Tabla de Derivadas

Anuncio
TABLA DERIVADAS
1
2
3
4
5
6
7
8
9
10
11
12
Por: Fernando Valdés M ©,
UTP, Pereira
d
(cu) = cu′
dx
d
(uvw) = u′ vw + uv ′ w + uvw′
dx
d n
(u ) = nun−1 u′
dx
d
(u + v) = u′ + v ′
dx
d ( u ) vu′ − uv ′
=
dx v
v2
d
u ′
|u| =
u
dx
|u|
d
(uv) = u′ v + uv ′
dx
d
(c) = 0
dx
d
1
ln(u) = u′
dx
u
d u
(e ) = eu u′
dx
d
cos(u) = − sen(u) u′
dx
d
sec(u) = sec(u) tan(u) u′
dx
d
f (g(x)) = f ′ (g(x))g ′ (x)
dx
d
sen(u) = cos(u) u′
dx
d
cos(ku) = − sen(ku)ku′
dx
d
cot(u) = − csc2 (u) u′
dx
1
d
loga (u) =
u′
dx
u ln(a)
d
sen(ku) = cos(ku) ku′
dx
d
tan(u) = sec2 (u) u′
dx
d
csc(u) = − csc(u) cot(u) u′
dx
d u
a = au ln(a) u′
dx
1
d
arc sen(u) = √
u′
dx
1 − u2
d
senh(u) = cosh(u) u′
dx
d
sech(u) = −sech(u) tanh(u) u′
dx
d
1
u′
senh−1 (u) = √
dx
1 + u2
d
1
u′
sech−1 (u) = − √
dx
u 1 − u2
1
d
arc cos(u) = − √
u′
dx
1 − u2
1
d
arctan(u) =
u′
dx
1 + u2
d
cosh(u) = senh(u) u′
dx
d
csch(u) = −csch(u) coth(u) u′
dx
d
1
u′
cosh−1 (u) = √
dx
u2 − 1
d
1
u′
csch−1 (u) = − √
dx
|u| 1 + u2
d
tanh(u) = sech2 (u) u′
dx
d
coth(u) = −csch2 (u) u′
dx
d
1
tanh−1 (u) =
u′
dx
1 − u2
d
1
coth−1 (u) =
u′
dx
1 − u2
TRIGONOMETRÍA HIPERBÓLICA
3
ex + e−x
2
cosh2 (x) − senh2 (x) = 1
√
senh−1 (x) = ln(x + x2 + 1)
4
senh2 (x) =
1
2
cosh(x) =
−1 + cosh(2x)
2
ex − e−x
2
1 − tanh2 (x) = sech2 (x)
√
cosh−1 (x) = ln(x + x2 − 1)
senh(x) =
cosh2 (x) =
1 + cosh(2x)
2
1
senh(x)
cosh(x)
coth2 (x) − 1 = csch2 (x)
(
)
1
1+x
tanh−1 (x) = ln
2
1−x
tanh(x) =
cosh(2x) = cosh2 (x) + senh2 (x)
Descargar