Subido por ljm020880

Matrices 4

Anuncio
16 CAPÍTULO
MATEMÁTICAS SIMPLIFICADAS
2
Determina el valor de x, y, w y z, para que:
6z ⎤ ⎡ −1 2 ⎤
⎡x + y
⎢ 2 w 2 x − 3y ⎥ = ⎢ 6 − 7 ⎥
⎣
⎦ ⎣
⎦
Solución
Las matrices tienen la misma dimensión, al realizar la igualdad de términos se obtiene el siguiente sistema:
⎧ x + y = −1
⎪6 z = 2
⎨2 w = 6
⎪
⎪⎩2 x − 3y = − 7
Al resolver el sistema resulta que x = − 2, y = 1, w = 3 y z =
1
3
EJERCICIO 161
Determina los valores de las incógnitas, para que las matrices sean iguales.
1. ⎡ a 3⎤ = ⎡ 2
⎢4 b⎥
⎢4
⎣
⎦
⎣
3⎤
−1⎦⎥
0⎤ ⎡x + 3 z⎤
⎡ 1
2. ⎢
=
y
+
1
−
1 ⎦⎥ ⎢⎣ 5
−1⎥⎦
⎣
3.
[t + 4
6 − r 2 q + 1] = [6 − t 5 7 − q]
−4 ⎤
⎡ x
⎡7 3 − x ⎤
⎢ 2 − y −1 ⎥
⎥
⎢y
−
1
⎥
⎥ = ⎢
4. ⎢
⎢ 8
⎢8
2⎥
2⎥
⎥
⎢
⎥
⎢
10 ⎦
⎣ 0
⎣ 0 z + 12 ⎦
⁄ Verifica tus resultados en la sección de soluciones correspondiente
Multiplicación por un escalar
Sea A = (aij) una matriz de orden m × n y λ un número real, entonces λA = (λaij) es decir, si:
⎡ a11
⎢a
⎢ 21
A = ⎢ a31
⎢
⎢ .
⎢⎣ am1
a12
a22
a32
a13
a23
a33
.
am 2
.
am 3
... a1n ⎤
... a2 n ⎥⎥
... a3n ⎥ entonces λ A =
⎥
.
. ⎥
... amn ⎦⎥
⎡ λ a11
⎢ λa
⎢ 21
⎢ λ a31
⎢
⎢ .
⎢⎣ λ am1
λ a12
λ a22
λ a32
.
λ am 2
λ a13
λ a23
λ a33
.
λ am 3
...
...
...
.
...
λ a1n ⎤
λ a2 n ⎥⎥
λ a3 n ⎥
⎥
. ⎥
λ amn ⎦⎥
www.FreeLibros.org
Esta nueva matriz también recibe el nombre de matriz escalar.
608
CAPÍTULO 16
ÁLGEBRA • Matrices
Ejemplos
EJEMPLOS
1
⎡ 2 −1 ⎤
⎢4 6 ⎥
⎥ determina 3A.
Si A = ⎢
⎢ 0 −2 ⎥
⎢1
3 ⎦⎥
⎣
Solución
El escalar 3 se multiplica por cada uno de los elementos de la matriz.
⎡ 3( 2 )
⎡ 2 −1 ⎤
⎢
⎢4 6 ⎥
3 4
⎥ = ⎢ ( )
3A = ⎢
⎢ 3( 0 )
⎢ 0 −2 ⎥
⎢
⎢1
3 ⎦⎥
⎣
⎣ 3(1)
3( − 1) ⎤
⎡ 6 −3⎤
⎥
⎢ 12 18 ⎥
3( 6 ) ⎥
⎥
= ⎢
3( − 2 ) ⎥
⎢ 0 −6 ⎥
⎥
⎢ 3
9 ⎦⎥
3( 3) ⎦
⎣
⎡ 6 −3⎤
⎢ 12 18 ⎥
⎥
Por consiguiente, 3A = ⎢
⎢ 0 −6 ⎥
⎢ 3
9 ⎦⎥
⎣
2
⎡6 − 3 4 ⎤
1
Si B = ⎢
⎥ encuentra 2 B.
5
−
2
1
⎣
⎦
Solución
El escalar
1
multiplica a cada uno de los términos de la matriz.
2
1
⎡1
⎡ 6 − 3 4 ⎤ ⎢ 2 ( 6 ) 2 ( − 3)
1
1
B=
= ⎢
⎥ ⎢
1
2
2
⎣5 − 2 1 ⎦ ⎢ 1
(5) (− 2)
⎢⎣ 2
2
1
( 4 )⎤⎥ ⎡⎢ 3 − 3 2 ⎤⎥
2
2
⎥ = ⎢
5
1 ⎥
1 ⎥
⎢
−
(1) ⎥ ⎣ 2 1 2 ⎦⎥
2 ⎦
3
⎡
⎤
⎢3 −2 2 ⎥
1
Por tanto, B = ⎢
5
1 ⎥
2
⎢
⎥
−1
⎣2
2 ⎦
Suma
Sean A = (aij) y B = (bij) dos matrices de orden m × n, la suma de A y B está determinada por:
A + B = (aij) + (bij)
Donde A + B es la matriz de orden m × n que resulta de sumar los elementos correspondientes.
Ejemplos
EJEMPLOS
1
Determina A + B para las matrices:
⎡ 3 6⎤
A = ⎢⎢ 2 4 ⎥⎥ y B =
⎣⎢ −1 0 ⎦⎥
⎡ 2 −1 ⎤
⎢ 6 −7 ⎥
⎢
⎥
⎢⎣ 4 0 ⎦⎥
www.FreeLibros.org
Determina A + B
609
16 CAPÍTULO
MATEMÁTICAS SIMPLIFICADAS
Solución
Las matrices tienen el mismo orden, en este caso, 3 × 2, entonces la suma se puede realizar; la definición indica que
cada término de la primera matriz se suma con los términos correspondientes de la segunda matriz, es decir, se suman
a11 + b11, a12 + b12, a21 + b21, …, a31 + b31,
⎡ 3 + 2 6 + ( −1) ⎤
⎡5 5 ⎤
⎡ 3 6 ⎤ ⎡ 2 −1 ⎤
⎥
⎢
⎢
⎥
⎢
⎥
A + B = ⎢ 2 4 ⎥ + ⎢ 6 −7 ⎥ = ⎢ 2 + 6 4 + ( −7 ) ⎥ = ⎢⎢ 8 −3⎥⎥
⎢⎣ −1 + 4
⎢⎣ 3 0 ⎦⎥
⎢⎣ −1 0 ⎦⎥ ⎢⎣ 4 0 ⎦⎥
0 + 0 ⎦⎥
⎡5 5 ⎤
Por tanto, A + B = ⎢⎢ 8 −3⎥⎥
⎢⎣ 3 0 ⎦⎥
2
Sean las matrices:
⎡ 5 −2 6 −3 ⎤
⎡ −1 − 4 8 − 5 ⎤
C= ⎢
⎥ yD= ⎢ 6
−
2
8
−
7
8
2 1 − 7 ⎥⎦
⎣
⎦
⎣
Determina 3C + 2D
Solución
Se determina cada matriz escalar:
⎡ 3( 5 )
3( − 2 ) 3( 6 ) 3( − 3) ⎤
18 − 9 ⎤
⎡ 15 − 6
3C = ⎢
⎥ = ⎢ − 6 24 − 21 24 ⎥
−
−
2
3
8
3
7
3
8
3
(
)
(
)
(
)
(
)
⎣
⎦
⎣
⎦
⎡ 2 ( − 1) 2 ( − 4 ) 2 ( 8 ) 2 ( − 5 ) ⎤
⎡ − 2 − 8 16 − 10 ⎤
2D = ⎢
⎥ = ⎢ 12 4 2 − 14 ⎥
−
2
6
2
2
2
1
2
7
(
)
(
)
(
)
(
)
⎣
⎦
⎣
⎦
Las matrices tienen el mismo orden, 2 × 4, al sumar se obtiene:
18 − 9 ⎤
34 − 19 ⎤
⎡ − 2 − 8 16 − 10 ⎤ ⎡13 − 14
⎡ 15 − 6
+ ⎢
3C + 2D = ⎢
=
⎣ 12 4 2 − 14 ⎥⎦ ⎢⎣ 6 28 − 19 10 ⎥⎦
⎣ − 6 24 − 21 24 ⎥⎦
34 − 19 ⎤
⎡13 − 14
Finalmente, 3C + 2D = ⎢
⎣ 6 28 − 19 10 ⎥⎦
Inverso aditivo
El inverso aditivo de una matriz A de orden m × n es − A.
Si A = (aij), entonces − A = (− aij), es decir, el inverso aditivo de una matriz se obtiene al multiplicar cada elemento
por el escalar − 1, en otras palabras, el inverso aditivo de una matriz A es otra matriz − A, tal que A + ( − A ) = 0, donde
0 es la matriz cero o nula.
Ejemplo
−1 0 ⎤
⎡ 2
⎡− 3 − 5 ⎤
⎢ − 4 5 7 ⎥ , determina − A, − B y verifica que A + (− A) = 0.
Si A = ⎢
y
B
=
⎥
⎢
⎥
⎣ 7 − 2⎦
⎢⎣ − 10 1 3 ⎦⎥
www.FreeLibros.org
610
CAPÍTULO 16
ÁLGEBRA • Matrices
Solución
Se obtiene la matriz inverso aditivo de la matriz A y B.
⎡ − 1( − 3) − 1( − 5 ) ⎤ ⎡ 3 5 ⎤
⎡− 3 − 5 ⎤
⎡− 3 − 5 ⎤
A= ⎢
⎥ → − A = ( − 1) ⎢ 7 − 2 ⎥ → − A = ⎢ − 1( 7 ) − 1 − 2 ⎥ = ⎢ − 7 2 ⎥
−
7
2
( )⎦ ⎣
⎣
⎣
⎦
⎦
⎦
⎣
−1 0 ⎤
−1 0 ⎤
⎡ 2
⎡ 2
B = ⎢⎢ − 4 5 7 ⎥⎥ → − B = ( − 1) ⎢⎢ − 4 5 7 ⎥⎥ → − B =
⎢⎣ − 10 1 3 ⎥⎦
⎢⎣ − 10 1 3 ⎥⎦
1
0⎤
⎡− 2
⎢ 4 − 5 − 7⎥
⎢
⎥
⎢⎣ 10 − 1 − 3 ⎥⎦
Se realiza la operación A + (− A)
⎡− 3 − 5 ⎤
⎡0 0 ⎤
⎡ 3 5 ⎤ ⎡− 3 + 3 − 5 + 5 ⎤
A + (− A) = ⎢
⎥ + ⎢− 7 2 ⎥ = ⎢ 7 − 7 − 2 + 2 ⎥ = ⎢0 0 ⎥
−
7
2
⎣
⎦
⎦
⎣
⎣
⎦
⎦ ⎣
0⎤
1
⎡− 2
⎡ 3 5⎤
⎢ 4 − 5 − 7 ⎥ y A + (− A) = 0
Por tanto, − A = ⎢
,
−
B
=
⎥
⎢
⎥
⎣− 7 2 ⎦
⎢⎣ 10 − 1 − 3 ⎥⎦
Resta
La diferencia o resta de dos matrices m × n, se define:
A − B = A + (− B)
Donde − B es el inverso aditivo de B.
Ejemplos
EJEMPLOS
1
Encuentra A − B si
⎡2 − 4 ⎤
⎡2 − 5 ⎤
A= ⎢
yB= ⎢
⎣1 5 ⎦⎥
⎣ 4 2 ⎦⎥
Solución
Para determinar la resta, la segunda matriz se multiplica por el escalar − 1, entonces la nueva matriz se suma con la
primera y queda como resultado:
⎡2 − 4 ⎤
⎡2 − 5 ⎤
⎡2 − 4 ⎤
⎡2 − 5 ⎤
A − B = A + (− B) ⎢
− ⎢
= ⎢
+ (− 1) ⎢
⎥
⎥
⎥
1
5
4
2
1
5
⎣
⎦
⎣
⎦
⎣
⎦
⎣ 4 2 ⎦⎥
⎡ −2
2 − 4⎤
= ⎡⎢
⎥ + ⎢
⎣1
5 ⎦
5 ⎤ ⎡ 0 1⎤
=
−
−
4
2 ⎥⎦ ⎢⎣ −3 3⎥⎦
⎣
⎡ 0 1⎤
Por consiguiente, A − B = ⎢
⎥
⎣ −3 3⎦
2
⎡− 3 1⎤
Sean las matrices M = ⎢ 4 5 ⎥ y N =
⎢ 0 1⎥
⎦
⎣
⎡ 2 − 4⎤
⎢−1
0 ⎥ , determinar 3M − 2N.
⎢ 0
3 ⎦⎥
⎣
Solución
La operación 3M − 2N se puede expresar como en 3M + (− 2N), se obtienen las matrices escalares y finalmente se
suman.
⎡ − 9 3⎤
3M = ⎢ 12 15 ⎥
⎢0 3⎥
⎦
⎣
8⎤
⎡− 4
0⎥
y − 2N = ⎢ 2
⎢ 0 −6 ⎥
⎦
⎣
www.FreeLibros.org
611
(continúa)
16 CAPÍTULO
MATEMÁTICAS SIMPLIFICADAS
(continuación)
Entonces,
8 ⎤ ⎡ − 9 − 4 3 + 8 ⎤ ⎡ − 13 11⎤
⎡− 4
⎡ − 9 3⎤
0 ⎥ = ⎢ 12 + 2 15 + 0 ⎥ = ⎢ 14 15 ⎥
3M − 2N = 3M + (− 2N) = ⎢ 12 15 ⎥ + ⎢ 2
⎢ 0 − 6 ⎥ ⎢ 0 + 0 3− 6 ⎥ ⎢ 0 − 3 ⎥
⎢0 3⎥
⎦ ⎣
⎦ ⎣
⎦
⎣
⎦
⎣
⎡ − 13 11⎤
Finalmente, 3M − 2N es ⎢ 14 15 ⎥
⎢ 0 −3 ⎥
⎦
⎣
3
Dada la siguiente igualdad:
⎡ m + 2 n ⎤ ⎡ m − 2 − n ⎤ ⎡10 8 ⎤
3 ⎢
−
=
, determina el valor de las incógnitas.
4 ⎥⎦ ⎢⎣ y
5 ⎥⎦ ⎢⎣ 3 7 ⎦⎥
⎣ 1
Solución
Se realizan las operaciones indicadas.
⎡ m + 2 n ⎤ ⎡ m − 2 − n ⎤ ⎡ 3( m + 2 ) − ( m − 2 ) 3n − (− n ) ⎤
⎡ 2m + 8 4n ⎤
3 ⎢
⎥ = ⎢ 3− y 7 ⎥
⎥ − ⎢ y
⎥ = ⎢
−
−
y
4
5
3
3
1
1
4
5
(
)
(
)
⎣
⎦
⎣
⎦ ⎣
⎦ ⎣
⎦
⎡10 8 ⎤
⎡ 2m + 8 4n ⎤
= ⎢
Luego, ⎢
⎥
⎥
3
−
y
7
⎣
⎦
⎣ 3 7⎦
Los términos resultantes se igualan con los términos correspondientes de la matriz del segundo miembro, y se
obtiene el siguiente sistema de ecuaciones:
⎧2m + 8 = 10
⎪
⎨ 4n = 8
⎩⎪ 3–y = 3
Al resolver el sistema se obtienen los siguientes valores: y = 0, m = 1 y n = 2
EJERCICIO 162
Para las siguientes matrices, efectúa A + B, A − B, A − A, 4A − 3B y 2A − 0B
⎡ −3 1 ⎤
⎡ −3 1 ⎤
1. A = ⎢
,B= ⎢
⎥
⎥
⎣ 0 2⎦
⎣ 0 2⎦
⎡ 1 −6
⎡ 2 − 3 −1 ⎤
4. A = ⎢
,B= ⎢
⎥
4
6
−
1
⎣ −3 2
⎣
⎦
2. A = [ 2 0 1 ], B= [ − 6 7 3 ]
⎡ 2 −7 ⎤
3. A = ⎢ 1
0 ⎥, B =
⎢ 2 −3 ⎥
⎦
⎣
⎡2
⎢5
⎢
5. A = ⎢ 0
⎢
⎢7
⎣
⎡ −4 5 ⎤
⎢ 2 −6 ⎥
⎢ 1
7 ⎥⎦
⎣
5
3
1
5
1⎤
8⎥
⎥
2 ⎥, B =
⎥
0⎥
⎦
4 ⎤
7 ⎦⎥
1
⎤
⎡
0⎥
⎢−1
3
⎥
⎢
⎢ 1 −5
8⎥
⎥
⎢ 3
⎥
⎢2
4
3
⎢
− ⎥
⎢⎣ 3
5
2 ⎥⎦
En las siguientes igualdades, determina el valor de las incógnitas.
w⎤
5
⎡a − 7
⎡ 6 7 −w ⎤
⎡ 3 b − 1 −4 ⎤
6. ⎢
+2 ⎢
= ⎢
⎥
⎥
⎥
0⎦
⎣v − 4 1 − c d ⎦
⎣ −1 −7 5 ⎦
⎣ − v −3
www.FreeLibros.org
612
CAPÍTULO 16
ÁLGEBRA • Matrices
1 ⎤
⎡x + 1
⎢
7. 2 ⎢ 5
0 ⎥⎥ − 3
⎢⎣ 3 1 − w ⎥⎦
n⎤
⎡ 2 8 − n⎤
⎡ 2
⎢ y − 1 −2 ⎥ = ⎢ −5
6 ⎥⎥
⎢
⎢
⎥
⎢⎣ 0
⎢⎣ 2
− w ⎥⎦
4 ⎦⎥
2⎤
⎡ x −4
⎡ 1 − w 3⎤
⎡ 4 − 2 5⎤
⎥
⎥
⎢
⎢
8. ⎢11
1 ⎥ = ⎢⎢10 10 13⎥⎥
9 12 ⎥ + ⎢ − 1 z − 1
⎢⎣ − 1 3 − 4 ⎥⎦
⎢⎣ y − 7 2 v ⎥⎦
⎢⎣ 6 − 4 v ⎥⎦
⁄ Verifica tus resultados en la sección de soluciones correspondiente
Multiplicación
Sea A = (aij) una matriz de orden m × n, y B = (bij) una matriz de orden n × p, la multiplicación AB da como resultado
la matriz C = (cij) de orden m × p, tal que
cij = ai1b1j + ai2b2j + ..... + ainbnj
Para:
i = 1, 2, 3, 4,..., m;
j = 1, 2, 3, 4,..., n
El número de columnas de la matriz A, es igual al número de renglones de la matriz B.
Matriz A
Matriz B
m×n
n×p
igual
Tamaño de AB es m × p
Ejemplos
Matriz A
Matriz B
Matriz AB
2×3
3×4
2×4
1×2
2×3
1×3
5×4
4×2
5×2
3×1
3×1
No definida
Ejemplos
EJEMPLOS
1
Realiza la multiplicación de las siguientes matrices:
⎡2 3⎤
A= ⎢
⎥ yB=
⎣5 4 ⎦
⎡ 2 0 3⎤
⎢ −1 1 5 ⎥
⎣
⎦
Solución
A es una matriz de 2 × 2 y B de 2 × 3, por tanto, la multiplicación se puede realizar. Al aplicar la definición se procede
de la siguiente manera: se multiplica el primer renglón por cada una de las columnas de la segunda matriz.
⎡ 2 ( 2 ) + 3( −1) 2 ( 0 ) + 3(1) 2 ( 3) + 3( 5 ) ⎤ ⎡ 1 3 21⎤
⎡ 2 3 ⎤ ⎡ 2 0 3⎤
AB = ⎢
⎥ = ⎢
⎥ ⎢ −1 1 5 ⎥ = ⎢
5
4
⎦⎥
⎣
⎦
⎦ ⎣
⎣
⎦ ⎣
Se realiza la misma operación con el segundo renglón.
⎡
⎤ ⎡
⎡ 2 3 ⎤ ⎡ 2 0 3⎤
⎤
AB = ⎢
= ⎢
⎥ = ⎢
⎢
⎥
⎥
⎥
⎣ 5 4 ⎦ ⎣ −1 1 5 ⎦
⎣ 5 ( 2 ) + 4 ( −1) 5 ( 0 ) + 4 (1) 5 ( 3) + 4 ( 5 ) ⎦ ⎣ 6 4 35 ⎦
www.FreeLibros.org
(continúa)
613
16 CAPÍTULO
MATEMÁTICAS SIMPLIFICADAS
(continuación)
Finalmente, se unen los resultados para obtener la matriz AB,
⎡ 1 3 21 ⎤
AB = ⎢
⎥
⎣ 6 4 35 ⎦
Su orden es de 2 × 3
2
⎡ 3 1 −1⎤
Determina R2 si R = ⎢⎢ 0 4 2 ⎥⎥ .
⎢⎣ −2 1 0 ⎥⎦
Solución
Se transforma R2 en R2 = RR; esto es posible si R es una matriz cuadrada y se procede a realizar las operaciones
indicadas en el ejemplo anterior.
⎡ 3 1 −1⎤ ⎡ 3 1 −1⎤
R = ⎢⎢ 0 4 2 ⎥⎥ ⎢⎢ 0 4 2 ⎥⎥
⎢⎣ −2 1 0 ⎥⎦ ⎢⎣ −2 1 0 ⎦⎥
2
⎡ 3( 3) + 1( 0 ) − 1( −2 )
⎢
= ⎢ 0 ( 3) + 4 ( 0 ) + 2 ( −2 )
⎢⎣ −2 ( 3) + 1( 0 ) + 0 ( −2 )
3(1) + 1( 4 ) − 1(1)
0 (1) + 4 ( 4 ) + 2 (1)
−2 (1) + 1( 4 ) + 0 (1)
⎡ 11 6 −1⎤
= ⎢⎢ −4 18 8 ⎥⎥ entonces R2 =
⎢⎣ −6 2 4 ⎦⎥
3( −1) + 1( 2 ) − 1( 0 ) ⎤
⎥
0 ( −1) + 4 ( 2 ) + 2 ( 0 ) ⎥
−2 ( −1) + 1( 2 ) + 0 ( 0 ) ⎦⎥
⎡ 11 6 −1⎤
⎢ −4 18 8 ⎥
⎢
⎥
⎢⎣ −6 2 4 ⎥⎦
Propiedades de las matrices
Sean las matrices P, Q, R de orden m × n, O la matriz nula de m × n, I la matriz identidad y r, s escalares, entonces:
Propiedades
Conmutativa de la suma
P+Q=Q+P
Asociativa de la suma
P+(Q+R)=(P+Q)+R
Identidad de la suma
P+O=O+P=P
Distributiva izquierda
r (P + Q ) = rP + rQ
Distributiva derecha
(r + s ) P = r P + s P
Inverso aditivo
P+(−P)=O
Asociativa de la multiplicación de escalares
(r⋅s)P=r(sP)
Asociativa de la multiplicación
P ( QR ) = ( PQ ) R
Identidad de la multiplicación
IP = PI = P
Distributiva por la izquierda
P( Q + R ) = PQ + PR
www.FreeLibros.org
( Q + R )P = QP + RP
Distributiva por la derecha
614
CAPÍTULO 16
ÁLGEBRA • Matrices
EJERCICIO 163
Para las siguientes matrices determina AB, BA, A(B − 2C) y A(BC), en caso de ser posible.
⎡ 1⎤
1. A = [ 5 7 ] y B = ⎢ ⎥
⎣ − 1⎦
⎡4 2⎤
⎡ −1 0 ⎤
5. A = ⎢
yB= ⎢
⎥
⎥
⎣0 1⎦
⎣ −2 −4 ⎦
⎡ 2 −1⎤
2. A = [ 3 0 −1] y B = ⎢⎢ 0 2 ⎥⎥
⎣⎢ 1 2 ⎦⎥
5⎤
⎡3
⎡−1 − 4 ⎤
6. A = ⎢
⎥ yB= ⎢ 3
−
1
−
2
1 ⎥⎦
⎣
⎦
⎣
⎡ 4 −1⎤
3. A = ⎢⎢ 1 0 ⎥⎥ y B =
⎢⎣ −3 2 ⎦⎥
⎡ 1 2 3⎤
4. A = ⎢
⎥ yB=
⎣3 2 1⎦
⎡ 0 −1 −2 ⎤
⎢ −2 0 −1 ⎥
⎢
⎥
⎢⎣ −1 −2 0 ⎥⎦
⎡ 5 4 3⎤
7. A = ⎢
⎥,B=
⎣2 1 0 ⎦
⎡ 0 −1 −2 ⎤
⎢ −2 0 −1 ⎥
⎢
⎥
⎢⎣ −1 −2 0 ⎦⎥
⎡ 0 2⎤
⎢ −1 3 ⎥ y C =
⎢
⎥
⎢⎣ 1 1 ⎦⎥
⎡1 2 ⎤
⎢3 4 ⎥
⎣
⎦
⎡3 1 ⎤
⎡3 1⎤
⎡1 0 ⎤
8. A = ⎢⎢ 2 −1⎥⎥ , B = ⎢
yC= ⎢
⎥
⎥
⎣2 0 ⎦
⎣ 2 −1⎦
⎢⎣ 0 1 ⎦⎥
⁄ Verifica tus resultados en la sección de soluciones correspondiente
Determinantes
El determinante de una matriz A de orden n, es un número escalar que se relaciona con la matriz, mediante una regla
de operación. Denotada por detA = A
Sea la matriz de orden 2
⎡a a ⎤
A = ⎢ 11 12 ⎥
⎣ a21 a22 ⎦
El determinante de A está dado por:
Por tanto,
(−)
a11 a12
= a11 ⋅ a22 − a12 ⋅ a21
a21 a22
(+)
detA =
a11 a12
= a11 ⋅ a22 − a12 ⋅ a21
a21 a22
Ejemplo
Evalúa el determinante de la matriz:
⎡ 41⎤
A= ⎢
⎣ − 2 5 ⎦⎥
Solución
Cada elemento de la matriz se sustituye en la fórmula y se realizan las operaciones.
detA =
41
= ( 4 )( 5 ) − ( − 2 )( 1 ) 20 + 2 = 22
−2 5
www.FreeLibros.org
Finalmente, el detA = 22
615
16 CAPÍTULO
MATEMÁTICAS SIMPLIFICADAS
Sea la matriz de orden 3
⎡ a11 a12 a13 ⎤
A = ⎢ a21 a22 a23 ⎥
⎢a a a ⎥
⎣ 31 32 33 ⎦
Se escribe el determinante de 3 × 3, para resolverlo se repiten los dos primeros renglones y se multiplican las
entradas en diagonal como se indica:
(−)
a11 a12 a13 ( − )
⎡ a11 a12 a13 ⎤ a21 a22 a23
(−)
det ( A) = ⎢ a21 a22 a23 ⎥ = a31 a32 a33
⎢a a a ⎥ a a a
⎣ 31 32 33 ⎦
11 12 13
(+)
a21 a22 a23
(+)
(+)
Por tanto, el determinante es:
detA = ( a11 ⋅ a22 ⋅ a33 + a21 ⋅ a32 ⋅ a13 + a31 ⋅ a12 ⋅ a23 ) − ( a21 ⋅ a12 ⋅ a33 + a11 ⋅ a32 ⋅ a23 + a31 ⋅ a22 ⋅ a13 )
detA = a11 ⋅ a22 ⋅ a33 + a21 ⋅ a32 ⋅ a13 + a31 ⋅ a12 ⋅ a23 − a21 ⋅ a12 ⋅ a33 − a11 ⋅ a32 ⋅ a23 − a31 ⋅ a22 ⋅ a13
Ejemplo
El determinante de la matriz B, es:
⎡ 2 −1 0 ⎤
B = ⎢ −2 3 4 ⎥
⎢ −5 1 6 ⎥
⎦
⎣
Solución
Se forma el siguiente arreglo: se aumentan los dos primeros renglones del determinante, como se indica, después se
procede a sustituir los términos en la fórmula y se realizan las operaciones indicadas en la fórmula.
(−)
(
−)
2 −1 0
(
−
)
−2 3 4
det ( B ) = − 5 1 6
2 −1 0
−2 3 4
(+)
(+)
(+)
Por consiguiente, el determinante es:
det B = ( 2 )( 3)( 6 ) + ( − 2 )( 1) ( 0 ) + ( −5 ) ( − 1) ( 4 ) − ( − 2 ) ( − 1) ( 6 ) − ( 2 )(1)( 4 ) − ( − 5 ) ( 3)( 0 )
= 36 + 0 + 20 − 12 − 8 − 0 = 36
En consecuencia, el detB = 36
Propiedades
1. Si se intercambian dos renglones de una matriz A de orden n, el determinante de la matriz resultante es:
detA = − detA
2. Si son cero todos los elementos de un renglón o columna de una matriz A de orden n, entonces
detA = 0
3. Si 2 renglones son iguales de una matriz A de orden n, entonces
detA = 0
4. Si se tiene una matriz A de orden n, ya sea matriz triangular superior o inferior, entonces
www.FreeLibros.org
detA = producto de los elementos de la diagonal principal
616
CAPÍTULO 16
ÁLGEBRA • Matrices
5. Si un renglón de una matriz se multiplica por un escalar λ , entonces
detA = λ detA
6. Si A y B son matrices de orden n, entonces
detAB = detA detB
Ejemplos
EJEMPLOS
1
⎡ 1 − 3⎤
Verifica la propiedad 2 si A = ⎢
⎥.
⎣0 0 ⎦
Solución
Se observa que en uno de los renglones de la matriz todos son ceros, luego se procede a encontrar el determinante de
la matriz A
(−)
1 −3
detA =
= ( 1 )( 0 ) − ( 0 ) ( − 3 ) = 0 − 0 = 0
0 0
(+)
Finalmente, el detA = 0, y se verifica la propiedad 2
2
⎡5 1 ⎤
Verifica la propiedad 4 si A = ⎢
⎥.
⎣0 4 ⎦
Solución
Se observa que la matriz es triangular superior, entonces el producto de la diagonal principal es:
( 5 )( 4 ) = 20
Luego, se procede a hallar el determinante de la matriz A
(−)
5 1
detA =
= ( 5 )( 4 ) − ( 0 )(1 ) = 20 − 0 = 20
0 4
(+)
Por tanto, detA = ( 5 )( 4 ) = 20
Finalmente, se verifica la propiedad 4
3
⎡1 3 2⎤
Verifica que el detA = 0 si A = ⎢ 2 3 4 ⎥ .
⎢1 3 2⎥
⎦
⎣
Solución
1
2
detA = 1
1
2
3
3
3
3
3
2
4
2
2
4
(−)
(−)
(−)
(+)
(+)
(+)
det A = (1)( 3)( 2 ) + ( 2 )( 3)( 2 ) + (1)( 3)( 4 ) − ( 2 )( 3)( 2 ) − (1) ( 3)( 4 ) − (1)( 3)( 2 )
= 6 + 12 + 12 − 12 − 12 − 6 = 0
Por consiguiente,
detA = 0
www.FreeLibros.org
617
16 CAPÍTULO
MATEMÁTICAS SIMPLIFICADAS
EJERCICIO 164
Encuentra el determinante de las siguientes matrices:
⎡ 2 −3⎤
1. A = ⎢
⎣ 4 5 ⎦⎥
⎡−2 6⎤
2. B = ⎢
⎣ 1 − 7 ⎥⎦
⎡ 3 −1 8 ⎤
4. E = ⎢ 5 6 4 ⎥
⎢ 0 4 −3⎥
⎦
⎣
⎡ 0 5⎤
3. C = ⎢
⎣ 10 − 4 ⎦⎥
⎡ − 2 − 5 −1 ⎤
5. D = ⎢ − 4 − 1 − 3 ⎥
⎢ 1 0 −6 ⎥
⎦
⎣
⁄ Verifica tus resultados en la sección de soluciones correspondiente
Matriz inversa
Dada una matriz cuadrada P de orden n, si existe una matriz Q tal que:
PQ = QP = In
Entonces, se dice que la matriz Q es la matriz inversa de P y se denota P −1, de tal forma que:
P P −1 = P −1P = In
Donde:
In: Matriz identidad de orden n
Para que exista la inversa de la matriz P es necesario que la matriz sea cuadrada y el detP ≠ 0
Método de Gauss-Jordan
Se utiliza la matriz aumentada, la cual se obtiene al unir la matriz cuadrada de orden n con la matriz identidad In;
una vez aumentada la matriz, por medio de operaciones elementales, se obtiene otra matriz.
¨ P
©P
© © M
©
ª PN P
P
M
PN PN
P N
K M
·
¨ Q
© Q
¸¸
~ ©
©M M K M M
M M K M¸
¸
©
¹
ª QN
PNN
Q QN ·
Q Q N ¸¸
M K M ¸
¸
QN QNN ¹
Si en el proceso algún elemento de la diagonal principal es cero, entonces la matriz no tiene inversa.
Ejemplos
EJEMPLOS
1
⎡2 1 ⎤
Obtén R −1, si R = ⎢
⎥.
⎣ 1 −3⎦
Solución
Se aumenta la matriz y se efectúan las operaciones indicadas:
⎡2 1 1 0 ⎤
⎢ 1 −3 0 1 ⎥
⎣
⎦ R2 ↔ R1
~
3 1⎤
⎡7 0
⎢ 0 −7 −1 2 ⎥ R
⎣
⎦ 1 → R1
~
~
⎡ 1 −3 0 1 ⎤
⎢2 1 1 0 ⎥
⎣
⎦ 2 R1 − R2 → R2
3 1⎤
⎡
⎢1 0 7 7 ⎥
⎢
⎥
⎣ 0 −7 −1 2 ⎦ − R2 → R2
~
⎡ 1 −3 0 1 ⎤
⎢ 0 −7 −1 2 ⎥
⎣
⎦ 7 R1 − 3 R2 → R1
~
⎡
⎢1 0
⎢
⎢0 1
⎢⎣
3
7
1
7
1 ⎤
7 ⎥
⎥
2
− ⎥
7 ⎥⎦
www.FreeLibros.org
7
7
618
CAPÍTULO 16
ÁLGEBRA • Matrices
Por tanto, R
2
−1
⎡3
⎢7
= ⎢
⎢1
⎢⎣ 7
1 ⎤
1 ⎡3 1 ⎤
7 ⎥
⎥ = ⎢
2⎥
7 ⎣1 −2 ⎦⎥
−
7 ⎦⎥
⎡ 1 2 −1⎤
Determina B si B = ⎢⎢ 2 1 0 ⎥⎥ .
⎢⎣ 4 −2 3 ⎥⎦
−1
Solución
⎡ 1 2 −1 1 0 0 ⎤
⎢2 1 0 0 1 0⎥
⎢
⎥
⎢⎣ 4 −2 3 0 0 1 ⎥⎦ 2 R − R → R
1
2
2 −1 1 0 0 ⎤
3 −2 2 −1 0 ⎥⎥
⎢⎣ 4 −2 3 0 0 1 ⎥⎦ 4 R − R → R
1
3
3
⎡1
~ ⎢⎢ 0
2
⎡ 1 2 −1 1 0 0 ⎤
⎢ 0 3 −2 2 −1 0 ⎥
⎢
⎥
⎢⎣ 0 10 −7 4 0 −1⎥⎦10 R − 3 R → R
2
3
3
~ ⎢⎢0
0 0⎤
⎡ 1 2 −1 1
⎢ 0 3 0 18 −21 6 ⎥
⎢
⎥
⎢⎣ 0 0 1 8 −10 3 ⎥⎦ 1 R → R
2
2
~
⎡ 1 2 −1 1 0 0 ⎤
⎢ 0 1 0 6 −7 2 ⎥
⎢
⎥
⎢⎣ 0 0 1 8 −10 3 ⎥⎦ R + R → R
1
3
1
⎡ 1 2 0 9 −10 3 ⎤
⎢ 0 1 0 6 −7 2 ⎥
⎢
⎥
⎢⎣ 0 0 1 8 −10 3 ⎥⎦ R − 2 R → R
1
2
1
~
⎡ 1 0 0 −3 4 −1⎤
⎢ 0 1 0 6 −7 2 ⎥
⎢
⎥
⎢⎣ 0 0 1 8 −10 3 ⎦⎥
3
⎡ 1 2 −1 1 0 0 ⎤
3 −2 2 −1 0 ⎥⎥
⎢⎣ 0 0 1 8 −10 3 ⎥⎦ R + 2 R → R
2
3
2
⎡ −3 4 −1⎤
Finalmente, B− 1 = ⎢⎢ 6 −7 2 ⎥⎥
⎢⎣ 8 −10 3 ⎥⎦
EJERCICIO 165
Determina la matriz inversa de las siguientes matrices:
1⎤
− ⎥
3
⎥
1 ⎦
⎡ −4 −2 −1⎤
7. G = ⎢⎢ 0 −2 2 ⎥⎥
⎢⎣ −1 −2 −3⎥⎦
⎡3 4 ⎤
1. A = ⎢
⎥
⎣ 2 −2 ⎦
⎡1
4. D = ⎢ 2
⎢
⎣2
⎡ −1 0 ⎤
2. B = ⎢
⎥
⎣ 5 2⎦
⎡ 2 1 −1⎤
5. E = ⎢⎢ −1 1 2 ⎥⎥
⎢⎣ 1 2 −1⎦⎥
⎡6 1 0 ⎤
8. H = ⎢ 2 − 1 3 ⎥
⎢ 0 1 −1 ⎥
⎦
⎣
⎡ 2 −1 ⎤
3. C = ⎢
⎣ − 3 2 ⎦⎥
⎡5 4 3⎤
6. F = ⎢⎢ 2 1 0 ⎥⎥
⎢⎣ −1 2 −3⎥⎦
⎡4 0 2 1⎤
⎢ −3 2 −1 −2 ⎥
⎥
9. J = ⎢
⎢ 1 5 2 −3 ⎥
⎥
⎢
⎣ 0 −3 1 −2 ⎦
www.FreeLibros.org
⁄ Verifica tus resultados en la sección de soluciones correspondiente
619
Descargar