Tema 3 Trigonometría elemental plana. 1. Introducción La palabra Trigonometría deriva de las raíces griegas gonios (ángulo) y metron (medida). El prefijo tri se refiere a que las figuras planas geométricas más simples, y además las más utilizadas tanto en los desarrollos teóricos como en muchas aplicaciones, sólo poseen tres ángulos: son los triángulos. En esta lección únicamente se estudiarán triángulos trazados en el plano y con lados rectilíneos. Por tanto, estamos hablando de Trigonometría plana. Fue el matemático Leonhard Euler (1707-1783), quien consideró la Trigonometría plana como una rama independiente de las Matemáticas, desligándola de la Astronomía de posición, que utiliza la Trigonometría esférica para efectuar cálculos sobre las posiciones de los astros en el firmamento. En estricta lógica histórica, la Trigonometría esférica –las conocidas coordenadas geográficas latitud y longitud, que tan habituales son hoy día en las localizaciones mediante GPS, en sus diversas variantes- es anterior a la Trigonometría plana. 2. Ángulos planos y su medida Para comenzar, daremos una definición de ángulo plano, y también indicaremos cómo medirlo. Cuando una semirrecta, sin salir del plano en que está trazada, gira o pivota alrededor de su origen, al que llamaremos vértice del ángulo, se dice que genera, describe o barre un ángulo, cuya magnitud indica cuánto ha girado la semirrecta. La dirección de la semirrecta antes de iniciar su giro define el lado inicial del ángulo, y la que alcanza al terminarlo, su lado final. Si la semirrecta gira en sentido contrario al de las agujas del reloj, el ángulo descrito se considera positivo y si gira en el sentido de las agujas del reloj, negativo (ver la figura adjunta). La definición anterior de ángulo es bastante clara para ángulos “pequeños” y positivos, sin embargo no es operativa en lo relativo a la magnitud, pues no dice cómo hacer corresponder al barrido geométrico un número, su medida. Por ejemplo, el movimiento podría concluir con la posición final de la semirrecta igual a la inicial, con lo que se tendría que una vuelta completa podría interpretarse como un ángulo con medida nula. 41 Como en el presente tema se trabajará con ángulos tanto positivos como negativos y de magnitud arbitraria, se precisa afinar algo más en las definiciones. Supongamos que el vértice de un ángulo ocupa el centro de una circunferencia, y quedémonos sólo con los tramos o segmentos de semirrecta que representan radios de la circunferencia. Podemos llamar ángulo central a esta construcción geométrica. Ahora ya se puede asignar una medida al ángulo central: Es la longitud del arco que une los extremos de los radios que lo definen. Hay dos cuestiones importantes planteadas por esta definición: En primer lugar, usando varias circunferencias concéntricas, la medida del ángulo resultaría diferente al medirla sobre cada circunferencia. Sin embargo, la longitud del arco es proporcional al radio, pues la longitud total de la circunferencia es 2 r , así que tomaremos como medida del ángulo la razón o cociente entre la longitud obtenida y el radio de la circunferencia sobre la que se midió. Así, la medida del ángulo no dependerá del radio de la circunferencia usada en su medición. Éste es un ejemplo de “cantidad adimensional”. Segundo. Si el lado final del ángulo coincidiera con el lado inicial tras una vuelta completa, ya podemos dar a la vuelta completa una medida distinta de cero: Sería la longitud total de la circunferencia, y al dividirla por el radio, 2 r 2 . resultará igual a la cantidad adimensional r Los ángulos cuya medida, según el método anterior, está entre 0 y ángulos agudos, y si entre 2 2 2 , se llaman y , ángulos obtusos. Los ángulos con medidas y , respectivamente, son los ángulos rectos y llanos. La medición de cualquier magnitud necesita una unidad adecuada. Para medir longitudes pueden emplearse metros, yardas, etc, y para medir ángulos se usan habitualmente como unidades el grado y el radián. 42 2.1. Sistema sexagesimal Este método consiste en suponer dividida la circunferencia en 360 partes iguales, los grados, usados para medir ángulos centrales. El grado se subdivide, a su vez, en 60 minutos, y el minuto en 60 segundos. Es habitual encontrar estas medidas en la coordenadas geográficas de los GPS, en expresiones tales como 28 06 '27 '' ( 28 grados, 6 minutos, 27 segundos) 2.2. Sistema circular Este sistema –el más utilizado en las Matemáticas teóricas- toma como unidad el arco cuya longitud sea igual al radio de la circunferencia a la que pertenece. Tal arco se llama radián. Con estas unidades, el ángulo que abarca una circunferencia completa mide 360 ó 2 radianes, como ya se indicó un poco más arriba, aunque sin usar la palabra “radián”. Así pues, los ángulos agudos miden menos de 2 radianes, o bien, menos de 900 , y así sucesivamente. 2.3. Cambios entre ambos sistemas y uso de los mismos Aunque las calculadoras científicas ofrecen la posibilidad de trabajar con los dos sistemas de medida, es conveniente explicitar el cambio de radianes a grados y viceversa. Así, tendremos: 2 radianes 360o 180 1radián 360 2 o 360o 2 radianes 1o 2 radianes radianes 360 180 o Ejemplo: Operaciones con ángulos en el sistema sexagesimal. Sólo hay que tener en cuenta que al operar con minutos o segundos, a veces será necesario tener en cuenta si las cantidades son mayores que 60: Dados los ángulos 53o 20 '31'' y 41o 35' 44'' , calcular: a. 53o 41o 94o 20' 31'' 35' 44'' 55' 75'' 94o 53o 41o 52o 20' 31'' es igual á 35' 44''restando ahora: 41o queda 11o 56' 15'' b. c. 3 3 (53o 15'31'') 159o 45 ' 93 '' 159o 46 ' 33 '' 43 79' 91'' 35' 44'' 44' 47'' Ejemplo: Expresar en radianes los siguientes ángulos: 330º, 1º, 22º 30’ Grados: 330º 1º 22º 30' Radianes: 330 5 76 1 8 73 103 180 180 225 0 3927 180 Ejemplo: Expresar en grados los siguientes ángulos: Radianes: 7 6 20 9 4 1 180 7 180 7 180 20 210o 40o 22918o 18 24o 6 6 9 Ejemplo: Usar fracciones decimales de grados y pasarlas minutos y segundos. Grados : Se tiene que: 32,5o 32 grados y (0,5 60) minutos 32o 30 ' Y también que: 42,51o 42 grados y (0,51 60) minutos 42 grados y 30, 6 minutos 42 grados y 30 minutos y (0, 6 60) segundos 42o 30 '36 '' 3. Dos propiedades fundamentales La primera es que la suma de los tres ángulos de cualquier triángulo plano es 1800 . La demostración se basa en las propiedades de los ángulos determinados por una recta que corta a otras dos rectas paralelas, según se ve en la figura. No insistimos aquí en los detalles, invitando al lector a observar detenidamente el dibujo. La segunda se refiere a que en un triángulo rectángulo (esto es, uno de cuyos 44 ángulos mide 900 ó radianes ), el cuadrado construido sobre la hipotenusa (el 2 mayor de los lados) tiene la misma área que la suma de los cuadrados construidos sobre los otros dos lados (los catetos). El resultado segundo se conoce como Teorema de Pitágoras. Una demostración gráfica viene dada en la figura siguiente, donde h 2 , etc, son las representaciones simbólicas de las áreas de los cuadrados. Esta demostración es de origen chino, y se conocen más de trescientas demostraciones diferentes del Teorema 4. Razones trigonométricas y sus nombres En la práctica basta con estudiar únicamente la medida de ángulos agudos, como se verá más adelante en los ejercicios. Construyamos un ángulo central agudo y mediante un sistema de rectas paralelas perpendiculares al lado inicial formemos varios triángulos rectángulos semejantes, como se ve en la figura de la página siguiente (se llama triángulos semejantes a los que tienen exactamente los mismos ángulos) que permiten establecer las siguientes cadenas de igualdades, definidoras de las razones trigonométricas cuyos nombres figuran entre paréntesis: PM OM OP OM PM OP OP PM OM OP OM PM P M OM OP OM P M OP OP P M OM OP OM P M cateto opuesto hipotenusa sen (seno) cateto adyacente hipotenusa cos (coseno) cateto opuesto cateto adyacente tg (tangente) cateto adyacente cateto opuesto cot (cotangente) hipotenusa cateto adyacente sec (secante) hipotenusa cateto opuesto 45 cosec (cosecante) M’’’ M’’ M’ M O P P’ P’’ P’’’ Se verifica que: Las razones obtenidas dependen sólo del ángulo , y no del triángulo rectángulo concreto usado para su cálculo. Los nombres de las razones son los siguientes: Seno de un ángulo agudo, es la razón entre el cateto opuesto al ángulo y la hipotenusa del triángulo rectángulo formado con dicho ángulo. Coseno, la razón entre el cateto adyacente al ángulo y la hipotenusa. Tangente, la razón entre los catetos opuesto y adyacente del triángulo rectángulo definido por dicho ángulo. Cotangente, el recíproco de la tangente. O sea, 1 . tangente Secante, el recíproco del coseno. Cosecante, el recíproco del seno. 5. Fórmula fundamental de la Trigonometría plana “La suma de los cuadrados del seno y del coseno de un mismo ángulo es igual a la unidad”. c b a En efecto, sea un ángulo agudo cualquiera y formemos un triángulo rectángulo tal como se ve en la figura anterior. Aplicando las definiciones de seno y coseno de un 46 ángulo, se tiene que: sen b c cos a c Elevando al cuadrado ambas igualdades y sumando, quedará: 2 2 2 2 2 sen 2 cos 2 b2 a2 b 2 a c 2 1 c c c c 2 2 sen cos 1 Puede verse que es un caso particular del teorema de Pitágoras. 6. Funciones trigonométricas 6.1. Definiciones Como a cada valor del ángulo le corresponde otro para cada una de las razones indicadas, éstas resultan ser funciones del ángulo , conocidas como funciones trigonométricas o goniométricas. Según la definición de las razones trigonométricas como cocientes de longitudes, parece que siempre deberían ser números positivos. Sin embargo, en la práctica es conveniente que, para indicar las posiciones relativas de puntos y figuras planas, se utilicen también valores negativos para las razones. Dibujando unos ejes de coordenadas y adjudicando un signo a los segmentos trazados sobre ellos a partir del origen, queda dividido el plano en cuatro cuadrantes, habitualmente llamados I, II, III, y IV: II: sen +, cos + seno (vertical) I: sen +, cos + coseno (horizontal) III: sen -, cos - IV: sen -, cos + En la figura se han representado dos ángulos de diferentes cuadrantes con los signos de sus senos y cosenos, de los que se deducen los de las demás razones trigonométricas. También es conveniente saber reconocer el aspecto de las funciones trigonométricas, esto es, cómo varían con el ángulo. Se obtienen las gráficas que se muestran. 47 6.2. Representación gráfica de las funciones trigonométricas sen x , en grados (izq) y radianes (der) -300 -200 1 1 0.5 0.5 0 -100 100 200 x 300 -6 -4 0 -2 -0.5 -0.5 -1 -1 2 x 4 6 cos x , representado en grados (izq) y radianes (der) -300 -200 -100 1 1 0.5 0.5 0 100 200 x -6 300 -4 -2 0 -0.5 -0.5 -1 -1 2 x 4 6 tg x a veces, tan x representada en grados (izq) y radianes (der) -300 -200 -100 30 30 20 20 10 10 0 100 200 x -6 300 -4 -2 0 -10 -10 -20 -20 -30 -30 48 2 x 4 6 4. Aplicaciones: resolver triángulos rectángulos En general, resolver un triángulo es calcular los elementos del mismo (lados y ángulos) cuando se tienen datos suficientes para ello. Notemos que son seis los elementos de un triángulo, y que no es necesario darlos todos para determinar el triángulo. Los casos extremos son: Dados los tres lados, los demás elementos quedan determinados1, mientras que si se dan sólo los tres ángulos2, es imposible determinar los lados. Un triángulo rectángulo queda por completo determinado por dos de sus elementos, siempre que no sean dos ángulos, y para calcular los restantes elementos, será necesario conocer las relaciones que ligan cada elemento desconocido con los datos disponibles. a b c En lo sucesivo representaremos por , , las medidas de los ángulos de un triángulo, y por a, b, c, las medidas de los lados respectivamente opuestos a los ángulos. 1. Por ser complementarios los ángulos agudos de un triángulo rectángulo, tenemos la siguiente relación entre los ángulos: 90o 2. El teorema de Pitágoras nos dará b 2 c 2 a 2 . 3. Como consecuencia inmediata de las definiciones trigonométricas, tenemos: Para el cateto b: sen b o bien b a sen a cos b o bien b a cos a Para el cateto c: sen c esto es c a sen a cos c esto es c a cos a 1 Siempre que satisfagan la condición de que cualquier lado sea menor que la suma de los otros dos y mayor que la diferencia. 2 Han de sumar 180 grados, claro está. 49 Operando un poco más, un cateto resulta ser igual al producto del otro cateto por la tangente de ángulo opuesto al primero (o por la cotangente del ángulo adyacente). Para el cateto b: tan b de donde b c tan c cot b de donde b c cot c Para el cateto c: tan c luego c b tan b cot c luego c b cot b Con las fórmulas halladas se puede resolver un triángulo rectángulo cualquiera, puesto que cada fórmula relaciona a lo sumo tres elementos (dos datos y una incógnita). Pueden presentarse cuatro casos posibles: 1.- Datos: la hipotenusa y un ángulo. Ángulos 90 conocido 90 Lados a conocido b a sen c a cos 2.- Datos: un cateto y un ángulo que no sea el recto. Angulos Lados a b sen conocido b conocido 90 c a cos Angulos Lados a c sen conocido b a sen 90 c conocido 3.- Datos: la hipotenusa y un cateto. Angulos Lados a conocido 90 b a cos sen c , esto es, arcsen c a a 4.- Datos: los dos catetos. 50 c conocido Angulos Lados a b2 c2 tan b arctan b b conocido c c 90 c conocido Ejemplos 1.- Resolver el triángulo rectángulo en el que un ángulo mide 60º y el cateto adyacente a este ángulo mide 4. 60º a b=4 90º c Solución: Basta ver la figura para poder escribir lo que sigue. cateto b cos 60o hipotenusa a 4 0.5 a a 8 cateto c sen 60o hipotenusa a b 0.866 8 b 6.928 y evidentemente, =30º También se podría haber hecho uso del teorema de Pitágoras o bien de la relación, cateto opuesto , para obtener la misma solución. tg 60o cateto adyacente 51 2.- Resolver el triángulo rectángulo si la hipotenusa mide 9 y un cateto mide 4. a=9 b=4 90º c 92 4 2 c 2 Por el teorema de Pitágoras: c 2 81 16 c 65 8.062 Por otro lado b a 4 sen 9 arcsen 0.44 26.38º 90 90 26.38 63.62º sen 52 Complementos al Tema 3 1. Ejercicios propuestos (el lector deberá redactar las soluciones) 1. Una escalera de bomberos mide 20 metros, y su base se coloca a 10 metros de la pared ¿A qué altura quedará apoyada en la pared? X 2 102 202 20 X 2 300 X 300 17.32m 10 2. Se quieren colocar dos postes verticales, uno de 3 metros, y otro de 5 metros, para soportar una rampa con 30º de inclinación ¿A qué distancia x hay que colocar un poste del otro? 30 x 30 sen 30º 0.5 2 h 2 0.5 h4 h cos 30º x 4 x x 3.464 4 O bien directamente con la tangente 2 tg 30º x 2 0.5773 x 2 x 3.464 0.5773 0.866 53 2 3. Dos personas A y B están en el mismo lado de la calle, ésta tiene 12 metros de ancha, y en la acera opuesta hay otra persona C. A ve a C bajo un ángulo de 30 grados, y B ve a C bajo un ángulo de 40 grados. ¿A qué distancia están A y B? C 1 4 3 A 0 0º x 1 x x B 2 tg 30º cat op 12 12 12 0.5773 x1 20.783 cat ady x1 0.5773 x1 tg 40º cat op 12 12 12 0.839 x2 14.302 cat ady x2 0.839 x2 x x1 x2 20.783 14.302 35.085 metros 4. Una rampa de 10 metros forma un ángulo de 6º con el suelo ¿A qué altura del suelo está el otro extremo de la rampa? 10 6º x cateto opuesto hipotenusa x 0.1045 10 x 10 0.1045 1.045 sen 6º 4.- Desde lo alto de un faro de 15 metros de altura situado en una playa, se observa un barco con un ángulo de 2º (es decir, hay que bajar la mirada 2º) ¿A que distancia de la base del faro está el barco? 54 2º 15 2º x tg 2º x cateto opuesto 15 0.0349, cateto adyacente x 15 429.79 metros (algo menos de medio kilómetro) 0.0349 6. Un cable de 8 metros bien tenso sujeta al suelo un poste de 5 metros ¿Qué ángulo forma el cable con el poste? 8 5 α cateto opuesto 5 0, 625 hipotenusa 8 arc sen 0, 625 38, 68º sen 7. Una persona cuyos ojos se encuentran a 1,8 metros de altura, se coloca a 12 metros de la base de un árbol, y ve un pájaro en todo lo alto de la copa del árbol con un ángulo de 40 grados, ¿Cuál es la altura del árbol? tg 40º cateto opuesto x x 0.839 cateto adyacente 12 12 x 40º x 10.068 metros Altura árbol 1.8 10.068 11.868 metros 1.8 12 8. ¿Cuántos metros de valla se necesitan para vallar un terreno con forma de triángulo rectángulo, cuya hipotenusa mide 50 metros, y además uno de los ángulos mide 5 veces lo que el otro? 55 50 α 5·α a b 5 6 90o dan 15º a a 0.2588 dará a 12. hipotenusa 50 b b cos 15o 0.9659, luego b 4 hipotenusa 50 Perímetro 50 12.94 48.29 111.23 metros sen 15o 9. Una duna tiene la forma representada en la figura ¿cuánto mide la base de la duna? 17,7m 25m 45º x1 30º x2 x cateto adyacente x 1 0.7071 hipotenusa 17.7 x1 0.7071 17.7 12.51 metros cos 45º x cateto adyacente 2 0.866 hipotenusa 17.7 x2 0.866 25 21.65 metros cos 30º x x1 x2 12.51 21.65 34.16 metros 10. Para subir a una colina hay que caminar 500 metros (recto hacia arriba). En la cima, para mirar a la base hay que bajar la mirada 30 grados ¿Qué altura tiene la colina? cateto opuesto x 0.5 hipotenusa 500 x 250 metros 30º sen 30º 500 x 30º 11. Un triángulo isósceles es aquél que tiene dos lados iguales. a) Calcular la longitud de los lados iguales de un triángulo isósceles sabiendo que el otro lado mide 24 cms y su ángulo opuesto mide 40º. b) ¿Qué área tiene el triángulo del apartado anterior? 56 Nota: Area = (base · altura) / 2 a ) sen 20º 40º a a a 35.08 cm 20º a cateto opuesto 12 hipotenusa a b) cos 20º a x cateto adyacente x 0.9396 hipotenusa 35.08 x 32.96 cm 12. Se dispone de una plancha de 20 metros de larga para construir una rampa hasta una base×altura 24 32.96 Área 395.52 cm 2 2 2 pared de 2 metros de alta ¿Cuántos grados de inclinación tendrá la rampa? 24 12 20 2 α cateto opuesto 2 0.1 hipotenusa 20 arc sen 0.1 5.73º sen 2. Razones trigonométricas de la suma de dos ángulos En las aplicaciones de las Matemáticas es muy corriente encontrarse con la necesidad de calcular las razones trigonométricas de la suma de dos ángulos. Las dos fórmulas fundamentales, que aquí se presentan sin demostración, son las siguientes: sen ( ) sen cos cos sen cos ( ) cos cos sen sen Es muy común el caso en que , lo que corresponde al cálculo de las razones del ángulo doble de uno dado: sen ( ) sen 2 sen cos cos sen 2sen cos cos ( ) cos 2 cos cos sen sen cos 2 sen 2 Combinando las fórmulas anteriores se pueden obtener expresiones muy interesantes. Como ejemplo, presentaremos el cálculo para obtener la tangente del ángulo doble en función de la tangente del ángulo original: 57 tan 2 sen2 2sen cos cos 2 cos 2 sen 2 Observaremos ahora que 2sen cos (cos sen ) 2 -1 y nos quedará: (cos sen ) 2 -1 tan 2 cos 2 sen 2 Dividamos numerador y denominador por cos 2 , para obtener: 2 1 cos sen (cos sen ) 2 -1 cos cos 2 tan 2 2 2 2 2 cos sen cos sen cos 2 cos 2 Sustituyamos ahora el 1 que aparece en el numerador por sen 2 cos 2 : sen 2 cos 2 1 tan 2 2 1 tan 2 (1 tan ) 2 cos tan 2 2 2 1 tan 1 tan 2 tan 2 tan 1 tan 2 1-tan 2 De modo análogo se pueden calcular las otras razones y, como se ha visto en el proceso recién terminado, es posible expresarlas usando sólo una de ellas. Como aplicación curiosa, usando las fórmulas del ángulo doble se pueden hallar también las razones del ángulo mitad. Bastará con escribir: sen 2sen cos cos 2 2 cos 2 sen 2 2 2 En realidad basta con usar sólo la segunda fórmula combinada con la fórmula fundamental de la Trigonometría para obtener las razones del ángulo mitad: 58 cos cos 2 1 cos 2 2 sen 2 sen 2 2 2 2 Sumando ambas expresiones se tiene: 1+ cos 2 cos 2 2 , de donde se despeja inmediatamente: 1 cos . 2 2 Análogamente, restando las expresiones originales: cos 1 cos . 2 2 Como ejercicio, comprobar la validez de las expresiones obtenidas utilizando los valores dados en las tablas del apéndice (p. ej. para ángulos de 30 y 60 grados, 90 y 45, etc). sen 3. Razones trigonométricas y ángulos complementarios Dado un ángulo agudo cualquiera, su complementario es la diferencia entre él y un ángulo recto. Es fácil ver, y se invita al lector a comprobarlo con el correspondiente gráfico, que el seno del ángulo complementario es igual al coseno del ángulo original, y también que su coseno es el seno del ángulo dado. Estas relaciones se utilizan con mucha frecuencia en Física y en Análisis Matemático. En fórmulas, escritas en radianes: sen ( ) cos 2 cos ( ) sen 2 A veces, se utiliza también el ángulo suplementario que es la diferencia entre un ángulo de 180 grados y el ángulo agudo dado. En este caso hay que considerar que las razones trigonométricas cambian de signo según en qué cuadrante esté ubicado el ángulo de que se trate. Para el caso de un ángulo agudo, su suplementario está en el cuadrante II, y las razones básicas son ahora (de nuevo escritas en radianes): sen ( ) sen cos ( ) cos Como ejercicio, comprobar la validez de las expresiones obtenidas utilizando los valores dados en las tablas del apéndice (p. ej. para ángulos de 30 y 60 grados, 45 y 135, etc). 59 Apéndice: Razones trigonométricas de algunos ángulos comunes sen(0º ) sen(0) 0 0 2 cos(0º ) cos(0) 4 1 2 sen(0) 0 0 cos(0) 1 1 sen(30) 3 tan(30º ) 2 cos(30) 3 3 2 sen(45) tan(45º ) 1 cos(45) tan(0º ) 1 1 sen(30º ) sen 6 2 2 3 cos(30º ) cos 6 2 2 sen(45º ) sen 4 2 2 cos(45º ) cos 4 2 3 sen(60º ) sen 3 2 1 1 cos(60º ) cos 3 2 2 tan(60º ) 3 4 sen(90º ) sen 1 2 2 0 cos(90º ) cos 0 2 2 tan(90º ) Indefinida 2 sen(120º ) 3 2 cos(120º ) cos 3 1 1 tan(120º ) 3 2 2 3 2 3 sen(135º ) sen 4 2 2 3 cos(135º ) cos 4 2 2 tan(135º ) 1 5 sen(150º ) sen 6 1 1 5 cos(150º ) cos 2 2 6 3 2 tan(150º ) 0 0 2 sen(180º ) sen( ) cos(180º ) cos( ) 4 1 2 3 3 tan(180º ) 0 Cuadrantes III y IV 7 1 1 sen(210º ) sen 2 2 6 3 7 cos(210º ) cos 2 6 tan(210º ) 5 sen(225º ) sen 4 2 2 5 cos(225º ) cos 4 2 2 tan(225º ) 1 4 sen(240º ) sen 3 3 2 4 cos(240º ) cos 3 1 1 tan(240º ) 3 2 2 3 sen(270º ) sen 2 4 1 2 3 cos(270º ) cos 2 0 0 2 tan(270º ) Indefinida 5 sen(300º ) sen 3 3 2 5 cos(300º ) cos 3 1 1 2 2 tan(300º ) 3 2 7 sen(315º ) sen 2 4 11 sen(330º ) sen 6 2 7 cos(315º ) cos 4 2 1 1 11 cos(330º ) cos 2 2 6 sen(360º ) sen 2 0 0 2 3 2 cos(360º ) cos 2 60 4 1 2 3 3 tan(315º ) 1 tan(330º ) tan(360º ) 0 3 3