Reglas de derivación_____________________________________________________________________________________ REGLAS DE DERIVACIÓN Derivadas inmediatas f ′(x) 0 p ⋅ x p −1 f (x) λ xp arcsen(x) a x ⋅ ln a ex 1 log a e x 1 x 1 − 2 x cos(x) − sen(x) 1 cos 2 ( x) 1 arccos(x) 1 − x2 1 ax ex log a x ln x 1 x sen(x) cos(x) tan(x) arctan(x) senh(x) (seno hiperbólico de x) cosh(x) arg senh( x) (argumento del seno hiperbólico de x) arg cosh( x) (argumento del coseno hiperbólico de x) − 1 − x2 1 1+ x2 cosh(x) (coseno hiperbólico de x) senh(x) 1 1+ x2 1 x 2 −1 −1 x 2 −1 si x > 1 si x < −1 1 Reglas de derivación_____________________________________________________________________________________ Reglas de derivación Sean u = f (x) y v = g (x) dos funciones derivables. Se cumple que: ′ Regla de la cadena: ( f g ) ( x) = ( f ( g ( x )))' = f ′( g ( x) ) ⋅ g ′( x) Regla de la suma, producto y cociente: (λ ⋅ u )′ = λ ⋅ u ′ para cualquier (u ± v )′ = u ′ ± v ′ (u ⋅ v )′ = u ′ ⋅ v ± u ⋅ v ′ λ ∈ℜ ′ u u ′v − uv ′ = v2 v Aplicando la regla de la cadena se deduce que: (u )′ = p ⋅ u p −1 p ⋅ u′ [ln(u )]′ = u ′ u [a ] = u ′ ⋅ a [e ]′ = u ′ ⋅ e u u ′ u ⋅ ln a u ′ u′ 1 u = − u 2 (sen (u ))′ = u ′ ⋅ cos(u ) (cos (u ))′ = −u ′ ⋅ sen(u ) ′ (tan (u ))′ = u2 cos (u ) ′ (arcsen (u ))′ = u 2 1− u ′ (arccos (u ))′ = − u 2 1− u ′ (arctan (u ))′ = u 2 1+ u 2 Reglas de derivación_____________________________________________________________________________________ Apéndice: Algunas funciones hiperbólicas e x − e−x 2 arg senh( x) = ln x + 1 + x 2 senh( x) = e x + e−x 2 arg cosh( x) = ln x + x 2 − 1 cosh ( x ) = 3