Integrales Indefinidas Inmediatas 1. ∫ x α dx = xα+1 α+1 +C (α = −1

Anuncio
Integrales Indefinidas Inmediatas
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
R
xα dx = xα+1 +C (α 6= −1) (aquı́ y en las fórmulas siguientes
C designa una constante arbitraria)
R dx
x = ln |x| + C
R
sen x = − cos x + C
R
cos x = sen x + C
R dx
= tg x + C
cos2 x
R dx
sen2 x = −ctg x + C
R
tg x = − ln | cos x| + C
R
ctg x = ln | sen x| + C
R x
e dx = ex + C
R x
x
a dx = lna a + C
R dx
1+x2 = arc tg x + C
R dx
1
x
a2 +x2 = a arc tg a + C
R dx
1
= 2a
ln | a+x
|+C
a2 −x2
a−x
R dx
x−a
1
x2 −a2 = 2a ln | x+a | + C
R dx
√
= arcsen x + C
1−x2
R dx
√
= arcsen xa + C
a2 −x2
√
R dx
√
x2 ± a 2 | + C
=
ln
|x
+
x2 ±a2
√
R√
2
a2 − x2 dx = a2 arcsen xa + x2 a2 − x2 + C
√
√
R√
x2 + a dx = a2 ln |x + x2 + a| + x2 x2 + a + C
R
senh x = cosh x + C
R
cosh x = senh x + C
R
tgh x = ln cosh x + C
R
senh2 x = senh4 2x − x2 + C
R
cosh2 x = senh4 2x + x2 + C
α+1
Descargar