TRIGONOMETRIC IDENTITIES Co-function Identities sin θ = cos (π/2- θ ) sec θ = csc (π/2- θ ) tan θ = cot (π/2- θ ) Supplement Angle Identities sin (π- θ ) = sin θ cos (π- θ ) = - cos θ tan (π- θ ) = - tan θ csc (π- θ ) = csc θ sec (π- θ ) = - sec θ co t (π- θ ) = - cot θ sin (π+ θ ) = - sin θ cos (π+ θ ) = - cos θ tan (π+ θ ) = tan θ csc (π+ θ ) = - csc θ sec (π+ θ ) = - sec θ cot (π+ θ ) = cot θ Negative Angle Identities sin (- θ ) = - sin θ cos (- θ ) = cos θ tan (- θ ) = - tan θ csc (- θ ) = - csc θ sec (- θ ) = sec θ cot (- θ ) = - cot θ Addition and Subtraction Identities Quotient Identities sin θ cos θ 1 sec θ = cos θ tan θ = cos θ 1 = sin θ tanθ 1 = sin θ cot θ = sin (A + B) = sin A cos B + cos A sin B cos (A + B) = cos A cos B –sin A sin B tan (A + B) = tan A + tan B 1 –tan A tan B Pythagorean Identities sin (A –B) = sin A cos B –cos A sin B sin θ + cos θ = 1 cos (A –B) = cos A cos B + sin A sin B tan θ + 1 = sec θ tan A –tan B 1 + tan A tan B tan (A –B) = Double-Angle Identities sin 2 θ = 2sin θ cos θ cos 2 θ = cos θ –sin θ 2 2 2 = 2cos θ –1 2 cscθ 2 2 2 2 cot θ + 1 = csc2 θ Half-Angle Identities sin θ 2 = ± 1 –cos θ 2 cos θ 2 = ± 1 + cosθ 2 tan θ 2 = ± 1 –cos θ 1 + cosθ = 1 –2sin2 θ tan 2 θ = 2tanθ 2 1 –tan θ Product Identities 1 2 1 cosAsinB = 2 1 cosAcosB = 2 1 sinAsinB = 2 sinAcosB = ( sin (A + B) + sin (A –B) ) ( sin (A + B) –sin (A –B) ) ( cos (A + B) + cos (A –B) ) ( cos (A –B) –cos (A + B) ) Sum Identities sinA + sinB sinA –sinB cosA + cosB cosA –cosB ( A 2+ B A+B = 2cos( 2 A+B = 2cos( 2 A+B = - 2sin( 2 = 2sin )cos( A 2–B )sin( A 2–B )cos( A 2–B )sin( A 2–B ) ) ) )