 c=2 46. −2 y dy dx wM wy 3 3 0 wN wx 2x x2 y g y f x, y § 1 · ln C ln ¨ 2¸ ©1 x ¹ C 1 x2 C, C 2 xy x2 y2 2 xy dx x 2 y 2 dy 1 x 2 i 2 xyj 2 xy dy 1 x2 dx 1 2x dy dx 1 x2 y ln y 1, 4 4 3 Initial condition: y 2 c=6 44. F x, y x2 xy g y 2 3y gc y 2 c=4 0 wN wx 1 f x, y C x2 2 y4 1 461 y x 3y x x y dx 3 y x dy y 1 2x 4 xy 3 dy dx dy dx Exact First-Order Equations gc y y2 g y y3 C1 3 3x 2 y y 3 C Initial condition: y 0 2, 8 C 4 Particular solution: 3x 2 y y 3 8 6 −6 −4 47. E x 20 x y 2 y 10 x x dy y dx 20 xy y 2 dx 10 x 2 2 xy dy wM wy 20 x 2 y wN wx 10 x 2 y xy 2 g y f x, y gc y 0 g y C1 10 x y xy 2 2 0 K 500, 100 d x, K Initial condition: C 100 10 x 2 y xy 2 xy 2 10 x 2 y 25,000,000 y 25,000,000 25,000,000 0 Quadratic Formula 10 x 2 100 x 4 4 x 25,000,000 2x 5 x2 x 4 1,000,000 x x © 2010 Brooks/Cole, Cengage Learning 462 48. Chapter 16 Additional Topics in Differential Equations dy P x y Q x dx dy P x y dx Q x dx ª¬P x y Q x º¼ dx dy 0 P x y Q x and N x, y M x, y 1 d d ªP x y Q x º¼ >1@ dy ¬ dx 1 M y x, y N x x, y N x, y P x e³ By Theorem 16.2, u x P x dx is an integrating factor. 50. (a) y 5 | 6.6980 49. (a) y 4 | 0.5231 16 2 5 −1 6 −3 −2 −1 (b) xy x y2 dy dx (b) 2 xy dx x 2 y 2 dy 1 ª N x M y ¼º M¬ alone. 0 xy dx x y y 2 2 f x, y ³ xy 6 x y 2 dx 2 xy 3 y 2 dy 1 >2 x x@ xy 1y Integrating factor: e ³ 3 e ln y y y 2 dx 2 dx f x, y 3x 2 xy 2 y 3 f x, y Initial condition: y 2 Particular solution: 1, x2 y 2 y4 2 4 For x (c) 9 4 C Particular solution: 3x xy y 2 y4 C1 4 4 1 2 4 y 3 C1 1 1 Initial condition: y 0 C 3x 2 xy 2 g y 2 xy g c y g y 2 2 x y g y 2 0 wN Exact wx ³ 6x fy 0 dy x2 y2 y4 2 4 (c) 2y f x, y dy x2 y gc y g y For x wM wy 1 function of y y f y x, y 2 x2 y 2 y4 6x y2 y 3 y 2x dy dx 2 5, 75 5 y y 1 2 3 C 3 1 0 y 6.695. 16 C 6 −3 9 or 4 −2 9. 4, 32 y 2 y 4 9 y4 0.528 2 5 −1 −1 © 2010 Brooks/Cole, Cengage Learning Section 16.1 51. (a) y 4 | 0.408 Exact First-Order Equations 463 52. (a) y s | 6.708 16 2 5 −1 6 −3 −2 −1 xy x y2 dy (b) dx xy dx x 2 y 2 dy 1 ª N x M y ¼º M¬ 6 x y 2 dx 2 xy 3 y 2 dy 0 wM wy 1 >2 x x@ xy 1 function of y alone. y ³1 y dy e xy dx x y y dy 0 Integrating factor: e 2 2 f x, y ³ xy 3 ln y f y x, y x2 y gc y g y f x, y x2 y2 y4 2 4 Initial condition: y 2 Particular solution: For x (c) 3x 2 xy 2 y 3 y 3 C1 C 1 1 Initial condition: y 0 C Particular solution: 3x 2 xy 2 y 3 y4 C1 4 5, 75 5 y 2 y 3 1 For x (c) 1 0 y 6.695. 16 C 1, 4 1 2 4 x2 y2 y4 2 4 2 x2 y 2 y4 4, 32 y 2 y 4 3x 2 xy 2 g y y 2 dx 2 xy g c y g y f x, y x y g y 2 dx ³ 6x fy y 0 wN Exact wx 2y f x, y 2 2 2 6x y2 y 3 y 2x dy dx (b) 2 9 4 −2 The solution is less accurate. For #50, Euler’s Method gives y 5 | 6.698, whereas in #52, you 9 or 4 9. 9 y4 6 −3 C obtain y 5 | 6.708. The errors are 6.695 6.698 6.695 6.708 0.528 0.003 and 0.013. 2 53. If M and N have continuous partial derivatives on an open disc R, then M x, y dx N x, y dy 0 is exact 5 −1 if and only if wM wy wN . wx −1 The solution is less accurate. For #49, Euler’s Method gives y 4 | 0.523, whereas in #51, you 54. See Theorem 16.2. obtain y 4 | 0.408. The errors are 55. False 0.528 0.523 0.528 0.408 0.005 and 0.120. wM wy 2 x and wN wx 2 x 56. False y dx x dy 0 is exact, but xy dx x 2 dy 0 is not exact. 57. True w ª f x M º¼ wy ¬ wM w and ª g y N º¼ wy wx ¬ wN wx © 2010 Brooks/Cole, Cengage Learning 464 Chapter 16 Additional Topics in Differential Equations 58. True 61. M w ª f x º¼ wy ¬ w ª g y º¼ wx ¬ 0 and x3 x 2 y y 2 xy 2 kx 2 y x3 , N 59. M wM wy 2 xy kx 2 , wN wx wM wy wN k wx 3 ye 2 xy 2 x, N 60. M wM wy e wM wy wN k wx 2 xy 2 xye 0 3x 2 2 xy 2 xy wN , wx ke 2 xy 2kxye wM wy g c y sin x, wN wx y2 f c x wM wy wN : g c y sin x wx f c x y2 y2 g y fc x sin x f x g y ey, N wM wy 2 xy y3 C1 3 gc y 62. M kxe2 xy 2 y y2 f x g y sin x, N xy gc y e y g y e y , gc y e y g y e y 1 cos x C2 ª¬ g y e y º¼c wN wx y y y y2 C 2 g y ey ª y2 º e y « C» ¬2 ¼ g y Section 16.2 Second-Order Homogeneous Linear Equations 1. y C1e 3 x C2 xe 3 x yc 3C1e 3 x C2e 3 x 3C2 xe3 x ycc 9C1e 3 x 6C2e3 x 9C2 xe 3 x 9C1e3 x 6C2e 3 x 9C2 xe 3 x 18C1e 3 x 6C2e 3 x 18C2 xe 3 x 9C1e 3 x 9C2 xe 3 x ycc 6 yc 9 y 0 y approaches zero as x o f. y 6 x −4 2 −2 2. 4 6 y C1e 2 x C2e 2 x yc 2C1e 2 x 2C2e 2 x ycc 4C1e 2 x 4C2e 2 x ycc 4 y 4y 4y 3. 4y 0 The graphs are different combinations of the graphs of e2 x and e2 x . y C1 cos 2 x C2 sin 2 x yc 2C1 sin 2 x 2C2 cos 2 x ycc 4C1 cos 2 x 4C2 sin 2 x ycc 4 y 4 y 4 y 4 y 0 The graphs are basically the same shape, with left and right shifts and varying ranges. y y 2 1 x 2 2 −1 x −4 −2 2 4 −2 −2 © 2010 Brooks/Cole, Cengage Learning Section 16.2 4. y yc C1e x cos 3 x C2e x sin 3 x Second-Order Homogeneous Linear Equations e x C1 cos 3 x C2 sin 3 x e x C1 cos 3x C2 sin 3 x e x 3C1 sin 3x 3C2 cos 3 x e x >C1 cos 3 x C2 sin 3x 3C1 sin 3 x 3C2 cos 3x@ ycc y >C1 cos 3x C2 sin 3x 3C1 sin 3x 3C2 cos 3x@ e >3C1 sin 3 x 3C2 cos 3 x 9C1 cos 3x 9C2 sin 3x@ 2 yc 10 y e x >C1 cos 3 x C2 sin 3x 3C1 sin 3 x 3C2 cos 3 x e x x ycc 465 1 x 2 3 4 3C1 sin 3 x 3C2 cos 3 x 9C1 cos 3 x 9C2 sin 3 x@ 2e x >C1 cos 3 x C2 sin 3 x 3C1 sin 3 x 3C2 cos 3x@ 10e x >C1 cos 3x C2 sin 3 x@ 0 y approaches zero as x o f. The graphs are the same only reflected. 5. ycc yc 11. ycc 6 yc 9 y 0 Characteristic equation: m 2 m Roots: m y y Roots: m 0, 2 7. ycc yc 6 y Roots: m y Characteristic equation: m m 6 y 3, 2 y 0 Characteristic equation: m 6m 5 Roots: m y y 0 Roots: m 1, 2 Roots: m C1e 1 2 x C2e2 x Roots: m y y 1, 3 4 4 C1e 1 4 x C2e 3 4 x 0 0 Characteristic equation: m 2 4 Roots: m y 0 i, i C1 cos x C2 sin x 16. ycc 4 y 0 Characteristic equation: 16m 2 16m 3 0 Characteristic equation: m 2 1 2 10. 16 ycc 16 yc 3 y C1e 2 3 x C2 xe 2 3 x 15. ycc y 0 0 2, 2 3 3 Roots: m C1e x C2e5 x Characteristic equation: 2m 2 3m 2 0 Characteristic equation: 9m 2 12m 4 1, 5 9. 2 ycc 3 yc 2 y y 0 0 C1e 1 4 x C2 xe 1 4 x 14. 9 ycc 12 yc 4 y 2 0 1, 1 4 4 Roots: m C1e3 x C2e2 x 8. ycc 6 yc 5 y C1e5 x C2 xe5 x Characteristic equation: 16m 2 8m 1 0 0 5, 5 13. 16 ycc 8 yc y 0 2 0 Characteristic equation: m 2 10m 25 0 C1 C2e 2 x Roots: m C1e3 x C2 xe3 x 12. ycc 10 yc 25 y 0 0 3, 3 Roots: m 0, 1 Characteristic equation: m 2 2m y Characteristic equation: m 2 6m 9 0 C1 C2e x 6. ycc 2 yc 0 0 2i, 2i C1 cos 2 x C2 sin 2 x © 2010 Brooks/Cole, Cengage Learning 466 Chapter 16 17. ycc 9 y Additional Topics in Differential Equations 0 25. y 4 y Characteristic equation: m 9 2 Roots: m C1e3 x C2e3 x 18. ycc 2 y y 0 Characteristic equation: m 2 2 2, Roots: m y C1e Roots: m 2x y 1 3i, 1 20. ycc 4 yc 21 y Roots: m 3x 0 Characteristic equation: m 2 4m 21 2 17i, 2 0 Characteristic equation: m 2 3m 1 3 y 5 3 , 2 ª 3 C1e ¬ 5 2º x ¼ 22. 3 ycc 4 yc y C2 y ª 2 C1e ¬ y 5 2¼º x 7 2 , 3 7 3º x ¼ ª 2 e¬ y 3 C2 y 7 3º x ¼ 7i 2 , 3 0 Characteristic equation: 2m 2 6m 7 Roots: m y 0 7i e 32x 3 2 5i 3 , 0 5i 2 ª § 5 · § 5 ·º x ¸¸ C2 sin ¨¨ x ¸¸» «C1 cos¨¨ 2 © ¹ © 2 ¹¼» ¬« 0 0 1, 1, 1 C1e x C2 xe x C3 x 2e x 31. ycc 100 y 0 ª § 7 · § 7 ·º e 2 3 x «C1 cos¨¨ x ¸¸ C2 sin ¨¨ x ¸¸» 3 © ¹ © 3 ¹¼» ¬« 24. 2 ycc 6 yc 7 y C1e x e x C2 cos 2 x C3 sin 2 x Roots: m 7 0 1, 1 2i, 1 2i Characteristic equation: m3 3m 2 3m 1 0 Characteristic equation: 9m 2 12m 11 2 0 30. yccc 3 ycc 3 yc y 0 23. 9 ycc 12 yc 11 y Roots: m 1, 1, 1 Characteristic equation: m3 3m 2 7 m 5 2 2 3 0 C1e x C2 xe x C3e x Roots: m Characteristic equation: 3m 2 4m 1 Roots: m 0 29. yccc 3 ycc 7 yc 5 y 0 5 ª3 e¬ C1e C2e 2 x C3e3 x Roots: m 17 x 0 1, 2, 3 Characteristic equation: m3 m 2 m 1 y 21. ycc 3 yc y 0 x 28. yccc ycc yc y 0 17i 17 x C2 sin e 2 x C1 cos Roots: m C1 C2 x C3e x C4e x Characteristic equation: m3 6m 2 11m 6 y y 0 0, 0, 1, 1 27. yccc 6 ycc 11 yc 6 y 0 3i 3 x C2 sin e x C1 cos Roots: m 0 0 Characteristic equation: m 2 2m 4 Roots: m 1, 1, i, i Characteristic equation: m 4 m 2 y 19. ycc 2 yc 4 y 0 C1e x C2e x C3 cos x C4 sin x 26. y 4 ycc 0 2 C2 2x 0 Characteristic equation: m 4 1 3, 3 Roots: m y 0 0 y C1 cos 10 x C2 sin 10 x yc 10C1 sin 10 x 10C2 cos 10 x (a) y 0 2: 2 C1 yc 0 0: 0 10C2 C2 Particular solution: y 2 cos 10 x (b) y 0 0: 0 C1 yc 0 2: 2 10C2 C2 Particular solution: y (c) y 0 yc 0 1: 1 3: 3 0 1 5 1 5 sin 10 x C1 10C2 C2 Particular solution: y 3 10 cos 10 x 3 10 sin 10 x © 2010 Brooks/Cole, Cengage Learning Section 16.2 32. y C sin yc ycc 3t 3C sin yc 0 Z 34. ycc 7 yc 12 y 3t 3C cos ycc Z y Second-Order Homogeneous Linear Equations Roots: m 3C sin 3t Z sin 0 Z 3C 5: 5 3t 3C C Solving simultaneously: C1 9e Particular solution: y 1, yc 0 0, y 0 35. ycc 16 y C1 C2 , 4 1 , C2 11 Solving simultaneously: C1 10 11 2, yc 0 0, y 0 4 12 1 r 2 y e x C1 cos 2 x C2 sin yc e x C1 2 sin 2 x C2 2 C1 yc 0 1 C2 Particular solution: y 1C 3 1 1C e 1 3 x 3 1 C2 C1 cos 4 x C2 sin 4 x yc 4C1 sin 4 x 4C2 cos 4 x Initial conditions: y 0 0 C1 yc 0 2 4C2 C2 1 2 2 x e x C1 cos 2, yc 0 C2 3 sin 2 2x 2 x C2 sin Particular solution: y sin 4 x 2x 3 2 2 2 C2 · 2x¸ ¹ 38. 4 ycc 4 yc y 1 0 0, y 0 3, yc 0 Roots: m 2, yc 0 1 1 Characteristic equation: 4m 2 4m 1 2m 1 13 C2 xe 1 3 x C2e 1 3 x ½° ¾ C1 1°¿ 1 2 0 2 C1 C1e 1 3 x C2 xe 1 3 x 2 y 1, 1 3 3 Initial conditions: y 0 C1 r4i Particular solution: y 2 cos § e x ¨ 2 cos © 0, y 0 0 2i Characteristic equation: 9m 2 6m 1 yc 2 2x Initial conditions: y 0 y 0, yc 0 0, y 0 1 Characteristic equation: m 2 2m 3 Roots: m 6C1 5C2 1 6x e 10e 5 x 11 Particular solution: y 2 r Roots: m 6C1e6 x 5C2e5 x Initial conditions: y0 1, yc 0 4, 1 37. 9 ycc 6 yc y 6e 4x Characteristic equation: m 2 16 C1e6 x C2e 5 x , yc Roots: m 6 9, C2 3x 3 0 6,5 36. ycc 2 yc 3 y 3, 3C1 4C2 4 Characteristic equation: m 2 m 30 y 3C1e3 x 4C2e4 x Initial conditions: y0 3, yc 0 3, C1 C2 5 3 and 3 0 3, 4 C1e3 x C2e 4 x , yc y 5 3 Roots: m 3 Characteristic equation: m 2 7 m 12 3t 33. ycc yc 30 y 3, yc 0 0, y 0 467 2 0 0 12 , 12 y C1e 1 2 x C2 xe 1 2 x yc 12 C1e 1 2 x 12 C2 xe 1 2 x C2e 1 2 x Initial conditions: 2, C2 1 3 2e x 3 13 xe x 3 y0 3 C1 yc 0 1 12 C1 C2 C2 Particular solution: y 3e x 2 5 2 5 xe x 2 2 © 2010 Brooks/Cole, Cengage Learning 468 Chapter 16 Additional Topics in Differential Equations 39. ycc 4 yc 3 y 0, y 0 1, y 1 Characteristic equation: m 2 4m 3 Roots: m y C1e x C2e3 x y1 3: C1e C2e3 y 1 e3 3 , C2 e3 e 2, y S 0, y 0 yS 5: C2 Solution: y 41. ycc 9 y y 2 5 2 cos 0, y 0 1x 2 5 sin 1x 2 3, y S y 0 yS 5: C1 3 5 36 180 2 0 3 r 6i C1e3 x cos 6 x C2e 3 x sin 6 x y0 4: C1 4 yS 8: C1e 3S 48. ycc 2kyc ky 0, y 0 3, y 2 0 Characteristic equation: 4m 20m 21 2 m 0 8 0 2k r 4k 2 4k 2 k 0 k2 1 (a) For k 1 and k ! 1, k 2 1 ! 0 and there are 2 distinct real roots. 3 7 , 2 2 C1e 3 2 x C2e 7 2 x y0 3: C1 C2 y2 0: C1e 3 C2e 7 (b) For k r1, k 2 1 0 and the roots are repeated. (c) For 1 k 1, the roots are complex. 3 Solving simultaneously, C1 Solution: y 6 r Characteristic equation: m 2 2km k 42. 4 ycc 20 yc 21 y y 8 47. Two functions y1 and y2 are linearly independent if the only solution to the equation C1 y1 C2 y2 0 is the trivial solution C1 C2 0. No solution Roots: m 4, y S 0, y 0 46. Answers will vary. See Theorem 16.4. C1 cos 3 x C2 sin 3 x 3: C1 § 1 2e7 2 · 7 2 x 2e 7 2 x ¨ ¸ xe e7 2 © ¹ 45. No, it is not homogeneous because of the nonzero term sin x. r3i y0 1 2e7 2 e7 2 1 C 2 No solution 5 Characteristic equation: m 2 9m Roots: m 1: C1e7 2 C2e 7 2 Roots: m C1 cos 12 x C2 sin 12 x 2: C1 y1 2 Characteristic equation: m 2 6m 45 0 r 12 i y0 2: C1 44. ycc 6 yc 45 y 5 Characteristic equation: 4m 2 1 Roots: m y0 Solution: y e3 3 x 3 e 3x e 3 e e3 e e e Solution: y 40. 4 ycc y 3e e3 e 0 C1e 7 2 x C2 xe 7 2 x 3 Solving simultaneously, C1 1 2, y 1 7 7 , 2 2 Roots: m 1: C1 C2 0, y 0 Characteristic equation: 4m 2 28m 49 0 1, 3 y0 y 43. 4 ycc 28 yc 49 y 3 0 C1 C2e 4 3 , C2 e 1 4 3e 4 7 2 x 3 3 2 x 4 e e e 1 e 1 0 49. By Hooke’s Law, F 3e 4 e 1 kx Also, F ma, and m 4 So, y 32 23 F x k 4 F a 32 32 48. 1. 1 cos 4 3t 2 © 2010 Brooks/Cole, Cengage Learning Section 16.2 50. By Hooke’s Law, F kx k F x Also, F C1 cos 32 32 k m t C2 sin 48 k m 1. 1 2 yc t 4 3 C1 sin 4 3t 4 3C2 cos 4 3t yc 0 1 1 C2 2 8 3 1 1 cos 4 3t sin 4 3t 2 8 3 4 3 C2 C1 cos 4 3t C2 sin 4 3t 2 3 C1 yc t 4 3 C1 sin 4 3t 4 3 C2 cos 4 3t yc 0 4 3 C2 1 C2 2 1 8 3 3 24 2 3 sin 4 3t cos 4 3t 3 24 53. By Hooke’s Law, 32 m 1 2 1 2 y0 yt C1 yt 2 , yc 0 3 1 , yc 0 2 y0 k mt , 469 C1 cos 4 3t C2 sin 4 3t Initial conditions: y 0 4 3 Initial conditions: y 0 y 48. 2 cos 4 3t . 3 So, y 51. y 52. y 32 23 F a ma, and m Second-Order Homogeneous Linear Equations w g 32 32 k 2 3 , so k 48. Moreover, because the weight w is given by mg, it follows that 1. Also, the damping force is given by 1 8 dy dt . So, the differential equation for the oscillations of the weight is § d2y · m¨ 2 ¸ © dt ¹ § d 2 y · 1 § dy · m¨ 2 ¸ ¨ ¸ 48 y © dt ¹ 8 © dt ¹ 1 § dy · ¨ ¸ 48 y 8 © dt ¹ 0. In this case the characteristic equation is 8m 2 m 384 So, the general solution is y t § e t 16 ¨¨ C1 cos © Using the initial conditions, you have y 0 yc t yc 0 ª§ e t 16 «¨¨ ¬«© C · 12,287 C1 2 ¸¸ sin 16 16 ¹ 12,287 C C2 1 16 16 0 C2 0 with complex roots m 12,287t C2 sin 16 C1 1 16 r 12,287 16 i. 12,287t · ¸¸. 16 ¹ 1 2 12,287t § ¨¨ 16 © C · 12,287 C2 1 ¸¸ cos 16 16 ¹ 12,287t º » 16 ¼» 12,287 24,574 and the particular solution is yt e t 16 § ¨ cos 2 ¨© 12,287t 12,287 sin 16 12,287 12,287t · ¸¸. 16 ¹ © 2010 Brooks/Cole, Cengage Learning 470 Chapter 16 Additional Topics in Differential Equations 54. By Hooke’s Law, 32 k 2 3 , so k § d2y · m¨ 2 ¸ © dt ¹ 48. Also, m 1. The damping force is given by 1 4 dy dt . So, 0. The characteristic equation is 4m 2 m 192 § e t 8 ¨¨ C1 cos © 32 32 1 § dy · ¨ ¸ 48 y 4 © dt ¹ § d 2 y · 1 § dy · m¨ 2 ¸ ¨ ¸ 48 y © dt ¹ 4 © dt ¹ yt w g 3071t C2 sin 8 1 8 r 0 with complex roots m 3071 8 i. So, the general solution is 3071t · ¸. 8 ¸¹ Using the initial conditions, you have 1 2 y0 C1 yc t ª§ e t 8 «¨¨ ¬«© C · 3071 C1 2 ¸¸ sin 8 8 ¹ 3071 C C2 1 8 8 yc 0 0 C2 3071t § ¨¨ 8 © C · 3071C2 1 ¸¸ cos 8 8¹ 3071t º » 8 ¼» 3071 6142 and the particular solution is yt e t 8 ª «cos 2 ¬ 55. ycc 9 y 3071t 3071 sin 8 3071 3071t º ». 8 ¼ 57. ycc 2 yc 10 y 0 Undamped vibration Period: Damped vibration 2S 3 Matches (c) 58. ycc yc Matches (b) 56. ycc 25 y 0 37 y 4 0 Damped vibration 0 Matches (a) Undamped vibration Period: 2S 5 Matches (d) 59. Because m a· § ¨m ¸ 2¹ © a 2 is a double root of the characteristic equation, you have 2 m 2 am a2 4 0 and the differential equation is ycc ayc a 2 4 y y ycc ayc C1 C2 x e a 2 x yc Ca · § C1a C2 2 x ¸ e a 2 x ¨ 2 2 ¹ © ycc § C1a 2 C a2 · aC2 2 x ¸e a 2 x ¨ 4 ¹ © 4 a2 y 4 0. The solution is ª§ C a 2 C a2 · § C a2 C a2 · § C a2 C a 2 ·º e a 2 x «¨ 1 C2 a 2 x ¸ ¨ 1 C2 a 2 x ¸ ¨ 1 2 x ¸» 4 ¹ © 2 2 ¹ © 4 4 ¹¼ ¬© 4 0. © 2010 Brooks/Cole, Cengage Learning Section 16.2 Second-Order Homogeneous Linear Equations 471 D r E i are roots to the characteristic equation, you have 60. Because m ¬ªm D E i ºª ¼¬m D E i º¼ m 2 2D m D 2 E 2 and the differential equation is ycc 2D yc D 2 E 2 y 0 0. Note: i 2 1. The solution is y eD x C1 cos E x C2 sin E x yc eD x ª¬ C1D C2 E cos E x C2D C1E sin E x ycc eD x ª¬ C1D 2 C1E 2 2C2DE cos E x C2D 2 C2 E 2 2C1DE sin E xº¼ eD x ª¬ 2C1D 2 2C2DE cos E x 2C2D 2 2C1DE sin E xº¼ 2D yc eD x ª¬ C1D 2 C1E 2 cos E x C2D 2 C2 E 2 sin E xº¼ D2 E2 y So, ycc 2D yc D 2 E 2 y 0. 61. False. The general solution is y C1e3 x C2 xe3 x . 62. True 63. True 64. False. The solution y x 2e x requires that m 1 is a triple root of the characteristic equation. Because the characteristic equation is quadratic, m 1 can be at most a double root. ebx , a z b e ax , y2 65. y1 e ax W y1 , y2 ae 66. y1 ebx ax be e ax , y2 W y1 , y2 bx b a e ax bx z 0 for any value of x. e ax sin bx W y1 , y2 W y1 , y2 dy dx d2y dx 2 e ax axe ax e 2 ax z 0 for any value of x. be 2 ax z 0 for any value of x. x2 x x2 1 2x 69. x 2 ycc axyc by (a) ae ax ae ax sin bx be ax cos bx aeax cos bx be ax sin bx x, y2 Let x xe ax e ax cos bx be 2 ax sin 2 bx be 2 ax cos 2 bx 68. y1 e ax e ax cos bx, b z 0 eax sin bx, y2 67. y1 xe ax x 2 z 0 for x z 0. 0, x ! 0 et . dy dt dx dt e t dy dt d dt ¬ªe t dy dt ¼º et x 2 ycc axyc by ª d2y dy º e t «e t 2 e t » dt ¼ ¬ dt ªd 2 y dy º e 2t « 2 » dt ¼ ¬ dt 0 ª § d2y dy ·º t § t dy · e 2t «e 2t ¨ 2 ¸» ae ¨ e ¸ by dt dt © dt ¹ ¹¼ ¬ © d2y dy a 1 by dt 2 dt 0 0 © 2010 Brooks/Cole, Cengage Learning 472 Chapter 16 Additional Topics in Differential Equations (b) x 2 ycc 6 xyc 6 y Let x 0 t e . From part (a), you have: 2 d y dy 5 6y dt 2 dt m 2 5m 6 0 0 m3 m 2 0 3, m2 m1 2 C1e3t C2e 2t y 70. ycc Ay C1e3 ln x C2e 2 ln x C1e ln 1 x3 C2 e ln 1 x 2 C1 C 22 . x3 x 0 If A ! 0, then y y0 0 C1 yS 0 0 Ax C2 sin C1 cos 0 and y C2 sin AS C2 sin Ax. Ax r1, r 2, r3, ! A A 1, 4, 9, 16, ! So, A is a perfect square integer. If A 0, then y C1e y0 0 C1 C2 yS 0 C1e If A 0, then ycc AS Ax C2 e 0 C2 e AS Ax . ½° ¾ C1 0°¿ C2 0 y 0 and the initial condition gives y 0 0. Section 16.3 Second-Order Nonhomogeneous Linear Equations 1. y 2e 2 x 2 cos x yc 4e 2 x 2 sin x ycc 8e 2 x 2 cos x ycc y 2. y 8e2 x 2 cos x 2e 2 x cos x 2 sin x 12 x sin x y' 2 cos x 12 x cos x ycc 2 sin x 12 x sin x cos x ycc y 3. y 1 2 sin x 2 sin x 12 x sin x cos x 2 sin x 1 2 sin x cos x 3 sin x cos x ln sec x tan x yc 3 cos x 1 sin x ln sec x tan x ycc 3 sin x tan x cos x ln sec x tan x ycc y 4. y 10e 2 x 3 sin x tan x cos x ln sec x tan x 3 sin x cos x ln sec x tan x tan x 5 ln sin x cos x x sin x yc 5 ln sin x sin x cos x cot x sin x x cos x ycc 6 cos x cos x cos x ln sin x cos x csc 2 x 1 sin x cot x x 6 sin x sin x ln sin x cos x cot x x 5 cos x cos x ln sin x csc x cot x x sin x ycc y cos x 5 ln sin x csc x cot x x sin x 5 ln sin x cos x x sin x csc x cot x © 2010 Brooks/Cole, Cengage Learning Section 16.3 5. ycc 7 yc 12 y 3x 1 7. ycc 8 yc 16 y ycc 7 yc 12 y 0 m 7 m 12 m3 m4 2 3x C2 e yh C1 e yp A0 A1x ycp A1, yccp Solution: y p 6. ycc yc 6 y 4 ycc yc 6 y 0 m m6 yp A, ycp 1, 4 A0 C2 e yccp 0 m 8m 16 m4 yh C1 e4 x C2 xe 4 x yp Ae3 x , ycp 161 0 when m 9 A 24 A 16 A 23 4 A 2 A 3A Solution: y p 9. ycc 2 yc 15 y ycc 2 yc 15 y m 2 2m 15 1 3x e2 x 0 1 r 0 m Ae2 x , ycp 23 Solution: y p e ycc yc 3 y 4 A 9 Ae3 x e3 x 1 A yp 6 A 4 9 Ae3 x 8 3 Ae3 x 16 Ae3 x m2 m 3 3, 2 0 when m yccp 8 ycp 16 y p Solution: y p 2 x 2 3 Ae3 x , yccp 3x 1 0 yccp ycp 6 y p ycc 8 yc 16 y 8. ycc yc 3 y ycc yc 3 y m3 m 2 2 C1 e 7 A1 12 A0 A1 x ½° ¾ A1 1°¿ 161 14 x 7 A1 12 A0 yh 3, 4 0 3 3x 0 when m 473 e3 x 2 4x yccp 7 ycp 12 y p 12 A1 Second-Order Nonhomogeneous Linear Equations 11 2 2 Ae 2 x , yccp 4 Ae 2 x 4 Ae 2 x 2 Ae 2 x 3 Ae 2 x 1 A e2 x 1 9 1 2x e 9 sin x 0 m5 m3 yp ycp A sin x B cos x yccp A sin x B cos x 0 m 5, 3 A cos x B sin x yccp 2 ycp 15 y p A sin x B cos x 2 A cos x B sin x 15 A sin x B cos x A 2 B 15 A sin x B 2 A 15 B cos x 16 A 2 B 2 A 16 B Solution: y p sin x sin x 1½ 4 1 ,B ¾ A 0¿ 65 130 4 1 sin x cos x 65 130 10. ycc 4 yc 5 y ycc 4 yc 5 y e x cos x 0 m 2 4m 5 0 m 4 r 4 2 2 r i yp Ae x cos x Be x sin x ycp e x A cos x B sin x e x A sin x B cos x yccp e x B A sin x A B cos x e x B A cos x A B sin x yccp 4 ycp 5 y p e x A cos x B sin x e x B A sin x A B cos x e x 2 A sin x 2 B cos x e x 2 A sin x 2 B cos x 4 e x B A sin x A B cos x 5 Ae x cos x Be x sin x 2 A 4 B A 5 B sin x 2 B 4 A B 5 A cos x e x cos x cos x 0½ 6 A 9 B 3 2 ,B ¾ A 9 A 6B 1 ¿ 39 39 3 x 2 x Solution: y p e cos x e sin x 39 39 © 2010 Brooks/Cole, Cengage Learning 474 Chapter 16 Additional Topics in Differential Equations 11. ycc 3 yc 2 y 14. ycc 9 y 2x ycc 3 yc 2 y ycc 9 y 0 m 3m 2 2 5e3 x m 9 1, 2. 0 when m 0 2 0 when m yh C1e x C2e 2 x yh C1e 3 x C2e3 x yp A 0 A1 x yp Axe3 x ycp A1 ycp Ae3 x 3x 1 yccp 0 yccp Ae3 x 9 x 6 yccp 3 ycp 2 y p 2 A0 3 A1 2 A1 2 A0 3 A1 2 A1 x 1, A0 C1e x C2e 2 x x y 12. ycc 2 yc 3 y 3 2 m 2m 3 0 when m C2 e 1, 3. 3x yh C1 e yp A0 A1 x a2 x 2 ycp A1 2 A2 x yccp 2 A2 ½ ° ¾ A0 1°¿ 0 3 A0 2 A1 2 A2 C1 e x C2 e3 x y 13. ycc 2 yc 2e 1 3 m 2m 0 when m yp C1 C2 e Ae x yccp 2 ycp y A0 A1e x ycp yccp ycp 5 , 27 x 2 94 x 1 , 5 A1 5 27 4 , 9 A2 1 3 25 A0 16 A1e x 0, 2. 2e x or A 2 x e 3 5 6e x 3 8 A1 C1 C2 x e5 x 83 e x 1 5 4 x ex 16 ycc 8 yc y 0 16m 8m 1 0 when m yh C1 C2 x e 1 4 x yp A0 A1 x A2e x ycp A1 A2e x yccp A2 e x 1 1 , . 4 4 A0 8 A1 A1x 9 A2e x 4 x 4e x 4 , 9 or A2 2 3 A1 4, A0 C1 C2 x e y yccp 3 Ae x C1 C2 e 2 x 2 x A1e x 16. 16 ycc 8 yc y x2 1 5, 5. 5x 16 yccp 8 ycp y p 0 yh yp 2 x ycc 2 yc 2 0 when m C2 xe C1e or A0 3 A2 x 2 3 A1 4 A2 x 1 3 A1 4 A2 0 yccp 10 ycp 25 y p 3 A0 2 A1 2 A2 3 A2 5x yh y yccp 2 ycp 3 y p 5 6 5 6e x m 2 10m 25 0 2 5e3 x or A 15. ycc 10 yc 25 y ycc 10 yc 25 y x2 1 ycc 2 yc 3 y x 3 2 6 Ae3 x C1e 3 x C2 56 x e3 x y 0½° ¾ A1 °¿ 2 yccp 9 y p 2x 3, 3. 17. ycc 9 y ycc 9 y m 9 2 14x 32 32 4 x 94 e x sin 3 x 0 0 when m 3i, 3i. yh C1 cos 3x C2 sin 3 x yp A0 sin 3x A1 x sin 3 x A2 cos 3x A3 x cos 3x yccp 9 A0 6 A3 sin 3 x 9 A1 x sin 3 x 6 A1 9 A2 cos 3x 9 A3 x cos 3 x yccp 9 y p 6 A3 sin 3 x 6 A1 cos 3x sin 3 x, 16 A1 0, A3 y C1 16 x cos 3 x C2 sin 3 x © 2010 Brooks/Cole, Cengage Learning Section 16.3 yccc 3 yc 2 y m3 3m 2 21. ycc yc 2e 2 x 18. yccc 3 yc 2 y 0 C1e C2 xe C3e yh yp A0e ycp x 2 x 1, 1, 2. 0 when m x A1 xe 2 x 2 x 2 A1 xe 2 x 4 A1 xe2 x yccp 4 A0 4 A1 e yccc p 8 A0 12 A1 e 2 x 8 A1 xe 2 x 9 A1e 2 x yccc p 3 ycp 2 y p C1e C2 xe C3 x y 19. ycc y x 2 x 9 e 1, yc 0 x3 , y 0 ycc y 0 m 1 0 when m 2 2e 2 x or A1 2 x A1 2 A2 x 3 A3 x 2 yccp 2 A2 6 A3 x x3 1, A2 yccp A cos x B sin x yccp ycp A B cos x A B sin x A B 0½ ¾A 2¿ 1, B 0, A1 6, A0 0 yc C1 sin x C2 cos x 3x 2 6 Initial conditions: y 0 1, yc 0 0, 1 C2 6, C2 C1 , 0 6 cos x 6 sin x x3 6 x Particular solution: y 1, yc 0 4, y 0 C1 C2e x cos x sin x yc C2e x sin x cos x 0, yc 0 0 2i, 2i. 0 when m yh yp C1 cos 2 x C2 sin 2 x A0 yccp 0 C1 cos 2 x C2 sin 2 x 1 yc 2C1 sin 2 x 2C2 cos 2 x Initial conditions: y 0 C1 Particular solution: y 1, yc 0 2 0 1, 2. 0 when m yh yp ycp C1e x C2e 2 x A cos 2 x B sin 2 x yccp 4 A cos 2 x 4 B sin 2 x 2 A sin 2 x 2 B cos 2 x yccp ycp 2 y p 6 A 2 B cos 2 x 2 A 6 B sin 2 x 3cos 2 x 6 A 2 B 3½ ¾A 0¿ 209 , B y C1e x C2e 2 x yc C1e 2C2e x 2 x 1, yc 0 y0 1 C1 2C2 C1 C2 C1 2C2 1, yc 0 0, 6 1 2e x cos x sin x cos 2 x 9 20 3 20 9 10 3 20 sin 2 x sin 2 x 3 10 cos 2 x Initial conditions: 4 or A0 y C2 1, 1 2, C1 3 cos 2 x, y 0 m m2 2 4 A0 3, C1 C2 1, 3 2 2 A 6 B 6 2 sin x 1 y ycc yc 2 y C1 cos x C2 sin x x3 6 x yccp 4 y p A sin x B cos x 22. ycc yc 2 y y m 4 A cos x B sin x ycp Particular solution: y A3 x3 A2 x 2 A1 6 A3 x A0 2 A2 3 0, 1. yp 0 ycp 2 C1 C2e 475 x C2 A0 A1x A2 x 2 A3 x3 ycc 4 y 0 when m i, i. yp 20. ycc 4 y m2 m Initial conditions: y 0 C1 cos x C2 sin x or A3 0 A B 0 yh yccp y p 2 9 0, yc 0 2 sin x, y 0 ycc yc yh 2 x 2 x 2 A0 A1 e Second-Order Nonhomogeneous Linear Equations 6, 1 2C2 , C2 C1 1, 3 2, 1 C1 C2 9 , 20 3 10 11 ½ 20 ° C 17 ¾ 1 10 ° ¿ 1 , 5 C2 43 Particular solution: y 1 20 4e x 15e 2 x 9 cos 2 x 3 sin 2 x 3 sin 2 x 1 © 2010 Brooks/Cole, Cengage Learning 476 Chapter 16 23. y ' 4 y Additional Topics in Differential Equations xe x xe 4 x , y 0 y ' 4 y m4 25. ycc y 1 3 sec x 0 ycc y 0 0 when m m 1 0 when m 2 4. i, i. yh C1 cos x C2 sin x yp A0 A1x e x A2 x A3 x 2 e 4 x yp v1 cos x v2 sin x ycp A0 A1x e x A1e x vc1 cos x vc2 sin x yh Ce 4 x 4 A2 x A3 x e 2 ycp 4 y p A2 2 A3 x e 4x 3 A0 3 A1x e x A1e x A2e 4 x 2 A3 xe 4 x 19 , A0 A1 C y 13 , 1 2 x 2 e 4 9 Particular solution: y yc 2 y m 2 §S · sin x, y¨ ¸ ©2¹ 0 v1 C 91 , C 12 x 2 e 4 x 1 9 4 9 vc2 2 5 ³ tan x dx ln cos x sin x sec x cos x sin x 1 sin x cos x v2 ³ dx y C1 ln cos x cos x C2 x sin x x 2 x yh yp Ce A cos x B sin x ycp A sin x B cos x ycp 2 y p 26. ycc y A sin x B cos x 2 A cos x B sin x 2 B A sin x 2 A B cos x 2B A y tan x cos x 0 1 3x e x 2. 0 when m sin x sin x cos x 1 3x e x 1 1 , 3 3 sec x sec x cos x cos x sin x vc1 12 0, A3 1 9 Initial conditions: y 0 24. yc 2 y 0 xe x xe 4 x A2 4x 0 vc1 sin x vc2 cos x 4x 1, 2 A B yh y p Ce2 x 2 1 ,A 5 5 1 2 cos x sin x 5 5 0 B §S · Initial conditions: y¨ ¸ ©2¹ Particular solution: y sin x 2 2 , 5 5 Ce S sec x tan x ycc y 0 m 1 0 when m 2 i, i. yh C1 cos x C2 sin x yp v1 cos x v 2 sin x vc1 cos x vc2 sin x 0 vc1 sin x vc2 cos x 2 ,C 5 0 0 vc1 2 1 sin x cos x 5 5 sec x tan x sin x sec x tan x cos x cos x sin x tan 2 x sin x cos x v1 ³ tan 2 ³ sec x dx 2 x 1 dx tan x x cos x vc2 0 sin x sec x tan x cos x sin x tan x sin x cos x v2 ³ tan x dx y yh y p ln cos x ln sec x C1 cos x C2 sin x x tan x cos x ln sec x sin x C1 x tan x cos x C2 ln sec x sin x © 2010 Brooks/Cole, Cengage Learning Section 16.3 27. ycc 4 y 29. ycc 2 yc y csc 2 x ycc 4 y 0 m 4 2 2i, 2i. 0 when m yh C1 cos 2 x C2 sin 2 x yp v1 cos 2 x v 2 sin 2 x vc1 cos 2 x vc2 sin 2 x v1 ³ y yh C1 C2 x e x yp v1 v 2 x e x vc1 x ln x v1 ³ x ln x dx e x ln x ln x v2 ³ ln x dx 0 y C1 C2 x e x 2 sin 2 x csc 2 x cos 2 x sin 2 x 1 cot 2 x 2 30. ycc 4 yc 4 y 1 ycc 4 yc 4 y 1 ln sin 2 x 4 ³ 2 cot 2 x dx m 2 4m 4 1 · 1 § § · ¨ C1 x ¸ cos 2 x ¨ C2 ln sin 2 x ¸ sin 2 x 2 ¹ 4 © © ¹ 28. ycc 4 yc 4 y 1, 1. 0 vc2 2 sin 2 x 2 cos 2 x v2 0 when m 1 x 2 cos 2 x vc2 m 2 2m 1 vc1e vc2 x 1 e x 2 sin 2 x 2 cos 2 x 1 dx 2 0 x 1 2 x2 x2 ln x 2 4 x ln x x x 2e x ln x 2 3 4 e2 x x 0 0 when m yh C1 C2 x e 2 x yp v1 v 2 x e 2 x 2, 2. 2 2x xe ycc 4 yc 4 y vc1e 2 x vc2 xe 2 x 0 m 2 4m 4 0 when m 0 v1e 2 x 2 vc2 2 x 1 e 2 x 2, 2. e2 x x yh C1 C2 x e 2 x vc1 1 yp v1 v 2 x e v1 ³ 1 dx vc2 1 x v2 ³ y C1 C2 x x x ln x e 2 x 2x vc1e 2 x vc2 xe 2 x 0 vc1 2e2 x vc2 2 x 1 e2 x x 2e 2 x xe2 x 0 vc1 x 2e 2 x 2 x 1 e2 x e2 x xe 2 x x 3e 4 x e4 x 2e 2 x 2 x 1 e 2 x v1 ³ x3 dx vc2 v2 y 0 ³x dx 1 3 x 2e 4 x e4 x x 3 1 4 · 2x § x ¸e ¨ C1 C2 x 12 ¹ © 1 dx x 31. ycc yc 12 y m 2 m 12 14 x 4 2e 2 x x 2 e 2 x e4 x 2 x3 Let y p e2 x 477 e x ln x ycc 2 yc y vc1e x vc2 xe x csc 2 x sin 2 x csc 2 x 2 cos 2 x cos 2 x sin 2 x vc1 0 0 vc1 2 sin 2 x vc2 2 cos 2 x 0 Second-Order Nonhomogeneous Linear Equations F x x2 ln x 0 m4 m3 0 m 4, 3 Ax 2 Bx C. This is a generalized form of x2. 32. ycc yc 12 y m m 12 2 Because yh yp x 0 m4 m3 0 m 4, 3 C1e 4 x C2e 3 x , let Axe 4 x . © 2010 Brooks/Cole, Cengage Learning 478 Chapter 16 Additional Topics in Differential Equations 33. Answers will vary. See the “Variation of Parameters” box on page 1163. 34. (a) Because yccp (b) y p 2 (c) y p 4 0 and 3 y p 35. qcc 10qc 25q 34 m 2 10m 25 12. 0, qc 0 6 sin 5t , q 0 37. 0 ycc 48 y 24 32 48 yh C1 cos 8t C2 sin 8t yp A sin 4t B cos 4t ycp 4 A cos 4t 4 B sin 4t yccp 16 A sin 4t 16 B cos 4t 24 32 qp A cos 5t B sin 5t y qcp 5 A sin 5t 5 B cos 5t Initial conditions: y 0 qccp 25 A cos 5t 25B sin 5t 6 sin 5t , A C1 C2 t e5t q 3 25 0, qc 0 C1 3 , 25 C2 38. Particular solution: q 36. qcc 20qc 50q m 20m 50 C1e 10 5 0, e 5te 5t cos 5t C2 e 2 32 10 r 5 10 5 ycc 4 y 2 32 yccp 64 At 16 B sin 8t 16 A 64 Bt cos 8t yccp 4 y p 2 t 2 ,A 85 10 5 10 sin 5t 2 t 8 2 cos 5t sin 5t 85 85 Initial conditions: q0 0, qc 0 10 5 C1 0, C1 C2 2 C1 10 5 87 2 , C2 170 8 85 2 C2 0, 2 32 4 sin 8t , A ycc yc 4 y 2 17 6.28 14 0, B cos 8t 1 32 sin 8t 14 t cos 8t 1 , 4 yc 0 3 0.3 yp A sin 8t B cos 8t ycp 8 A cos 8t 8 B sin 8t yccp 64 A sin 8t 64 B cos 8t 0 4 −0.05 8 B sin 8t 8 A cos 8t 4 sin 8t 8B 2 32 1 4 Initial conditions: 1 y0 , yc 0 3, 4 B 321 , 8 A C1 1 4 8C1 C2 C2 1 32 0 A C1 9 , 32 34 2t Particular solution: y C2 1 4 8, 8. C1 C2 t e8t 3 1 32 4 sin 8t , y 0 0 when m yccp ycp 4 y p 8C2 C1 , 0 1 4 2 32 0, 87 2 170 8 7 2 10 5 2 t 8 7 2 10 5 e e 170 170 8 2 cos 5t sin 5t 85 85 m 4 1 4 yh 2 32 Particular solution: q 39. 1 m2 16 8 85 0 C1 cos 8t C2 sin 8t 14 t cos 8t y 25 B 100 A sin 5t r 8i. B sin 8t A cos 8t 2 32 2. 25 A 100 B cos 5t C2 e 0 At sin 8t Bt cos 8t Particular solution: y 2 t yc 0 1 , 4 yp 25 A cos 5t 25B sin 5t 10 5 sin 8t sin 4t 1 2 C1 cos 8t C2 sin 8t qccp C1e C1 , 12 yh Initial conditions: 1 y0 , yc 0 0, 4 q cos 8t 0 when m A cos 5t B sin 5t 25 B 100 A 1 4 4 5 B cos 5t 5 A sin 5t 0½ ¾B 10¿ 1 4 4 sin 8t , y 0 qcp 25 A 100 B 0, 8C2 4 C2 qp qccp 20qcp 50q p yc 0 2 m2 32 2 32 0 when m 2 t 1 , 4 −2 10 sin 5t 2 qh 0, 5C1 C2 3 5 5t 1 2 3 25 3 25 0, A 0 B cos 5t 0, C1 −2 C1 cos 8t C2 sin 8t sin 4t Particular solution: y Initial conditions: q0 yh y p 0 253 , 2 0 48 sin 4t , B C1 C2 t e 5t 50 B cos 5t 50 A sin 5t 2 36 A sin 4t 36 B cos 4t qh qccp 10qcp 25q p 0 r 8i. 0 when m yccp 48 y p yc 0 1 , 4 48 sin 4t , y 0 24 2 m 32 24 32 5, 5. 0 when m 24 32 9 32 34 t e 8t 1 32 cos 8t © 2010 Brooks/Cole, Cengage Learning 0 Section 16.3 40. 4 1 25 ycc yc y 32 2 2 1 , yc 0 2 0, y 0 Second-Order Nonhomogeneous Linear Equations 479 4 0.5 1 2 1 25 m m 8 2 2 0 m 2 4m 100 2 r 4 0 when m y C1e 2t cos 4 6 t C2e 2t sin 4 0 1.57 6 i. 6t −0.5 Initial conditions: 1 , yc 0 2 y0 C2 4, 3 4 6 1 2 C1 , 4 2C1 4 6 C2 , 6 8 1 2t e cos 4 2 Particular solution: y 6t 6 2t e sin 4 8 6t 41. In Exercise 37, yh 42. (a) 4 32 ª 1 1 5 § 1 ·º cos 8t sin 8t sin «8t S arctan ¨ ¸» 4 2 4 © 2 ¹¼ ¬ 5 1· § sin ¨ 8t S arctan ¸ | 4 2¹ © ycc 43. x 2 ycc xyc y 25 2 0 y C1 cos 10 x C2 sin 10 x y y0 1 1 : 2 2 yc 0 4: 4 y 1 2 y1 C1 cos 10 x 2 5 25 The motion is undamped. and u1c (c) If b ! 52 , the solution to the differential equation is m x of the form y C1e 1 C2e no oscillations in this case. m2 x x ln x 0 u1c 4 ln x u2c x 4 ln x x yp 4 x ln x 3 . There would be 3 yh y p 4 ln x x 2 4 3 ln x and u2 3 uc2 ln x 2 ln x 2 x ln x 3 2 2 x ln x 3 C1x C2 x ln x 3 2 x ln x 3 3 A sin ln x B cos ln x . 1 1 B sin ln x x x ycp A cos ln x yccp 1 A cos ln x B sin ln x x2 x 2 yccp xyc 4 y 1 A cos ln x B sin ln x x 1§ 1 1· ¨ A sin ln x B cos ln x ¸ x© x x¹ sin ln x B A B 4 A sin ln x A B A 4 B cos ln x 1, 3B 1 1 B A sin ln x 2 A B cos ln x x2 x B A sin ln x A B cos ln x A cos ln x B sin ln x 4 A sin ln x B cos ln x So, y p u1 y 3A x and y2 u1c u2c 1 ln x sin 10 x (b) If b ! 0, the motion is damped. 44. Let y p 4 x ln x u1c x uc2 x ln x 10C2 C2 5 sin 8t 2.6779 . 4 0 A sin ln x 1 3 1 sin ln x and y 3 yh y p C1 sin ln x 2 C2 cos ln x 2 1 sin ln x . 3 © 2010 Brooks/Cole, Cengage Learning 480 Chapter 16 Additional Topics in Differential Equations e 2 x cos e x 45. True. y p ycp e 2 x sin e x e x 2e 2 x cos e x e x sin e x 2e 2 x cos e x yccp ªe x cos e x e x e x sin e x º ª2e 2 x sin e x e x 4e 2 x cos e x º ¬ ¼ ¬ ¼ So, ª¬cos e x e x sin e x 2e x sin e x 4e 2 x cos e x º¼ 3ª¬e x sin e x 2e 2 x cos e x º¼ 2e 2 x cos e x yccp 3 ycp 2 y p x x x x x 2x 2x 2x ¬ªe 2e 3e ¼º sin e ¬ª1 4e 6e 2e ¼º cos e cos e x . 46. True. 18 e 2 x , ycp yp yccp 6 ycp 14 e 2 x , yccp 12 e 2 x 6 14 e 2 x 47. ycc 2 yc y 0 m 1, 1 C1e x C2 xe x , y p x 2e x , particular solution C1 C2 x e x x 2e x General solution: f x fc x e2 x 2e x m 2 2m 1 yh 12 e 2 x C2 2 x C1 C2 x x 2 e x C1 C2 x x 2 e x x 2 C2 2 x C1 C2 e x (a) No. If f x ! 0 for all x, then x 2 C2 x C1 ! 0 C2 2 4C1 0 for all x. So, let C1 C2 x 2 3 x 2 e x and f c 32 1. Then f c x 14 0. (b) Yes. If f c x ! 0 for all x, then C2 2 2 4 C1 C2 0 C2 2 4C1 4 0 C2 2 4C1 4 C2 2 4C1 0 f x ! 0 for all x. Section 16.4 Series Solutions of Differential Equations f 1. yc y 0. Letting y ¦ an x n : n 0 yc y f f ¦ nan x n 1 ¦ an x n ¦ n 1 n 0 n 0 n 1 an 1 an 1 a0 , a2 a1 f ¦ y n 0 f n 1 an 1 x n f ¦ an x n 0 n 0 an an n 1 a1 a0 , a3 2 2 a0 n x n! a2 3 a0 , ! , an 1 23 a0 n! a0e x Check: By separation of variables, you have: dy ³ y ³ dx ln y y x C1 Ce x © 2010 Brooks/Cole, Cengage Learning Section 16.4 Series Solutions of Differential Equations 481 f 2. yc ky ¦ an xn : 0. Letting y n 0 f f n 1 n 0 f ¦ nan xn 1 k ¦ an x n yc ky n 1 an 1 ¦ n 1 an 1 x n n 0 f ¦ kan x n 0 n 0 kan kan n 1 an 1 f ¦ y n 0 k 2 a0 , a3 2 ka1 2 ka0 , a2 a1 f kn a0 x n n! kx n! a0 ¦ n 0 ka2 3 k 3a0 , ! , an 1 2 3 kn a0 n! n a0e kx Check: By separation of variables, you have: ³ dy y ³ k dx kx C1 ln y Ce kx y f 3. ycc 9 y ¦ an xn : 0. Letting y n 0 f ¦ n n 1 an x n 2 ycc 9 y n 2 n 2 n 1 an 2 n 2 n 1 an 2 x n n 0 a0 a1 a1 a2 9a0 2 a3 9a1 32 a4 9a2 43 a5 9a3 54 92 a0 4 3 2 1 # 9 a0 2n ! f ¦ n 0 92 a1 5 4 3 2 1 9n a1 2n 1 ! a2 n 1 9n a0 2 n x 2n ! f ¦ n 0 9n a1 x 2 n 1 2n 1 ! f a0 ¦ n 0 2n 2 n 1 3x a f 3x 1¦ 2n ! 3 n 0 2n 1 ! C0e3 x C1e 3 x where C0 C1 Check: ycc 9 y m 9 y 4. y 0 n 0 # n 2 f ¦ 9an x n 9an n 2 n 1 a0 y n 0 f ¦ 9an an 2 a2 n f 9 ¦ an x n f C0 ¦ n 0 3x n! n f C1 ¦ n 0 a0 and C0 C1 3 x n! n a1 . 3 0 is a second-order homogeneous linear equation. 0 m1 3 and m2 3 C1e3 x C2e3 x C0e kx C1e kx . Follow the solution to Exercise 3 with 9 replaced by k 2 . © 2010 Brooks/Cole, Cengage Learning 482 Chapter 16 Additional Topics in Differential Equations f 5. ycc 4 y ¦ an x n : 0. Letting y n 0 f ¦ n n 1 an x n 2 ycc 4 y n 2 n 2 n 1 an 2 a0 a1 a1 a2 4a0 2 a3 4a1 32 a4 4a2 43 2 4 a0 4! n 0 0 n 0 2 4 a1 5! 4a3 54 a5 # # n n 1 4 a0 2n ! a2 n n a2 n 1 n 1 4n a0 2 n x 2n ! f ¦ n 0 Check: ycc 4 y m 4 1 4n a1 2n 1 ! n 1 4n a1 2 n 1 x 2n 1 ! f ¦ n 0 f a0 ¦ 1 n 0 n 2x 2n ! 2n n 2 n 1 a1 f 1 2 x ¦ 2n 1 ! 2n 0 C0 cos 2 x C1 sin 2 x 0 is a second-order homogeneous linear equation. 0 m 2 6. y n 0 f n 2 n 1 an 2 x n ¦ 4an x n 4an n 2 n 1 a0 y f ¦ 4 an an 2 y f 4 ¦ an x n r 2i C1 cos 2 x C2 sin 2 x C0 cos kx C1 sin kx. Follow the solution to Exercise 5 with 4 replaced by k 2 . 7. yc 3 xy f ¦ an x n : 0. Letting y n 0 f a2 a4 f 3a 0 2 3 § 3a0 · ¨ ¸ 4© 2 ¹ 32 a0 23 a8 3§ 33 a ¨¨ 3 0 8© 2 3 2 f a0 ¦ n 0 n of a1 a0 3 § 32 · ¨ 3 a0 ¸ 6© 2 ¹ lim n 0 0 0 and an 2 n 0 a6 y n 1 ¦ 3an x n 1 n 2 an 2 x n 1 n 1 a0 f ¦ nan x n 1 ¦ 3an x n 1 yc 3 xy ¦ f un 1 un · ¸¸ ¹ a1 0 a3 3a1 0 3 3 § 3a · ¨ 1 ¸ 5© 3 ¹ a5 33 a0 2 32 3 34 a0 2 432 4 3an n 2 0 a7 3 § 32 a1 · ¨ ¸ 7© 3 5 ¹ a9 3§ 33 a1 · ¨ ¸ 9© 3 5 7 ¹ 0 0 n 3 x 2 n 2n n! n 1 lim n of x 2n 2 3 2n n! n 1 2 n 1 ! 3 n x 2 n lim n of 3x 2 2n 1 0 The interval of convergence for the solution is f, f . © 2010 Brooks/Cole, Cengage Learning Section 16.4 Series Solutions of Differential Equations 483 f 8. yc 2 xy ¦ an x n : 0. Letting y n 0 f f n 1 n 0 ¦ nan x n 1 ¦ 2an x n 1 yc 2 xy ¦ f f ¦ 2an x n 1 n 2 an 2 x n 1 n 1 a0 0 a2 2a0 2 a4 2 § 2a0 · ¨ ¸ 4© 2 ¹ a6 2 § 22 a0 · ¨ ¸ 6 © 22 2 ¹ a8 2 § a0 · ¨ ¸ 8 © 3! ¹ 2an n 2 a0 f a0 ¦ n 0 lim n of 0 and n 0 an 2 y a1 0 22 a0 22 2 a0 2 23 a0 2 32 a0 3! 3 a0 4! a1 0 a3 2a1 3 a5 2 § 2a1 · ¨ ¸ 5© 3 ¹ a7 2 § 22 a1 · ¨ ¸ 7© 3 5 ¹ a9 2 § 23 a1 · ¨ ¸ 9© 3 5 7 ¹ 0 0 0 0 x2n n! u n 1 un lim n of x 2n 2 n! n 1 ! 2n lim n of x2 n 1 0 The interval of convergence for the solution is f, f . f 9. ycc xyc ¦ an x n : 0. Letting y n 0 ycc xyc f ¦ n n 1 an x n 2 n 2 f ¦ n n 1 an x n 2 n 2 f ¦ n 2 n 1 an 2 x n n 0 f ¦ nan x n n 0 f ¦ nan x n nan n 2 n 1 a0 a0 a1 a1 a2 0 a3 a1 32 There are no even powered terms. a5 a7 f lim 3a3 54 5a5 76 1 3 5 7" 2n 1 x 2 n 1 2n 1 ! 0 un 1 un 3a1 5! 5 3a1 7! f a0 a1 ¦ n n of 0 n 1 n 0 an 2 y f x ¦ nan x n 1 a0 a1 ¦ n 0 2 n! 2n 1 x 2n 3 n 1 ! 2n 3 x 2 n 1 2n !x 2 n 1 2 n! 2n 1 ! n lim 2 n 1 n 0 2n 1 x 2 n 1 2n 3 x 2 n 1 2 n! 2n 1 n 2 n n of f a0 a1 ¦ lim n of 0 Interval of convergence: f, f © 2010 Brooks/Cole, Cengage Learning 484 Chapter 16 Additional Topics in Differential Equations f 10. ycc xyc y ¦ an x n : 0. Letting y n 0 ycc xyc y f ¦ n n 1 an x n 2 n 2 f ¦ n 2 n 1 an 2 x n n 0 a8 a6 8 a0 24 4! y a0 ¦ a6 n 0 lim u n 1 un lim u n 1 un n of a1 a3 f n of an n 2 a1 a0 8 a0 233! a4 0 n 0 n 1 an x n a0 a0 2 a2 4 a4 6 a2 n 1 f ¦ an x n n 0 an 2 a0 f ¦ f x ¦ nan x n 1 a0 22 2! a5 a7 a9 a1 3 a3 5 a5 7 a1 35 a1 357 a7 9 a1 3579 f x 2n x 2 n 1 a1 ¦ n 2 n! n 0 1 3 5 7" 2 n 1 lim x2n 2 2n n! 2n 2 n 1! x lim 1 3 5 7" 2n 1 x2n 3 1 3 5 7" 2n 3 x 2 n 1 n of n of lim n 1 n of x2 2n 1 0 lim n of x2 2n 3 0 Because the interval of convergence for each series is f, f , the interval of convergence for the solution is f, f . 11. x 2 4 ycc y f 0. Letting y ¦ an x n : n 0 x 2 4 ycc y f ¦ n n 1 an x n n 2 f ¦ f 4 ¦ n n 1 an x n 2 n 2 n 2 n 1 an x n n 0 an 2 ¦4n2 n 0 n 1 an 2 x n 0 n 0 n 2 n 1 an 4n 2 n 1 a0 a0 a2 a0 42 1 a0 8 a4 3a2 44 3 a0 128 y f f ¦ an x n a1 a5 a1 a3 a1 43 2 7 a3 45 4 7 a1 1920 a1 24 § · § · x2 x4 x3 7 x5 a0 ¨1 "¸ a1 ¨ x "¸ 8 128 24 1920 © ¹ © ¹ © 2010 Brooks/Cole, Cengage Learning Section 16.4 12. ycc x 2 y Series Solutions of Differential Equations 485 f 0. Letting y ¦ an x n : n 0 f ¦ f f n 2 f n 0 ¦ n n 1 an x n 2 ¦ an x n 2 ycc x 2 y 0 ¦ an x n 2 n 4 n 3 an 4 x n 2 n 2 n 0 an n 4 n3 an 4 Also: y a0 a1x a2 x 2 a3 x3 " an x n " ycc 2a2 3 2a3 x " n n 1 an x n 2 " ycc x 2 y 2 a2 So, a2 a0 2a2 3 2a3 x a0 4 3a4 x 2 a1 5 4a5 x3 " 0, 6a3 0, 12a4 a0 0 a6 0 and a3 0, 20a5 a1 0 0, a10 0, and a11 0, a7 a0 a 0 43 a a0 4 87 8743 a8 a0 12 11 12 11 8 7 4 3 a4 a8 a12 ycc x 2 y 0, y 0 0 and a4 n 3 0. a1 54 a a1 5 98 9854 a9 a1 13 12 13 12 9 8 5 4 2 1 2x y yc 0 0 1 2 x yc 2 y ycc 0 2 yccc 1 2 x ycc 4 yc yccc 0 10 4 2 1 2 x yccc 6 ycc y x a13 ycc # a5 a9 yc y a1 0. Therefore, a4 n 2 § · x4 x8 x12 a0 ¨1 "¸ 4 3 8 7 4 3 12 11 8 7 4 3 © ¹ § · x5 x7 x9 a1 ¨ x "¸ 5 4 9 8 5 4 13 12 9 8 5 4 © ¹ 13. yc 2 x 1 y 4 a1 0 y 0 # 2 2 2 10 3 2 4 2 x x x x " 1! 2! 3! 4! §1· Using the first five terms of the series, y¨ ¸ © 2¹ Using Euler’s Method with 'x i xi yi 0 0 2 1 0.1 2.2 2 0.2 2.376 3 0.3 2.51856 4 0.4 2.61930 5 0.5 2.67169 163 | 2.547. 64 0.1 you have yc 1 2 x y. © 2010 Brooks/Cole, Cengage Learning Chapter 16 486 14. yc 2 xy Additional Topics in Differential Equations 0, y 0 15. Given a differential equation, assume that the solution 1 yc 2 xy yc 0 0 ycc 2 xyc y ycc 0 2 yccc 2 xycc 2 yc yccc 0 0 y4 2 xyccc 3 ycc y4 0 12 y 5 2 xy y6 4 4 yccc y 2 xy 5 5 y 4 5 0 derivatives into the differential equation. You should then be able to determine the coefficients a0 , a1 , ! . 16. A recursion formula is a formula for determining the next term of a sequence from one or more of the 120 preceding terms. See Example 1. # 17. (a) From Exercise 9, the general solution is 2 2 12 4 120 6 x x x " 2! 4! 6! 1 1 1 x2 x4 x6 " 2 6 Using the first four terms of the series, 8 y1 | 2.667. 3 1 y x Using Euler’s Method with 'x i 0 xi 0.1 you have yc 0 f a0 a1 ¦ y n 0 0 a0 y0 f n 0 2 xy. yc 0 2 2¦ y n 0 1 (b) P3 x 1 0.1 1 2 0.2 1.02 3 0.3 1.0608 P5 x x 2 n 1 . 2 n! 2n 1 n 0 2n 1 x 2 n 22 n! 2n 1 a1 ¦ yc f yi y and its n 0 0 y6 0 # f ¦ an x n . Then substitute is of the form y f a1 ¦ n 0 x2n 2n n! a1 x 2 n 1 2 n! 2n 1 n ª x3 º 2 «x » 2 3¼ ¬ 2x 2x x3 x5 2 3 425 x3 3 2x x3 x5 3 20 12 4 0.4 1.1244 5 0.5 1.2144 6 0.6 1.3358 7 0.7 1.4961 8 0.8 1.7056 9 0.9 1.9785 10 1.0 2.3346 4 −4 P3(x) P5(x) − 12 (c) The solution is symmetric about the origin. So, y 1 | 2.335. 18. (a) m 2 9 r 3i C1 cos 3 x C2 sin 3 x y y0 yc yc 0 yp 0 m 2 C1 3C1 sin 3 x 3C2 cos 3x 6 3C2 C2 2 2 cos 3 x 2 sin 3 x © 2010 Brooks/Cole, Cengage Learning Section 16.4 f (b) Let y f ¦ n n 1 an x n 2 n 0 n 2 n 1 f 487 f ¦ an xn , yc ¦ nan x n 1, ycc f ¦ n n 1 an x n 2 ycc 9 y 9 ¦ an x n n 2 f Series Solutions of Differential Equations 0 n 0 f ¦ n 2 n 1 an 2 x n 9 ¦ an x n n 0 0 n 0 n 2 n 1 an 2 9an 9 an n 2 n 1 an 2 For n even, 9 a2 a0 2 For n odd, 9 a3 a1 32 2 9 a0 4! a4 9 a2 43 a6 9 a0 6! a5 9 a3 54 a7 9 a1 7! 3 2 9 a1 5! 3 n n 9 a0 2n ! and in general, a2 n and in general, a2 n 1 9 a1 2n 1 ! So, f ¦ an x n y f f n 0 n 0 ¦ a2n x2n ¦ a2n 1x 2n 1 n 0 n f 9 a0 x 2 n 2n ! ¦ n 0 n f 9 a1x 2 n 1 2n 1 ! ¦ n 0 f a0 ¦ n 0 1 n 3x 2n ! (c) a1 2, and y f a1 ¦ n 0 ª 1 3x 2 «¦ 2n ! «¬n 0 f Applying the initial conditions, a0 2n 2n n 2 n 1 n 1 3 x 2n 1 ! f ¦ n 0 2 n 1 n º 1 3 x ». 2n 1 ! » ¼ y P5 3 2 y x 1 2 P3 19. ycc 2 xy 0, y 0 1, yc 0 20. ycc 2 xyc y 3 0, y 0 1, yc 0 2 ycc 2 xy ycc 0 0 ycc 2 xyc y ycc 0 1 yccc 2 xyc y yccc 0 2 yccc 2 xycc yc yccc 0 2 y 4 2 xycc 2 yc y 5 2 xyccc 3 ycc y 6 2 xy 4 4 yccc 2 xy 5 5 y 4 y7 # y 4 y 5 y 6 12 0 0 0 0 16 120 y7 0 1 y 5 y 6 2 xyccc 3 ycc # y 2 xy 4 5 yccc 2 xy 5 7y 4 2 xy 6 9 y 5 y7 # 3 2 12 4 16 6 120 7 x x3 x x x 1! 3! 4! 6! 7! §1· Using the first six terms of the series, y¨ ¸ | 0.253. © 4¹ y y 4 y 4 0 3 y 5 0 10 y 6 0 21 y7 0 90 # 2 1 2 3 10 21 90 7 1 x x 2 x3 x 4 x5 x 6 x 1! 2! 3! 4! 5! 6! 7! §1· Using the first eight terms of the series, y¨ ¸ | 1.911. © 2¹ © 2010 Brooks/Cole, Cengage Learning 488 Chapter 16 Additional Topics in Differential Equations 21. ycc x 2 yc cos x y 3, yc 0 0, y 0 2 ycc x 2 yc cos x y ycc 0 3 yccc 2 x 2 yc x 2 ycc sin x y cos x yc yccc 0 2 ycc 0 1 yccc 0 1 1 2 y 2 3 2 x x 2 x3 1! 2! 3! 3 §1· Using the first four terms of the series, y¨ ¸ | 3.846. © 3¹ 22. ycc e x yc sin x y 2, yc 0 0, y 0 ycc e x yc sin x y, yccc e x yc e x ycc cos x y sin x yc 1 e x yc ycc cos x y sin x yc y 2 2 1 1 2 x x 2 x3 1! 2! 3! §1· Using the first four terms of the series, y¨ ¸ | 1.823. ©5¹ ex , f c x 23. f x e x , yc y ycc y f ¦ an x n , then: Assume y cos x, f c x 24. f x 0. 0. ¦ an x n , then: Assume y f ¦ nan x n 1 n 0 n 1 f ¦ an x n n 1 f ¦ n 1 an 1 x ycc f ¦ nan x n 1 ¦ n 0 f f n 2 n 0 ¦ n n 1 an x n 2 ¦ an x n 2 f an x n f n 0 n 0, a1 n 1, a2 ¦ an ,n t 0 n 1 an 1 n 2 n 1 an 2 x n n 0 an 2 a0 2 a0 23 n 2, a3 n 3, a4 a3 4 a0 23 4 n 4, a5 a4 5 a0 23 4 5 a0 an n 1! y a0 ¦ n 0 a0 an ,n t 0 n 1 n 2 a0 a1 a1 a2 a 0 1 2 a3 a1 2 3 a4 a5 a3 4 5 a2 3 4 a0 4! # a2 n a0 n! xn which converges on f, f . When n! 1, you have the Maclaurin Series for f x n 1 a0 2n ! f y a1 5! # n a0 ¦ n 0 f f ¦ an x n a0 # an 1 0 n 0 a0 a1 2 a2 3 f ¦ n n 1 an x n 2 n 2 n 0 n cos x, f n 0 yc sin x, f cc x a2 n 1 n 1 a1 2n 1 ! n f 1 x 2 n 1 x 2 n 1 a1 ¦ which 2n ! 2n 1 ! n 0 converges on f, f ex. When a0 1 and a1 Series for f x 0, you have the Maclaurin cos x. © 2010 Brooks/Cole, Cengage Learning Section 16.4 25. f x arctan x fc x 1 1 x2 2 x f cc x ycc 1 x 2 ycc 2 xyc Series Solutions of Differential Equations 489 2 1 x2 2 x yc 1 x2 0 f ¦ an xn , then: Assume y n 0 yc f ¦ nan x n 1 n 1 ycc f ¦ n n 1 an x n 2 n 2 1 x 2 ycc 2 xyc f ¦ n n 1 an x n 2 n 2 f ¦ n 2 n 1 an 2 x n f f f n 2 n 0 n 0 ¦ n n 1 an x n 2 ¦ n n 1 an x n ¦ 2nan x n f ¦ n n 1 an x n n 0 0 f ¦ 2nan x n n 0 f ¦ n n 1 an x n n 0 n 0 n 2 n 1 an 2 an 2 n n 1 an n an , n t 0 n 2 n 0 a2 0 all the even-powered terms have a coefficient of 0. n 1, a3 n 3, a5 n 5, a7 n 7, a9 1 a1 3 3 a3 5 5 a5 7 7 a7 9 1 a1 5 1 a1 7 1 a1 9 # n a2 n 1 f y a1 ¦ n 0 1 a1 2n 1 n 1 x 2 n 1 which converges on 1, 1 . When a1 2n 1 1, you have the Maclaurin Series for f x arctan x. © 2010 Brooks/Cole, Cengage Learning 490 Chapter 16 Additional Topics in Differential Equations arcsin x f x 26. 1 fc x 1 x2 x f cc x 32 1 x2 1 ycc 1 x 1 x 2 ycc xyc x 1 x2 2 x yc 1 x2 0 f f f f n 0 n 2 n 0 n 0 ¦ an x n , then: ¦ ann n 1 x n 2 ¦ ann n 1 x n ¦ an nx n Assume y f ¦ n 2 n 1 an 2 x n n 0 0 a2 f ¦ n 2an x n n 0 an 2 n 0 n2 an , n t 0 n 1 n 2 0 all the even-powered terms have a coefficient of 0. a1 a1 1 n 1, a3 n 3, a5 9 a3 4 5 9 a1 2 3 4 5 n 5, a7 25 a5 6 7 9 25 a1 2 3 4 5 6 7 n 7, a9 49 a7 8 9 9 25 49 a1 2 3 4 5 6 7 8 9 n 9, a11 81 a9 10 11 2 3 a1 3 a1 2 4 5 3 5 a1 2 4 6 7 3 5 7 a1 2 4 6 8 9 25 49 81 a1 2 3 4 5 6 7 8 9 10 11 3 5 7 9 a1 2 4 6 8 10 11 # 2n ! a2 n 1 f y a1 ¦ n 0 2n ! n 2 n! 2 2n 1 2n n! 2 2n 1 a1 x 2 n 1 which converges on 1, 1 . When a1 1, you have the Maclaurin Series for f x arcsin x. f 27. ycc xy 0. Let y ¦ an x n . n 0 f ¦ n n 1 an x n 2 ycc xy n 2 2a2 f ¦ ª¬ n 3 n 0 So, a2 f ¦ an for n n3 n 2 n 3 n 2 an 3 x n 1 n 1 n 0 n 2 an 3 an º¼ x n 1 0 and an 3 f x ¦ an x n f ¦ an x n 1 0 n 0 0 0, 1, 2, ! The constants a0 and a1 are arbitrary. a0 a3 a6 So, y a0 a0 32 a3 65 a1 a1 a1 a4 43 a0 a4 a1 a7 6532 76 7643 a a a a a0 a1 x 0 x3 1 x 4 0 x 6 1 x 7 . 6 12 180 504 © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 16 491 Review Exercises for Chapter 16 1. y x3 xy 2 dx x dy wM wy 1 2 xy z wN wx 6. 3 x 2 5 xy 2 dx 2 y 3 5 xy 2 dy 0 wM wy 1 Not exact 0 7. wN wx 1 3. 10 x 8 y 2 dx 8 x 5 y 2 dy wM wy 0 wN wx 8 f x, y ³ f y x, y 8x gc y 5 x 2 8 xy 2 x g y 8x 5 y 2 5y 2 g y 5 2 y 2 y C1 2 wM wy gc y xy cos xy sin xy wN Exact wx ³ y sin xy dx cos xy g y x sin xy g c y cos xy y2 2 x sin xy y 2 y C1 2 y g y C y 9. (a) 0 0 4 wN wx 6 y 2 1 ³ 1 y2 Not exact f y x, y 4. 2 x 2 y 3 y dx x 6 xy 2 dy f x, y x wN z wx y2 f x, y 5 f x, y 5 x 2 8 xy 2 x y 2 2 y C1 2 5 5 x 2 8 xy 2 x y 2 2 y C 2 wM wy 0 8. y sin xy dx x sin xy y dy 10 x 8 y 2 dx gc y Exact: x x dx 2 dy y y wM wy Exact Exact: wN 5 y2 wx 10 xy z Not exact 2. 5 x y dx 5 y x dy wM wy 0 x 2 x 2 y 3 y dx 2 −4 4 x 2 2 xy 3 xy g y 6 xy 2 x g c y f y x, y gc y 0 g y C1 x 2 xy xy 3 2 x y dx 2 y x dy x 2 xy xy C1 wM wy C f x, y 3 5. x y 5 dx x 3 y z dy wM wy −4 (b) 2 f x, y 2 x 6 xy 2 wN Exact wx 1 f x, y ³ f y x, y x gc y 2 x xy 5 x g y 2 x 3y 2 x y 5 dx gc y 3 y 2 g y 3 2 y 2 y C1 2 ³ x 2 xy g y x gc y gc y 2y g y y 2 C1 x 2 xy y 2 y2 2 x y dx 2y x C 2: 44 4 4 C Particular solution: x 2 xy y 2 (c) x2 3 xy 5 x y 2 2 y C1 2 2 x 2 2 xy 10 x 3 y 2 4 y wN Exact wx 1 f y x, y 0 0 C 0 4 4 6 −6 −4 © 2010 Brooks/Cole, Cengage Learning 492 Chapter 16 Additional Topics in Differential Equations 4 10. (a) and (c) 12. 3x 2 y 2 dx 2 x3 y 3 y 2 dy −6 wM wy 6 −4 6 xy y 3 dx 4 y 3 x 2 3xy 2 dy (b) wM wy 6x 3 y wN Exact wx 2 f x, y ³ f y x, y 3x 2 3 xy 2 g c y gc y 6 xy y 3 dx 4y g y 3x 2 y xy 3 2 y 2 y0 1: 2 3 x 2 y xy 3 g y 4 y 3x 2 3 xy 2 C 11. 2 x y 3 dx x 3 y 1 dy wM wy 1 2 0 wN wx f x, y ³ x gc y x 3y 1 g y f x, y 3y 1 3 y 2 y C1 2 x 2 xy 3 x 2 x 2 2 xy 6 x 3 y 2 2 y 3 2 y y C1 2 C Initial condition: y2 0 2 x3 y g c y y dx gc y 3y2 g y y 3 C1 x3 y 2 y 3 C C C 2: 4 8 Initial condition: y 1 wM wy wN wx N C 4 0 2 y 2 y 2 xy hx Integrating factor: e ³ § dx eln x y2 · ¸ dx x2 ¹ f x, y ³ ¨© 3 f y x, y 2y gc y x gc y 3x 0 g y y2 x 2 x 1 x2 2 3x y2 g y x C1 0 wN wx wM wy M 4 2 x 2 x 2 xy k y dy eln y 2 § 2x x2 · dx ¨1 2 ¸ dy y y ¹ © ³ 2x dx y f y x, y x2 gc y y2 1 g y 2 y k y 1 y2 0 x2 g y y f x, y x2 y y 0 2y x 14. 2 xy dx y 2 x 2 dy gc y h x C Exact equation: 2 x 2 xy 6 x 3 y 2 y 2 x3 y 3 y 2 4 Particular solution: 2 x3 y 2 g y 2 2 Integrating factor: e ³ 8 0 12 0 0 2 f y x, y 2 x y 3 dx x xy 3 x g y gc y ³ 3x § y2 · 2y dy Exact equation: ¨ 3 2 ¸ dx x ¹ x © 2 f y x, y f x, y 13. 3 x 2 y 2 dx 2 xy dy C 2 wN Exact wx 6x2 y Particular solution: x3 y 2 y 3 2 y 2 C1 Particular solution: 3x 2 y xy 3 2 y 2 Exact: 0 0, y 1 1 x2 y2 y C1 C © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 16 15. dx 3x e 2 y dy 19. ycc yc 2 y 0 0 m m2 m2 m1 2 wN wx wM wy M 30 1 k Integrating factor: e ³ Exact equation: e ³ f x, y f y x, y 3y 3 xe 3y e y g y e y C1 xe e y k y e3 y dx 3 xe 3y e y 0 dy gc y 3 xe e 3y y C1e 2 x C2e x yc 2C1e 2 x C2e x 0 C1 C2 yc 0 3 2C1 C2 y C 16. cos y dx ª¬2 x y sin y cos yº¼ dy 0 y dy y0 f x, y ³ cos f y x, y 2 x cos y sin y g c y 2 x cos 2 y g y y dx g y 2 −1 21. ycc 2 yc 3 y m 2m 3 2 7 C1e 2 x C2e 2 x yc 2C1e 2 x 2C2e 2 x ycc 4C1e 2 x 4C2e 2 x y1 y2 y3 −5 4C1e 2 x 4C2e 2 x 4 C1e 2 x C2e 2 x y yc C1 cos 2 x C2 sin 2 x ycc 4C1 cos 2 x 4C2 sin 2 x −1 0 2 m 3 m 1 y C1e 3 x C2e x yc 3C1e3 x C2e x y0 2 C1 C2 yc 0 0 3C1 C2 0 0 m C2 3 . 2 y 3 x e 2 6 −6 0 4C1 C1 1 2 and 12 e 3 x 0 m6 2 0, m y C1e 6 x C2 xe 6 x yc 6C1e 6 x C2e6 x 6C2 xe 6 x y0 2 yc 0 1 6, 6 2 C1 2 −1 6 2 C2 C2 3 3, 1 8 Subtracting these equations, 2 5 m 2 12m 36 4C1 cos 2 x 4C2 sin 2 x 4 C1 cos 2 x C2 sin 2 x 0 22. ycc 12 yc 36 y 2C1 sin 2 x 2C2 cos 2 x −3 3 5 C y ycc 4 y C2 2 2 C2 2e 2 x cos x 3e 2 x sin x y cos 2 y C1 x cos y y cos y 18. e2 x >2 cos x C2 sin x@ −1 2 y sin y cos y cos 2 y ycc 4 y 2 r i 0 2 x sin y cos y 2 y sin y cos y cos 2 y 17. 16 20 2 3 cos 2 y dx ª¬2 x y sin y cos y cos 2 yº¼ 2 7 y Exact equation: gc y 4 r m e 2 x >2 sin x C2 cos x@ 2e 2 x >2cos x C2 sin x@ yc 0 cos y 0 C1 y 2 yc k y 0 C1e 2 x cos x C2e 2 x sin x y 2 sin y sin y cos y 1 and e2 x e x m 2 4m 5 k Integrating factor: e ³ 12 3C1 C1 Adding these equations, 3 C2 1. 20. ycc 4 yc 5 y tan y 8 −12 y0 y wN wx wM wy M 2, 1 0, m −8 xe3 y g y e3 y dx gc y 3y y dy 3 493 13 −1 y 2e 6 x 13xe6 x −2 © 2010 Brooks/Cole, Cengage Learning 494 Chapter 16 Additional Topics in Differential Equations 23. ycc 2 yc 5 y 0 m 2 2m 5 27. 2 r 0 m 4 20 2 1 r 2i 4 y1 e 1 C1 cos 2 C2 sin 2 4 5 −1 y2 e 2 C1 cos 4 C2 sin 4 0 −2 Solving this system, you obtain C1 C2 7.8161. y e x yp A0 A1 x A2 x 2 A3 x3 y pc A1 2 A2 x 3 A3 x 2 y pcc 2 A2 6 A3 x A0 2 A2 A1 6 A3 x A2 x 2 A3 x3 x3 x 0, A1 5, A2 A0 0 m ri 28. C1 cos x C2 sin x 2 §S · y¨ ¸ ©2¹ C1 1 5 −4 C2 2 cos x sin x −3 25. ycc is always positive according to the graph (concave upwards), but yc is negative when x 0 (decreasing), so ycc z yc. m 1 2 0 when m 2 i, 2 x C2 sin C1 cos yp Ae 2 x B 0 B1 x y pc 2 Ae 2 x B1 y pcc 4 Ae 2 x 6 Ae 2 x 2 B 0 2 B1x A 1 , 6 y C1 cos B0 0, B1 2 i. 2x e2 x x 1 2 2 x C2 sin 2 x 16 e 2 x 2 cos x i, i. 0 when m yh C1 cos x C2 sin x yp Ax cos x Bx sin x y pc Bx A cos x B Ax sin x y pcc 2 B Ax cos x Bx 2 A sin x y pcc y p 1 e2 x x yh y pcc 2 y p 26. ycc is positive for x ! 0 (concave upwards), but 12 yc 0 for x ! 0 (increasing). So, ycc z 12 yc. ycc y ycc 2 y m2 2 3 0, A3 C1 cos x C2 sin x 5 x x3 y y0 29. 0 when m i, i. C1 cos x C2 sin x 0 m2 1 y m 1 yh y pcc y p 9.0496, 9.0496 cos 2 x 7.8161 sin 2 x 24. ycc y y x3 x 2 e x C1 cos 2 x C2 sin 2 x y ycc y 2 B cos x 2 A sin x 2 cos x A 0, B 1 y C1 cos x C2 x sin x 30. ycc 5 yc 4 y m 2 5m 4 x 2 sin 2 x 0 when m x 1, 4. C2 e 4 x yh C1e yp A0 A1x A2 x 2 B 0 sin 2 x B1 cos 2 x y pc A1 2 A2 x 2 B 0 cos 2 x 2 B1 sin 2 x y pcc 2 A2 4 B 0 sin 2 x 4 B1 cos 2 x y pcc 5 y pc 4 y p A0 y 4 A0 5 A1 2 A2 4 A1 10 A2 x 4 A2 x 2 10 B1 sin 2 x 10 B 0 cos 2 x 21 , 32 A1 85 , A2 C1e x C2e4 x 1 , 4 21 32 B0 85 x 0, B1 1 4 x 2 sin 2 x 101 x 2 101 cos 2 x © 2010 Brooks/Cole, Cengage Learning 1 2 x Review Exercises for Chapter 16 31. ycc 2 yc y 33. ycc yc 6 y 2 xe x m 2 2m 1 0 when m yh C1 C2 x e x yp v1 v2 x e x v1ce x v2c xe x m2 m 6 1, 1. v1ce x v2c x 1 e x 2 xe x 2 x 2 v1 ³ 2x 2 23 x3 dx yh C1e 3x yp 9 by inspection v2 ³ 2 x dx yc 0 y C1 C2 x x2 x3 e x y 1 x 2e x 32. ycc 2 yc y m 2 2m 1 1, 1. x C1 C2 x e yp v1 v 2 x e x v1ce x v2c xe x 0 v1 ³ x dx v 2c 1 x2 1 ³ x 2 dx v2 y 1 1 ex x2 ln x C1 C2 9 C1 C2 0: 0 3C1 2C2 C1 0, yc 0 ex , y 0 C1 cos 5 x C2 sin 5 x yp Ae x , y pc yh y p y0 0: 0 yc 0 0: 0 y 22 , 5 11 C2 33 5 2e3 x 3e 2 x 9 yh y 1 x 11 5 2: 2 Ae x 25 Ae x v1c e x v 2c x 1 e x v1c C1e3 x C2e 2 x 9 yh y p 34. ycc 25 y 0 when m yh C2e 2 x Initial conditions: y0 1 3 2 3, m2 2x v2c 0 m1 y v1c 0 0 m3 m 2 0 2, yc 0 54, y 0 495 y pcc 0 Ae x 1 26 1 x C1 cos 5 x C2 sin 5 x e 26 e x 26 A 1 A 1 1 C1 26 26 1 1 C2 5C2 26 130 C1 1 1 1 x cos 5 x sin 5 x e 26 130 26 1 x C1 C2 x ln x 1 e x 35. ycc 4 y cos x m2 4 0 m r 2i yh C1 cos 2 x C2 sin 2 x yp A cos x B sin x y pc A sin x B cos x y pcc A cos x B sin x y pcc 4 y p A cos x B sin x 4 A cos x B sin x 3 A cos x 3B sin x yp y 1 3 cos x A 1 3 and B cos x 0 cos x yh y p Initial conditions: C1 cos 2 x C2 sin 2 x y0 6: 6 yc 0 Particular solution: y 6: 6 17 3 C1 1 3 1 3 cos x C1 2C2 C2 cos 2 x 3 sin 2 x 1 3 17 3 3 cos x © 2010 Brooks/Cole, Cengage Learning 496 Chapter 16 Additional Topics in Differential Equations ycc 3 yc 6x m 3m 0 m1 36. 2 3 0 and m2 3 x yh C1 C2e yp Ax3 Bx 2 Cx D y pc 3 Ax 2 2 Bx C y pcc 6 Ax 2 B y pcc 3 y pc 6 Ax 2 B 3 3 Ax 2 2 Bx C x2 yp C1 C2e 3 x x 2 Initial conditions: y 0 3C2 2 3 43 e 3 x x 2 2 3 10 10 : 3 3 10 3 Particular solution: y m2 m 2 1 xe x , y 0 1, yc 0 m 2 m 1 0 m 2 3 x D C3 C2e3 x x 2 C2 x 1 3 34 and C3 A Bx Cx 2 e x y pc Bx Cx 2 e x B 2Cx e x y pcc B 2C B x Cx 2 e x 2C B 2Cx e x C1e 2 x C2e x 1 yc 0 3 So, C2 Cx 2 B 4C x 2C 2 B e x 1 xe x A 1 , 6C 2 1 and 2C 3B 0. 1 . 9 Initial conditions: y 0 83 C1 18 Adding, 3C1 10 3 2C 2 B 4C B x Cx 2 e x B 2C B x Cx 2 e x 2 A Bx Cx 2 e x 1 and B 6 yh y p x B 2C B x Cx 2 e x 2 A 6Cx 2C 3B e x y 2 3 2, 1 yp 23 3 C1e 2 x C2e x So, C 1, and C 10 4e 3 x 3x 2 2 x yh y pcc y pc 2 y p 0, B C3 C2 2: 2 yc 0 37. ycc yc 2 y 6 x, A x D 2 3 yh y p y 9 Ax 2 6 A 6 B x 2 B 3C 1 § 1 1 · ¨ x x 2 ¸e x 2 © 9 6 ¹ 1 3 C1 C2 2 2 1 28 2C1 C2 2C1 C2 9 9 C1 C2 83 . 54 1 . 27 Particular solution: y 83 2 x 1 x 1 § 1 1 · x e e ¨ x ¸ xe 54 27 2 ©9 6 ¹ © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 16 38. yccc ycc 4 x2 , y 0 yccc ycc 0 m3 m 2 0 when m 1, yc 0 1, ycc 0 1 0, 0, 1. yh C1 C2 x C3e x yp A0 x 2 A1 x3 A2 x 4 y pc 2 A0 x 3 A1x 2 4 A2 x3 y pcc 2 A0 6 A1x 12 A2 x 2 y pccc 6 A1 24 A2 x y pccc y pcc 497 2 A0 6 A1 6 A1 24 A2 x 12 A2 x 2 4 x 2 or A0 4, A1 43 , A2 13 C1 C2 x C3e x 4 x 2 43 x3 13 x 4 y y' C2 C3e x 8 x 4 x 2 ycc C3e x 8 8 x 4 x 2 1, yc 0 Initial conditions: y 0 Particular solution: y 39. By Hooke’s Law, F 1, ycc 0 8 8 x 4 x 2 kx, k x3 4 3 4 3 C2 C3 , 1 C3 8, C1 ma and m F a 8, C2 8, C3 9 x3 13 x 4 9e x 64 4 3 F x C1 C3 , 1 1, 1 48. Also, F 64 32 2. So, 2 d y § 48 · ¨ ¸y dt 2 © 2¹ y 0 6 t C2 sin 2 C2 cos 2 1 2 Because y 0 you have C1 40. From Exercise 39 you have k 6t . 1 2 and yc 0 48 and m 0 yields C2 0. So, y 1 2 cos 2 6t . 2. Also, the damping force is given by 1 8 dy dt . § d2y· 1 dy 2¨ 2 ¸ 48 y 8 dt © dt ¹ 1 0 ycc yc 24 y 16 16 ycc yc 384 y 0 The characteristic equation 16m 2 m m So, y t 1 r 32 24,575 i 32 384 0 has complex roots 1 5 983 r i. 32 32 ª § 5 983 · § 5 983 ·º e t 32 «C1 cos¨¨ t ¸¸ C2 sin ¨¨ t ¸¸». © 32 ¹ © 32 ¹»¼ ¬« Initial conditions: y0 1 C1 2 yc 0 0 1 2 C 5 983 C2 1 32 32 Particular solution: y t 0 C2 983 9830 ª1 § 5 983 · § 5 983 ·º 983 sin ¨¨ e t 32 « cos ¨¨ t ¸¸ t ¸¸» 9830 © 32 ¹ © 32 ¹»¼ ¬« 2 © 2010 Brooks/Cole, Cengage Learning 498 Chapter 16 Additional Topics in Differential Equations 1 12S 24 cos 2t 2 sin 2t sin S t 2 4 S2 S 4 41. (a) (i) y 1 4 42. y p cos x, y pc y pcc 4 y pc 5 y p 12 14 sin x, y pcc 14 cos x 14 cos x 4 14 sin x 5 14 cos x cos x sin x 0 10 False. 43. (a) y pcc −12 1ª 1 6 2¬ (ii) y 2 t 3 sin 2 2 t cos 2 2t º ¼ A sin x and 3 y p So, y pcc 3 y p A sin x 3 A sin x 2 A sin x 60 (b) y p 0 14 (c) If y p y pcc −60 e ª «199 cos 398 ¬ t 5 (iii) y 199 t 5 199 t º » 5 ¼ 199 sin 3 A sin x. 12 sin x 5 cos x 2 A cos x B sin x, then A cos x B sin x, and solving for A and B would be more difficult. 5, because yc 44. y ycc 0 and 6 5 30 1 0 8 −1 1 2t e cos 2t sin 2t 2 (iv) y 0.6 0 3 −0.2 (b) The object comes to rest more quickly. It may not even oscillate, as in part (iv). (c) It would oscillate more rapidly. (d) Part (ii). The amplitude becomes increasingly large. 45. x 4 yc y f ¦ an x n : 0. Letting y n 0 xyc 4 yc y f ¦ nan x n n 0 f ¦ f 4¦ nan x n 1 n 1 n 1 an x n n 0 n 1 an an 1 f ¦ 4nan x n 1 f ¦ an x n n 0 n 1 f ¦ n 1 an x n f ¦ 4 n 1 an 1x n 0 n 1 n 0 4 n 1 an 1 1 an 4 a0 a 0 , a1 y a0 ¦ f n 0 1 a0, a2 4 1 a1 4 1 a0, ! , an 42 1 a0 4n xn 4n © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 16 499 f 46. ycc 3xyc 3 y ¦ an x n : 0. Letting y n 0 f ¦ n n 1 an x n 2 ycc 3 xyc 3 y n 2 f ¦ f ¦ n 2 n 1 an 2 x n n 0 f f n 1 n 0 3 x ¦ nan x n 1 3¦ an x n 0 3 3n an x n n 0 3 1 n an n 2 n 1 an 2 a0 a0 a1 a1 a2 3 a0 2 1 a3 0 There are no odd-powered terms for n ! 1. a4 a6 3 § 3 · a0 ¸ ¨ 4 3© 2 1 ¹ 3 3 § 3 3 a0 · ¨ ¸ 6 5© 4! ¹ 3 3 a0 4! 33 3 a 0 6! a8 3 5 § 33 3 a 0 · ¨ ¸ 8 7 ¨© 6! ¸¹ a10 3 7 § 34 5 3 a 0 · ¨ ¸¸ 10 9 ¨© 8! ¹ y 34 5 3 a 0 8! 35 7 5 3 a 0 10! f 1 3 a 0 x2 a 0 ¦ 2 n 2 a0 47. ycc yc e x y n 1 n 3 ª¬3 5 7" 2n 3 º¼ 2 n x 2n ! 2, yc 0 0, y 0 0 ycc yc e x y ycc 0 2 yccc ycc e x y yc yccc 0 2 2 y 4 yccc e y 2 yc ycc y 5 y x e y 3 yc 3 ycc yccc 4 x y | y 0 yc 0 x y 4 0 4 y 5 0 4 8 0 4 ycc 0 2 yccc 0 3 y4 0 4 y5 0 5 x x x x 2! 3! 4! 5! 2 x2 1 4 1 5 x x 6 30 §1· Using the first four terms of the series, y¨ ¸ | 2.063. © 4¹ 48. ycc xy 1, yc 0 0, y 0 1 ycc xy ycc 0 0 yccc xyc y yccc 0 1 y 4 xycc yc yc y 5 xycc 2 yc xyccc ycc 2 ycc y 6 y 7 xyccc 3 ycc xy 4 yccc 3 yccc xy 5 y 4 4y y | y 0 yc 0 x 4 xy 4 yccc 4 xy 5 5y 4 ycc 0 2 y7 0 7 x " x 2! 7! y 4 0 2 y 5 0 0 y 6 0 4 y 7 0 10 1 x x3 x4 x6 x7 6 12 180 504 §1· y¨ ¸ | 1.474 © 2¹ © 2010 Brooks/Cole, Cengage Learning 500 Chapter 16 Additional Topics in Differential Equations Problem Solving for Chapter 16 1. 3 x 2 kxy 2 dx 5 x 2 y ky 2 dy wM wy wN wx wM wy 10 xy wN k wx f x, y ³ f y x, y 5 x 2 y g c y 3 x 5 xy 2 wN wx 2x y2 x 0 rE i 0 m Then C1 cos I C2 , 0 d I 2S . C1 C2 sin I . C1 sin I C2 . Then cos I C1 cos E x C2 sin E x C sin I cos E x C cos I sin E x 0 y · ¸ dx x2 ¹ 2 2 y gc y x y C sin E x . And if C2 0 y S· § C sin ¨ E x ¸ 2¹ © y y g y x 0 is . B1 B2 . C1 C2 . 2 § C1 C2 · r s x § C1 C2 · r s x ¨ ¨ ¸e ¸e 2 2 © ¹ © ¹ sx sx sx ª §e e · § e e sx ·º e rx «C1 ¨ ¸ C2 ¨ ¸» 2 2 ¹ © ¹¼ ¬ © So y 2 y g y x B2e rs x C1 C2 and B2 2 Then B1 2 C1 e rx >C1 cosh sx C2 sinh sx@. 6. The roots of the characteristic equation m 2 am b a 2 4b 0 and y a r E i, then y 2 (because cos E x and sin E x are bounded). (ii) If the roots are complex, m a (iii) If the roots are real and distinct, then y For the first term, note that 0, then C cos E x . B1 B2 and C2 Let C1 0 Exact 2x B1e rs x C sin E x I . 0 and 5. The general solution to ycc ayc by 2 C (i) If the roots are equal, then 0, then I Note that if C1 0 ky k x2 § y2 · § 2y · (b) ¨ 2 2 ¸ dx ¨ ¸ dy x © x ¹ © ¹ f y x, y C1 C2 ax C1 C2 ax e e 2 2 Let I be given by cot I y 1 kxy dy x2 y2 · ky dy 2 ¸ dx x ¹ x § 2 Let C y 2 dx ³ ¨© 2 ra C1 cos E x C2 sin E x y 5 x 2 y 5 y 2 C 2. kx 2 y 2 dx kxy dy f x, y m E 2 C2 6 x3 15 x 2 y 2 10 y 3 2y x2 4. ycc E 2 y 5 3 y C1 3 5y g y 1 kx 2 x2 § ¨k © wM wy 0 Exact 5 x3 x 2 y 2 g y 2 dx 2 5 5 x3 x 2 y 2 y 3 2 3 0 m § e ax e ax · § e ax e ax · C1 ¨ ¸ C2 ¨ ¸ 2 2 © ¹ © ¹ C1 cosh ax C2 sinh ax 5 2 m a ma B1e ax B2e ax y gc y 0, y ! 0 m2 a 2 2kxy 3 x 2 5 xy 2 dx 5 x 2 y 5 y 2 dy (a) 3. ycc a 2 y 0 a 2 4b C1e a 1 a r 0 a, b ! 0 are m a x C1 C2 x e 2 a o 0 as x o f. a x a 2 4b . You consider three cases: 2 x C1e 2 cos E x C2e 2 sin E x o 0 as x o f a 2 4b x 2 a C2 e 4b a. So y a2 a 2 4b x 2 . The second term clearly tends to 0 as x o f. § a a 4b · 1 ¨¨ ¸¸ 2 2 a2 ¹ x C1e© o 0 as x o f. © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 16 7. ycc ay 0, y 0 0, ycc (a) If a and y L 0 y cx d . y 0 cL c 0 8. ycc ay 0 y L 0. So y 0 d m2 a 0 is the m2 a y 0 m a x C1e r C2 e C1 C2 C1 y L 0 C1e a L C1e a L C2 e a L C1e a L a L e 2 9. d 2T g T dt 2 L (a) T t 0, (b) ai a x C2 sin ax. ax C2 sin aL nS 2 § nS · ¨ ¸ , n an integer. © L ¹ · ¸¸ ¹ 0 C2 g ! 0 L § C1 sin ¨¨ © § Then C2 sin ¨¨ © T t a L aL 0 0 is the only solution. § g · t ¸¸ C2 cos¨¨ L ¹ © § Let I be given by tan ¨¨ © Let A 0 a a L C1 2C1 sinh So C2 r y L C1 C2 sin y L a x 0 §e 2C1 ¨ ¨ © 0 y a . y0 So, y y0 0 has characteristic equation 0 m C1 cos y solution. (b) If a 0, ycc ay 0, a ! 0, y 0 501 g · I¸ L ¸¹ C2 § g · cos ¨¨ I ¸¸ © L ¹ § C1 sin ¨¨ © g · I¸ L ¸¹ g · t¸ L ¸¹ C1 S S , I . C2 2 2 § g · C1 cos¨¨ I ¸¸. © L ¹ C1 § g · sin ¨¨ I ¸¸ © L ¹ § g · t ¸¸ C2 cos¨¨ L ¹ © g · t¸ L ¸¹ § A sin ¨¨ © g · § I ¸ sin ¨ L ¸¹ ¨© § g · t ¸¸ A cos¨¨ L ¹ © § g · I ¸¸ cos¨¨ L ¹ © g · t¸ L ¸¹ ª A cos « ¬ º g t I » L ¼ ª g º 9.8, L 0.25 A cos « t I », g ¬ L ¼ 0.1 T 0 A cos ª¬ 39.2 I º¼ ª g º g A t I » Tc t sin « L ¬ 4 ¼ Tc 0 0.5 A 39.2 sin ¬ª 39.2 I ¼º 5 I | 0.1076 A | 0.128. Dividing, tan ª¬ 39.2 I º¼ 39.2 T t T t 0.128 cos ª¬ 39.2 t 0.108 º¼ 2S | 1 sec 39.2 (d) Maximum is 0.128. (c) Period (e) T t 0 at t | 0.359 sec, and at t | 0.860 sec. (f ) T c 0.359 | 0.801, T c 0.860 | 0.801 © 2010 Brooks/Cole, Cengage Learning 502 Chapter 16 10. (a) Aycc ycc yc y y0 y2 Additional Topics in Differential Equations 12. ycc 2 yc 26 y 1 2 Wx , A ! 0 2 W 2 W 2W x x 4x x2 A 2A 2A W§ 2 x3 · ¨ 2x ¸ C1 2 A© 3¹ W § 2 x3 x4 · ¨ ¸ C1 x C2 2 A© 3 12 ¹ 2Wx 0 C2 (a) O 1, Z O Z 2 25 0, underdamped 1 5i t C1e cos 5t C2e t sin 5t y y0 1 C1 e t C1 cos 5t C2 sin 5t yc t 0 e t 5C1 sin 5t 5C2 cos 5t W § 16 16 · ¸ 2C1 0 ¨ 2 A© 3 12 ¹ 2W 2C1 C1 A yc 0 0 W A · W § 2x x 2x¸ ¨ 2 A© 3 12 ¹ (b) Using a graphing utility, the maximum deflection is at x | 1.1074, and the deflection is W W 1.43476 | 0.7174 . A 2A 3 4 26, 2 1 5i, m2 (b) m1 1, yc 0 0, y 0 y (c) C1 5C2 C2 4 e t 1 cos 5t sin 5t 2 4 y 11. ycc 8 yc 16 y (a) O 4, Z (b) m1 m2 1, yc 0 0, y 0 4, O Z 2 2 0, critically damped C1 C2 t e 4t , yc 4 C1 C2 t e 4t C2e 4t y0 1 C1 yc 0 1 4 C2 C2 1 5t e 5 −2 The solution oscillates. 13. ycc 20 yc 64 y (a) O 10, Z (b) m1 4t 10 6 16 16t yc t 4C1e 4t 16C2e 16t yc 0 20 (c) 20 36 ! 0, overdamped 4, m2 C1e C2e 2 C1 C2 4C1 16C2 2 ½ ¾C1 5¿ 1, C2 1 e 4t e 16t y (c) 10 6 C1 4C2 4 t 2 8, O 2 Z 2 C1 C2 5 2, yc 0 0, y 0 y y0 4 y y 1 0 2 2 0 0 0 The solution tends to zero quickly. 2 0 The solution tends to zero quickly. 14. ycc 2 yc y (a) O 1, Z (b) m1 1, O 2 Z 2 y0 2 yc 0 1 y 1 0, critically damped 1 m2 C1 C2 t e t , yc y (c) 2, yc 0 0, y 0 C1 C2 t e t C2e t C1 2 C2 C2 1 2 t et 2 0 5 −2 The solution tends to zero quickly. © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 16 15. Airy’s Equation: ycc xy ycc xy y y f ¦ an Let y 0 ycc x 1 y y f ¦ nan n x 1 , yc n 0 f ¦ n n 1 an n 2 f ¦ 0 x 1 n 1 f ¦ n n 1 an , ycc n 1 ycc x 1 y y n2 . n 2 x 1 n2 x 1 n 1 f ¦ an x 1 n 0 f n 1 ¦ an n f ¦ an f ¦ ª¬ n 3 n 0 x 1 n 0 n 0 x 1 n 1 f ¦ an 1 x 1 n 1 0 n 1 n 0 2a2 a0 x 1 0 n 3 n 2 an 3 x 1 2a2 a0 503 n 2 an 3 an an 1º¼ x 1 n 1 0 1 a0 ; a0 , a1 arbitrary 2 an an 1 . n3 n 2 0 a2 In general, an 3 a3 a0 a1 6 a4 a1 a2 12 a5 a2 a3 20 §1 · a1 ¨ a0 ¸ 2a1 a0 ©2 ¹ 12 24 1 a0 a1 a0 4a0 a1 2 6 20 120 § a0 a1 · § 2a1 a0 · ¨ ¸¨ ¸ 5a0 6a1 © 6 ¹ © 24 ¹ a6 30 720 § 2a1 a0 · § 4a0 a1 · ¨ ¸¨ ¸ a4 a5 9a0 11a1 © 24 ¹ © 120 ¹ a7 42 42 5040 So, the first eight terms are 2a a0 4a a1 a a a1 2 3 4 5 y a0 a1 x 1 0 x 1 0 x 1 1 x 1 0 x 1 2 6 24 120 5a 6a1 9a 11a1 6 7 x 1 0 x 1 . 0 720 5040 a3 a4 30 16. (a) Tn 1 x 2 xTn x Tn 1 x T0 1, T1 T2 2x x 1 T3 2x 2 x2 1 x T4 2 x 4 x3 3x 2 x 2 1 x 2 x2 1 (b) 1 x 2 ycc xyc k 2 y 4 x3 3x 8x4 8x2 1 0 Substituting T0 , !, T4 into this equation shows that the polynomials satisfy Chebyshev’s equation. For example, for T4 , 1 x 2 ª¬96 x 2 16º¼ x ª¬32 x3 16 xº¼ 16ª¬8 x 4 8 x 2 1º¼ (c) T5 2 x 8 x 4 8 x 2 1 4 x3 3x 0 16 x5 20 x3 5 x T6 2 x 16 x 5 20 x3 5 x 8 x 4 8 x 2 1 32 x 6 48 x 4 18 x 2 1 T7 2 x 32 x 6 48 x 4 18 x 2 1 16 x5 20 x3 5 x 64 x 7 112 x5 56 x3 7 x © 2010 Brooks/Cole, Cengage Learning 504 Chapter 16 Additional Topics in Differential Equations 17. x 2 ycc xyc x 2 y 0 Bessell equation of order zero f f ¦ an x n , yc (a) Let y ¦ n n 1 an xn 2 . n 1 n 2 n 0 x 2 ycc xyc x 2 y f ¦ nan x n 1, ycc 0 f f f n 2 n 1 n 0 x 2 ¦ n n 1 an x n 2 x ¦ nan x n 1 x 2 ¦ an x n f f n 2 f n 1 f ¦ n n 1 an x n ¦ nan x n ¦ an x n 2 ¦ 0 n 2 n 1 an 2 x n 2 n 0 f ¦ 0 n 2 an 2 x n 2 n 1 n 0 a1 x f ¦ ª¬ n 2 an 0 and an 2 2 n 2 All odd terms ai are 0. a0 a2 22 a2 1 a4 a0 2 42 2 42 a6 a4 62 y a0 ¦ f n 0 a0 a0 2 2 1 2 4 a0 1 22 42 6 2 6 2 3! 2 n 1 x 2 n 22 n n! 2 f f 1 ). f ¦ an x n , yc ¦ nan x n 1, ycc ¦ n n 1 an x n 2 n 0 n 1 n 2 x ycc xyc x 1 y 2 2 0 f f n 2 n 1 x 2 ¦ n n 1 an x n 2 x ¦ nan x n 1 x 2 1 f ¦ an x n f f f f n 2 n 1 n 0 n 0 f n 2 n 1 an 2 x n 2 f ¦ a0 a1 a1 x f ¦ ª¬ n 2 n 0 a0 f 2a1 ¦ n 0 0 f ¦ an x n 2 n 0 f ¦ an 2 x n 2 0 n 2 n 1 an 2 n 2 an 2 an an 2 º¼ x n 2 0 and ª¬ n 2 n 1 n 2 1º¼ an 2 All even terms a1 a3 24 a3 a5 46 a5 a7 68 y n 2 an 2 x n 2 n 1 n 0 0 n 0 ¦ n n 1 an x n ¦ nan x n ¦ an x n 2 ¦ an x n ¦ 0 . (b) This is the same function (assuming a0 18. (a) Let y 0 n 0 n 1 an 2 n 2 an 2 an º¼ x n 2 n 0 a1 f ¦ an x n 2 an ª¬n 2 4n 3º¼ an 2 0 an an 2 an n 1 n 3 ai are 0. a1 23 a1 2a1 25 3! 25 2! 3! 2a1 27 3! 4! n 1 x 2 n 1 2 n 1 n! n 1 ! 2 (b) This is the same function (assuming 2a1 1 ). © 2010 Brooks/Cole, Cengage Learning Problem Solving for Chapter 16 f 19. (a) Let y ¦ nan x n 1, ycc ¦ n n 1 an xn 2 . n 0 n 1 n 2 0 f ¦ n n 1 an x n 2 n 2 f f f n 1 n 0 2 x ¦ nan x n 1 8 ¦ an x n n 2 n 1 an 2 x n n 0 f ¦ ª¬ n 2 n 0 an 2 a2 48 2x 0! H1 x 2x 1! 1 ¦ n 0 1 ¦ n 0 2 H4 x n 0 n 0 0 0 1 a2 a2 3 2 4 a0 2 48 4a0 a0 12 16 x 4 48 x 2 12 (b) H 0 x H3 x f ¦ 2nan x n ¦ 8an x n n 1 an 2 2nan 8an º¼ x n 2 2 a2 43 16 H2 x f 0 2n4 an n 2 n 1 a4 H4 x f ¦ an x n , yc ycc 2 xyc 8 y ¦ f 505 ¦ n 0 0 1 1 2x n 2 2n 1 2! 2 x n! 2 2n ! n 3 2n 1 3! 2 x n! 3 2n ! n 4 2n 1 4! 2 x n! 4 2n ! 2 2x 2! 3! 2 x 3! 4! 2 x 4! 2 2 1 3! 2 x 1 4! 2 x 2! 3 4 4 x2 2 1 8 x3 12 x 2 4! 2! 16 x 4 48 x 2 12 © 2010 Brooks/Cole, Cengage Learning 506 Chapter 16 Additional Topics in Differential Equations 20. (a) xycc 1 x yc ky 0 f Let y f f ¦ an x n , yc ¦ nan x n 1, ycc ¦ n n 1 an xn 2 . n 0 n 1 n 2 f x ¦ n n 1 an x n 2 1 x n 2 f f n 1 n 0 ¦ nan x n 1 k ¦ an x n f f f f n 2 n 1 n 1 n 0 0 ¦ n n 1 an x n 1 ¦ nan x n 1 ¦ nan x n ¦ kan x n f ¦ n 1 nan 1x n n 1 f ¦ f ¦ ª¬ n 1 nan 1 n 1 a1 ka0 a1 n 1 a n 1 k n an 0 an 1 Let a0 1. For k 0, a1 a2 For k 1, a1 1, a2 For k 2, a1 2, a2 n 1 n 0 n 1 an 1 nan kan º¼ x n 0 2 f ¦ nan x n ¦ kan x n n 1 an 1x n n 0 a1 ka0 f nk n 1 1 a1 22 In general, for a given integer k t 0, ak 1 an nk 1 2 2 k n 1 k n 2 0 ¦ n 0 1 L1 x ¦ n 0 2 L2 x ¦ n 0 3 L3 x ¦ n 0 4 L4 x ¦ n 0 2 2 an 1 x. an 2 1 2x " ak 2 1 2 x . 2 0. Furthermore, in the given formula for an . Finally, you can see that for k t n, 1 k 1 n n 2 k an 2 2 n2 n 1 an 1 1 " k n 1 k n 2 "k k n ! n! (b) L0 x 2 n2 n2 n 1 1 n 1 1 k n 1 n 1 k an 1 n2 0 1. 1 L2 x 2 Lk x , you can verify that an 1 2 0 L1 x " a3 0 ka0 0 L0 x " 0 k n! n k n 1 k n 2 " k 0 2 n 2 n 1 "22 12 a0 n a0 1 k! k n ! n! 2 n 1 0! x n 0 n ! n! 2 1 2 1 x 2 1 2x x2 2 2 1 3x 3 2 x3 x 2 6 2 1 4 x 3x 2 n 1 1! x n 1 n ! n! n 1 2! x n 2 n ! n! n 1 3! x n 3 n ! n! n 1 4! x n 4 n ! n! 2 3 1 4 x x 3 24 © 2010 Brooks/Cole, Cengage Learning