CASO #4 PESO PROPIO DEL SUELO + CARGA SOBREIMPUESTA + FUERZA SÍSMICA Área cuña Área cuña ((b ⋅ h)) Ac = ―― 2 BC ⋅ H Ac = ――― 2 AC' cot ((θ)) = ―― H AB' cot ((β)) = ―― H BC = AC' - AB' AC' = H ⋅ cot ((θ)) AB' = H ⋅ cot ((β)) BC = ((H ⋅ cot ((θ)))) - ((H ⋅ cot ((β)))) Ahora ((H ⋅ cos ((θ)))) ((H ⋅ cos ((β)))) ((H ⋅ cot ((θ)))) - ((H ⋅ cot ((β)))) = ―――― - ―――― sin ((θ)) sin ((β)) ((H ⋅ cos ((θ)) ⋅ sin ((β)))) - ((H ⋅ cos ((β)) ⋅ sin ((θ)))) ――――――――――――― sin ((θ)) ⋅ sin ((β)) H ⋅ ((((cos ((θ)) ⋅ sin ((β)))) - ((cos ((β)) ⋅ sin ((θ)))))) ――――――――――――― sin ((θ)) ⋅ sin ((β)) H ⋅ sin ((β - θ)) ((H ⋅ cot ((θ)))) - ((H ⋅ cot ((β)))) = ――――― sin ((θ)) ⋅ sin ((β)) Reemplazando el valor de BC en la ecuación inicial del área de la cuña 2 H sin ((β - θ)) ⋅ ―――――⎛⎝m 2 ⎞⎠ Ac = ―― 2 sin ((θ)) ⋅ sin ((β)) H H ⋅ sin ((β - θ)) Ac = ―⋅ ――――― 2 sin ((θ)) ⋅ sin ((β)) Peso de la cuña 2 Wc = A c ⋅ γ ⋅ 1 m H sin ((β - θ)) ⋅ ――――― ⋅γ Wc = ―― 2 sin ((θ)) ⋅ sin ((β)) 2 H sin ((β - θ)) ⋅ γ ⋅ ――――― Wc = ―― sin ((θ)) ⋅ sin ((β)) 2 Se aplica la descomposición vectorial al peso de la cuña, con respecto a la sección AC Componente de carga Wcy cos ((θ)) = ―― Wc Wcx sin ((θ)) = ―― Wc Wcy = Wc ⋅ cos ((θ)) Wcx = Wc ⋅ sin ((θ)) WN = Wcy H2 sin ((β - θ)) ⋅ γ ⋅ ――――― ⋅ cos ((θ)) WN = ―― 2 sin ((θ)) ⋅ sin ((β)) Wτ = Wcx H2 sin ((β - θ)) ⋅ γ ⋅ ――――― ⋅ sin ((θ)) Wτ = ―― 2 sin ((θ)) ⋅ sin ((β)) Componente de carga qp = qd ⋅ BC ⋅ 1 m H ⋅ sin ((β - θ)) qp = qd ⋅ ――――― ((kN)) sin ((θ)) ⋅ sin ((β)) Se procede a descomponer la carga qpy cos ((θ)) = ―― qp qpx sin ((θ)) = ―― qp qpy = qp ⋅ cos ((θ)) qpx = qp ⋅ sin ((θ)) qN = qpy qτ = qpx sin ((β - θ)) ⋅ cos ((θ)) qN = qd ⋅ ――――― sin ((θ)) ⋅ sin ((β)) sin ((β - θ)) ⋅ sin ((θ)) qτ = qd ⋅ ――――― sin ((θ)) ⋅ sin ((β)) Componente de sismo Svy cos ((θ)) = ―― Sv Svx sin ((θ)) = ―― Sv Svy = Sv ⋅ cos ((θ)) Svx = Sv ⋅ sin ((θ)) Shy cos ((θ)) = ―― Sh Shx sin ((θ)) = ―― Sh Shy = Sh ⋅ cos ((θ)) Shx = Sh ⋅ sin ((θ)) Se tiene lo siguiente Sv = Kv ⋅ Wc Sh = Kh ⋅ Wc Sismo en dir. vertical Sismo en dir. horizontal En dirección Vertical Svy = ⎛⎝Kv ⋅ Wc⎞⎠ ⋅ cos ((θ)) En dirección Horizontal Shy = ⎛⎝Kh ⋅ Wc⎞⎠ ⋅ cos ((θ)) Svx = ⎛⎝Kv ⋅ Wc⎞⎠ ⋅ sin ((θ)) Shx = ⎛⎝Kh ⋅ Wc⎞⎠ ⋅ sin ((θ)) FUERZAS NORMALES (en dirección Y) Svx = ⎛⎝Kv ⋅ Wc⎞⎠ ⋅ sin ((θ)) Shx = ⎛⎝Kh ⋅ Wc⎞⎠ ⋅ sin ((θ)) FUERZAS NORMALES (en dirección Y) ΣFy Wcy + qpy + Svy - Shy ⎛⎝Wc ⋅ cos ((θ))⎞⎠ + ⎛⎝qp ⋅ cos ((θ))⎞⎠ + ⎛⎝Sv ⋅ cos ((θ))⎞⎠ - ⎛⎝Sh ⋅ sin ((θ))⎞⎠ ⎛⎝cos ((θ)) ⋅ ⎛⎝Wc + qp + Sv⎞⎠⎞⎠ - ⎛⎝Sh ⋅ sin ((θ))⎞⎠ FUERZAS CORTANTES (en dirección X) ΣFy Wcx + qpx + Svx - Shx ⎛⎝Wc ⋅ sin ((θ))⎞⎠ + ⎛⎝qp ⋅ sin ((θ))⎞⎠ + ⎛⎝Sv ⋅ sin ((θ))⎞⎠ - ⎛⎝Sh ⋅ cos ((θ))⎞⎠ ⎛⎝sin ((θ)) ⋅ ⎛⎝Wc + qp + Sv⎞⎠⎞⎠ - ⎛⎝Sh ⋅ cos ((θ))⎞⎠ ESFUERZO NORMAL ( σN ) FN σN = ―― AC FN σN = ――― H ――― sin ((θ)) FN ⋅ sin ((θ)) σN = ―――― H ⎛⎝⎛⎝cos ((θ)) ⋅ ⎛⎝Wc + qp + Sv⎞⎠⎞⎠ - ⎛⎝Sh ⋅ sin ((θ))⎞⎠⎞⎠ ⋅ sin ((θ)) σN = ――――――――――――――― H ESFUERZO CORTANTE ( στ ) Fτ στ = ―― AC Fτ στ = ――― H ――― sin ((θ)) Fτ ⋅ cos ((θ)) στ = ―――― H ⎛⎝⎛⎝sin ((θ)) ⋅ ⎛⎝Wc + qp + Sv⎞⎠⎞⎠ - ⎛⎝Sh ⋅ cos ((θ))⎞⎠⎞⎠ ⋅ sin ((θ)) στ = ――――――――――――――― H FACTOR DE SEGURIDAD( FSS ) SF FSS = ― τd σN + c' ⋅ tan ((ϕ')) FSS = ――――― στ ⎛ ⎛⎝⎛⎝cos ((θ)) ⋅ ⎛⎝Wc + qp + Sv⎞⎠⎞⎠ - ⎛⎝Sh ⋅ sin ((θ))⎞⎠⎞⎠ ⋅ sin ((θ)) ⎞ ⎜――――――――――――――― ⎟ + c' ⋅ tan ((ϕ')) H ⎝ ⎠ FSS = ――――――――――――――――――― ⎛⎝⎛⎝sin ((θ)) ⋅ ⎛⎝Wc + qp + Sv⎞⎠⎞⎠ + ⎛⎝Sh ⋅ cos ((θ))⎞⎠⎞⎠ ⋅ sin ((θ)) ――――――――――――――― H ANÁLISIS DE RESULTADOS La finalidad del software GEO5 es calcular el valor mínimo del factor de seguridad para el talud en análisis. Adicional al resultado anterior, también nos suministra la sección de falla mas crítica. Este análisis se llevó a cabo por los métodos de Bishop y Spencer, implementando un método de optimización. Se analizaron taludes con ángulos comprendidos entre los 60° y 80°, obteniéndose los siguientes resultados. Ángulo Beta 60 65 70 75 80 Método Bishop 1.24 1.16 1.09 1.01 0.94 Método Spencer 1.31 1.42 1.43 1.45 1.47 De la anterior tabla es posible observar 2 tendencias: - Por el método Bishop se observa que los valores de FS se alejan del valor mínimo para que el talud pueda ser considerado como estable. - Por el método Spencer estos mismos valores se acercan al valor mínimo aceptable para la estabilidad del talud. CONCLUSIONES Para el cálculo de los factores de seguridad de los taludes, con los distintos ángulos de inclinación suministrados se empleó la herramienta GEO5, tomando como base los métodos de Bishop y Spencer, ambos por optimización, y, adicional a esto, se utilizó la herramienta “Microsoft Excel” para el cálculo por el método de cullman, teniendo en cuenta la demostración del caso asignado de estabilidad de taludes. Si bien es importante conocer el manejo de este software, es fundamental poder desarrollar un manejo sólido de Excel, ya que la función central del software es verificar lo previamente calculado. La importancia de esta herramienta tecnológica radica en el hecho de conocer, de forma aproximada por medio de una simulación, el comportamiento del talud en condiciones reales, lo que nos permite asimilar de una forma más eficiente y objetiva los conocimientos teóricos impartidos acerca del tema. Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Bishop) Sum of active forces : Fa = 296,95 kN/m Sum of passive forces : Fp = 368,37 kN/m Sliding moment : Ma = 4620,55 kNm/m Resisting moment : Mp = 5731,79 kNm/m Factor of safety = 1,24 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Spencer) Factor of safety = 1,31 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Bishop) Sum of active forces : Fa = 289,79 kN/m Sum of passive forces : Fp = 336,43 kN/m Sliding moment : Ma = 4685,88 kNm/m Resisting moment : Mp = 5440,04 kNm/m Factor of safety = 1,16 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Spencer) Factor of safety = 1,42 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Bishop) Sum of active forces : Fa = 290,48 kN/m Sum of passive forces : Fp = 315,46 kN/m Sliding moment : Ma = 5237,29 kNm/m Resisting moment : Mp = 5687,75 kNm/m Factor of safety = 1,09 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Spencer) Factor of safety = 1,43 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Bishop) Sum of active forces : Fa = 280,98 kN/m Sum of passive forces : Fp = 284,10 kN/m Sliding moment : Ma = 5644,91 kNm/m Resisting moment : Mp = 5707,50 kNm/m Factor of safety = 1,01 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Spencer) Factor of safety = 1,45 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Bishop) Sum of active forces : Fa = 277,55 kN/m Sum of passive forces : Fp = 259,57 kN/m Sliding moment : Ma = 6572,40 kNm/m Resisting moment : Mp = 6146,63 kNm/m Factor of safety = 0,94 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] Name : Stage - analysis : 2 - 1 The slip surface after optimization. Slope stability verification (Spencer) Factor of safety = 1,47 < 1,50 Slope stability NOT ACCEPTABLE [GEO5 - Slope Stability (demoversion) | version 5.2020.34.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu]