Sesion 5 SAS MCD-MCM-2010

Anuncio
SESIÓN DE APRENDIZAJE N° 5
ESPECIALISTA / CAPACITADOR (A):
TEMA: Máximo Común Divisor y Mínimo Común Múltiplo.
FECHA: 30/ 01/ 10
DURACIÓN: 3 horas
I: ASPECTOS GENERALES
Tipo de Sección
( X)
( )
Introducción al Tema
Aplicación /Adquisición
( X ) Desarrollo del tema
( ) Refuerzo / Socialización
Unidad de Aprendizaje
: Sistema de Numeración Decimal y Propiedades.
Contenidos Mínimos a desarrollar
: Máximo Común Divisor y Mínimo Común Múltiplo.
Ejes transversales
: ( x ) Comprensión Lectora
Aprendizajes esperados
: Discrimina el Máximo Común Divisor del Mínimo Común Múltiplo.
: Aplica el Máximo Común Divisor o el Mínimo Común Múltiplo en la resolución de problemas.
( x ) Educación Inclusiva
( x ) Ética y Valores
II. DESARROLLO DE LA SESIÓN:
SECUENCIA DIDÁCTICA/ESTRATEGIA DE APRENDIZAJE
MATERIALES
DIDACTICOS
TIEMPO
INICIO
Propósito: Generación de interés por aprender - Motivación
Recuperación de saberes previos, problematización
Se les propone solucionar la siguiente situación: ¿Cuáles serán las dimensiones de las baldosas que se utilizarán
para embaldosar el piso de una habitación de 18 y 12 m. de dimensiones, si se desea hacer en el menor tiempo
posible?
Una o dos participantes comparten, con el grupo total, las estrategias que utilizaron para dar solución a lo
planteado.
 Las participantes, A través de una lluvia de ideas, responden: ¿a qué operación refiere el máximo común
divisor? ¿cuándo lo podemos utilizar?
 Se les propone solucionar la siguiente situación: Arturo, Ana y Maritza son primos y deciden visitar a la
Curso: Lógico - Matemático
½ h.
1
abuelita con una frecuencia de 2,3,4 días respectivamente. Si coincidieron en la visita 30 de enero ¿Cuál será
la fecha más próxima que volverán a encontrarse?
Una o dos participantes comparten, con el grupo total, las estrategias que utilizaron para dar solución a lo
planteado.
¿De qué otra manera se pueden resolver las situaciones planteadas?
¿En qué casos utilizamos el MCD y en qué otros el mínimo común múltiplo?
DESARROLLO
Propósito: Construcción del nuevo conocimiento
Adquisición de nueva información, aplicación de lo aprendido y transferencia del aprendizaje.







Siluetas de
cuadrados
Las participantes reciben siluetas de cuadrados de 6, 3 y 2 cm respectivamente, para dar solución a lo
Material
planteado .
impreso.
La capacitadora, a través del modelaje, comparte las estrategias que le ayudaron a dar la solución.
¿Cómo se denomina el algoritmo que permite solucionar la situación?
Reciben calendarios para dar solución a la segunda situación planteada.
Mediante la técnica exegética procesan la información pág 31- 34 analizan los métodos para hallar el MCD y
TICs.
el mcm.
Interpretan los algoritmos del MCM y del MCD.
Identifican los problemas que pueden resolverse utilizando el mínimo común múltiplo o máximo común
divisor. pág 35 y resuelven algunos problemas; la capacitadora asesora el trabajo de los equipos.
1½
hora
CIERRE
Propósito: Consolidación del aprendizaje
En parejas, resuelven 5 problemas de las pag 36, planteados en el material impreso.
Los grupos socializan con el grupo total la solución a la que han arribado.
Curso: Lógico - Matemático
Hoja de Práct.
1:00
hora
2
III. PROCESO DE EVALUACION
INDICADORES
TECNICAS / INSTRUMENTOS
1. Diferencia el Máximo Común Divisor del Mínimo Común Múltiplo Cuestionario: Práctica dirigida
al expresar oralmente.
Metacognición .
2. Aplica el MCD o el MCM al resolver los problemas de la práctica
dirigida.
3. Reflexiona en torno a lo aprendido en clase:
¿Qué estrategia utilizaste para encontrar el MCD o el MCM?
¿Tuviste dificultades para diferenciarlos?, ¿cómo solucionaste dicha
dificultad?
¿Cuál fue la solución del ejercicio que te ocasionó mayor dificultad?,
¿con qué estrategia la superaste?
Indicadores
Descompone en sus factores
primos los números dados
Diferencia el MCD del
MCM
Aplica el MCD o el MCM en
la resolución de problemas
Trabaja cooperativamente
Participantes
(0 – 3)
Curso: Lógico - Matemático
(0 – 3)
(0 -12)
(0 – 2)
3
Descargar