Integrales Indefinidas Inmediatas 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. R xα dx = xα+1 +C (α 6= −1) (aquı́ y en las fórmulas siguientes C designa una constante arbitraria) R dx x = ln |x| + C R sen x = − cos x + C R cos x = sen x + C R dx = tg x + C cos2 x R dx sen2 x = −ctg x + C R tg x = − ln | cos x| + C R ctg x = ln | sen x| + C R x e dx = ex + C R x x a dx = lna a + C R dx 1+x2 = arc tg x + C R dx 1 x a2 +x2 = a arc tg a + C R dx 1 = 2a ln | a+x |+C a2 −x2 a−x R dx x−a 1 x2 −a2 = 2a ln | x+a | + C R dx √ = arcsen x + C 1−x2 R dx √ = arcsen xa + C a2 −x2 √ R dx √ x2 ± a 2 | + C = ln |x + x2 ±a2 √ R√ 2 a2 − x2 dx = a2 arcsen xa + x2 a2 − x2 + C √ √ R√ x2 + a dx = a2 ln |x + x2 + a| + x2 x2 + a + C R senh x = cosh x + C R cosh x = senh x + C R tgh x = ln cosh x + C R senh2 x = senh4 2x − x2 + C R cosh2 x = senh4 2x + x2 + C α+1