Precalculus / Calculus Deriving Trig Identities Identities [1]–[5] you memorize will be used to derive all remaining identities [8]–[24]. We must practice the process of deriving each of them until it becomes our second nature. This handout has a complete process for each identity. Identities to Memorize Sum Identities Difference Identities Pythagorean Identities [1] [2] [3] [4] [5] sin(u + v) = sin(u)cos(v) + cos(u)sin(v) cos(u + v) = cos(u)cos(v) – sin(u)sin(v) sin(u – v) = sin(u)cos(v) – cos(u)sin(v) cos(u – v) = cos(u)cos(v) + sin(u)sin(v) cos2(˙) + sin2(˙) = 1 Pythagorean Identities (other two versions) [8] 1 + tan2(˙) = sec2(˙) How to Derive: We start with cos2(˙) + sin2(˙) = 1. Divide both sides of this identity by cos2(˙). Then, we have 1+ sin 2 (!) 2 cos (!) = 1 cos2 (!) ! sin(!) $ 2 ! 1 $ 2 & =# & 1+ # # cos(!) & # cos(!) & " % " % 1 + tan2(˙) = sec2(˙) [9] Õ cot2(˙) + 1 = csc2(˙) How to Derive: We start with cos2(˙) + sin2(˙) = 1. Divide both sides of this identity by sin2(˙). Then, we have cos2 (!) 2 sin (!) +1= 1 sin 2 (!) ! cos(!) $ 2 ! $2 # & +1= # 1 & # sin(!) & # sin(!) & " % " % 2 cot (˙) + 1 = csc2(˙) Prepared by Kunio Mitsuma, Ph.D. Õ Double-Angle Identities [10] sin(2˙) = 2sin(˙)cos(˙) How to Derive: We start with sin(u + v) = sin(u)cos(v) + cos(u)sin(v). Let u = v = ˙. Then, sin(2˙) = sin(˙)cos(˙) + cos(˙)sin(˙) sin(2˙) = sin(˙)cos(˙) + sin(˙)cos(˙) sin(2˙) = 2sin(˙)cos(˙) Õ [11] cos(2˙) = cos2(˙) – sin2(˙) How to Derive: We start with cos(u + v) = cos(u)cos(v) – sin(u)sin(v). Let u = v = ˙. Then, cos(2˙) = cos(˙)cos(˙) – sin(˙)sin(˙) cos(2˙) = cos2(˙) – sin2(˙) Õ [12] cos(2˙) = 2cos2(˙) – 1 How to Derive: We start with cos(u + v) = cos(u)cos(v) – sin(u)sin(v). Let u = v = ˙. Then, cos(2˙) = cos(˙)cos(˙) – sin(˙)sin(˙) cos(2˙) = cos2(˙) – sin2(˙) cos(2˙) = cos2(˙) – [1 – cos2(˙)] cos(2˙) = cos2(˙) – 1 + cos2(˙) cos(2˙) = 2cos2(˙) – 1 Õ [13] cos(2˙) = 1 – 2sin2(˙) How to Derive: We start with cos(u + v) = cos(u)cos(v) – sin(u)sin(v). Let u = v = ˙. Then, cos(2˙) = cos(˙)cos(˙) – sin(˙)sin(˙) cos(2˙) = cos2(˙) – sin2(˙) cos(2˙) = [1 – sin2(˙)] – sin2(˙) cos(2˙) = 1 – sin2(˙) – sin2(˙) cos(2˙) = 1 – 2sin2(˙) Õ Prepared by Kunio Mitsuma, Ph.D. Power-Reduction Identities 1 + cos(2!) [14] cos2(˙) = 2 How to Derive: We start with cos(u + v) = cos(u)cos(v) – sin(u)sin(v). Let u = v = ˙. Then, cos(2˙) = cos(˙)cos(˙) – sin(˙)sin(˙) cos(2˙) = cos2(˙) – sin2(˙) cos(2˙) = cos2(˙) – [1 – cos2(˙)] cos(2˙) = cos2(˙) – 1 + cos2(˙) cos(2˙) = 2cos2(˙) – 1 1 + cos(2˙) = 2cos2(˙) 1 + cos(2!) = cos2 (!) 2 1 + cos(2!) cos2 (!) = 2 Õ 1! cos(2!) 2 How to Derive: We start with cos(u + v) = cos(u)cos(v) – sin(u)sin(v). Let u = v = ˙. Then, cos(2˙) = cos(˙)cos(˙) – sin(˙)sin(˙) cos(2˙) = cos2(˙) – sin2(˙) cos(2˙) = [1 – sin2(˙)] – sin2(˙) cos(2˙) = 1 – sin2(˙) – sin2(˙) cos(2˙) = 1 – 2sin2(˙) 2sin2(˙) = 1 – cos(2˙) [15] sin2(˙) = sin 2 (!) = 1! cos(2!) 2 Õ 1! cos(2!) 1 + cos(2!) How to Derive: We start with cos(u + v) = cos(u)cos(v) – sin(u)sin(v). Let u = v = ˙. Then, cos(2˙) = cos(˙)cos(˙) – sin(˙)sin(˙) cos(2˙) = cos2(˙) – sin2(˙) 2 cos(2˙) = [1 – sin (˙)] – sin2(˙) and cos(2˙) = cos2(˙) – [1 – cos2(˙)] cos(2˙) = 1 – sin2(˙) – sin2(˙) and cos(2˙) = cos2(˙) – 1 + cos2(˙) cos(2˙) = 1 – 2sin2(˙) and cos(2˙) = 2cos2(˙) – 1 2sin2(˙) = 1 – cos(2˙) and 1 + cos(2˙) = 2cos2(˙) [16] tan 2 (!) = sin 2 (!) = 1! cos(2!) 2 and cos2 (!) = 1 + cos(2!) 2 Therefore, 1! cos(2!) 1! cos(2!) 2 tan 2 (!) = = = 2 cos (!) 1 + cos(2!) 1 + cos(2!) 2 sin 2 (!) Prepared by Kunio Mitsuma, Ph.D. Õ Product-to-Sum Identities [17] sin(u)cos(v) = 12 [sin(u + v) + sin(u – v)] How to Derive: We start with sin(u + v) = sin(u)cos(v) + cos(u)sin(v) and sin(u – v) = sin(u)cos(v) – cos(u)sin(v). Line them up and add both sides. Then, sin(u + v) = sin(u)cos(v)+ cos(u)sin(v) sin(u !v) = sin(u)cos(v)! cos(u)sin(v) sin(u + v)+ sin(u !v) = 2 sin(u)cos(v) sin(u + v)+ sin(u !v) = sin(u)cos(v) 2 sin(u)cos(v) = 12 "$sin(u + v)+ sin(u !v)%' # & Õ [18] cos(u)sin(v) = 12 [sin(u + v) – sin(u – v)] How to Derive: We start with sin(u + v) = sin(u)cos(v) + cos(u)sin(v) and sin(u – v) = sin(u)cos(v) – cos(u)sin(v). Line them up and subtract both sides. Then, sin(u + v) = sin(u)cos(v)+ cos(u)sin(v) sin(u !v) = sin(u)cos(v)! cos(u)sin(v) sin(u + v)! sin(u !v) = 2 cos(u)sin(v) sin(u + v)! sin(u !v) = cos(u)sin(v) 2 cos(u)sin(v) = 12 "$sin(u + v)! sin(u !v)%' # & Õ 1 2 [19] cos(u)cos(v) = [cos(u – v) + cos(u + v)] How to Derive: We start with cos(u – v) = cos(u)cos(v) + sin(u)sin(v) and cos(u + v) = cos(u)cos(v) – sin(u)sin(v) . Line them up and add both sides. Then, cos(u !v) = cos(u)cos(v)+ sin(u)sin(v) cos(u + v) = cos(u)cos(v)! sin(u)sin(v) cos(u !v)+ cos(u + v) = 2 cos(u)cos(v) cos(u !v)+ cos(u + v) = cos(u)cos(v) 2 cos(u)cos(v) = 12 "$cos(u !v)+ cos(u + v)%' # & Prepared by Kunio Mitsuma, Ph.D. Õ [20] sin(u)sin(v) = 12 [cos(u – v) – cos(u + v)] How to Derive: We start with cos(u – v) = cos(u)cos(v) + sin(u)sin(v) and cos(u + v) = cos(u)cos(v) – sin(u)sin(v) . Line them up and subtract both sides. Then, cos(u !v) = cos(u)cos(v)+ sin(u)sin(v) cos(u + v) = cos(u)cos(v)! sin(u)sin(v) cos(u !v)! cos(u + v) = 2 sin(u)sin(v) cos(u !v)! cos(u + v) = sin(u)sin(v) 2 sin(u)sin(v) = 12 "$cos(u !v)! cos(u + v)%' # & Õ Sum-to-Product Identities ! A + B $& ! A 'B $& & cos ## & [21] sin(A) + sin(B) = 2 sin ### #" 2 &&% ##" 2 &&% How to Derive: We start with sin(u + v) = sin(u)cos(v) + cos(u)sin(v) and sin(u – v) = sin(u)cos(v) – cos(u)sin(v). Line them up and add both sides. Then, sin(u + v) = sin(u)cos(v)+ cos(u)sin(v) sin(u !v) = sin(u)cos(v)! cos(u)sin(v) sin(u + v)+ sin(u !v) = 2 sin(u)cos(v) sin(u + v)+ sin(u !v) = sin(u)cos(v) 2 sin(u)cos(v) = 12 "$sin(u + v)+ sin(u !v)%' # & Let A = u + v and B = u – v. Then, A + B = 2u and A – B = 2v A+B A !B u= and v = 2 2 Substitution yields ! A + B $& ! A 'B $& && cos ## && = 12 (*sin(A)+ sin(B)+sin ### ) , "# 2 &% #"# 2 &% ! A + B $& ! A 'B $& & cos ## & = sin(A)+ sin(B) 2 sin ### #" 2 &&% ##" 2 &&% ! A + B $& ! A 'B $& & cos ## & sin(A)+ sin(B) = 2 sin ### #" 2 &&% ##" 2 &&% Õ Prepared by Kunio Mitsuma, Ph.D. ! A + B $& ! A 'B $& & sin ## & [22] sin(A) – sin(B) = 2 cos ### #" 2 &&% ##" 2 &&% How to Derive: We start with sin(u + v) = sin(u)cos(v) + cos(u)sin(v) and sin(u – v) = sin(u)cos(v) – cos(u)sin(v). Line them up and subtract both sides. Then, sin(u + v) = sin(u)cos(v)+ cos(u)sin(v) sin(u !v) = sin(u)cos(v)! cos(u)sin(v) sin(u + v)! sin(u !v) = 2 cos(u)sin(v) sin(u + v)! sin(u !v) = cos(u)sin(v) 2 cos(u)sin(v) = 12 "$sin(u + v)! sin(u !v)%' # & Let A = u + v and B = u – v. Then, A + B = 2u and A – B = 2v A+B A !B u= and v = 2 2 Substitution yields ! A + B $& ! A 'B $& & sin ## & = 1 (sin(A)' sin(B)+cos ### , #" 2 &&% ##" 2 &&% 2 )* ! A + B $& ! A 'B $& & sin ## & = sin(A)' sin(B) 2 cos ### #" 2 &&% ##" 2 &&% ! A + B $& ! A 'B $& & sin ## & sin(A)' sin(B) = 2 cos ### #" 2 &%& ##" 2 &&% Õ ! A + B $& ! A 'B $& & cos ## & [23] cos(A) + cos(B) = 2 cos ### #" 2 &&% ##" 2 &&% How to Derive: We start with cos(u – v) = cos(u)cos(v) + sin(u)sin(v) and cos(u + v) = cos(u)cos(v) – sin(u)sin(v) . Line them up and add both sides. Then, cos(u !v) = cos(u)cos(v)+ sin(u)sin(v) cos(u + v) = cos(u)cos(v)! sin(u)sin(v) cos(u !v)+ cos(u + v) = 2 cos(u)cos(v) cos(u !v)+ cos(u + v) = cos(u)cos(v) 2 cos(u)cos(v) = 12 "$cos(u !v)+ cos(u + v)%' # & Let A = u + v and B = u – v. Then, A + B = 2u and A – B = 2v A+B A !B u= and v = 2 2 Substitution yields Prepared by Kunio Mitsuma, Ph.D. ! A + B $& ! A 'B $& & cos ## & = 1 (cos(A)+ cos(B)+cos ### , #" 2 &&% ##" 2 &&% 2 *) ! A + B $& ! A 'B $& & cos ## & = cos(A)+ cos(B) 2 cos ### #" 2 &&% ##" 2 &&% ! A + B $& ! A 'B $& & cos ## & cos(A)+ cos(B) = 2 cos ### #" 2 &&% ##" 2 &&% Õ ! A + B $& ! A 'B $& & sin ## & [24] cos(B) – cos(A) = 2 sin ### #" 2 &&% ##" 2 &&% How to Derive: We start with cos(u – v) = cos(u)cos(v) + sin(u)sin(v) and cos(u + v) = cos(u)cos(v) – sin(u)sin(v) . Line them up and subtract both sides. Then, cos(u !v) = cos(u)cos(v)+ sin(u)sin(v) cos(u + v) = cos(u)cos(v)! sin(u)sin(v) cos(u !v)! cos(u + v) = 2 sin(u)sin(v) cos(u !v)! cos(u + v) = sin(u)sin(v) 2 sin(u)sin(v) = 12 "$cos(u !v)! cos(u + v)%' # & Let A = u + v and B = u – v. Then, A + B = 2u and A – B = 2v A+B A !B u= and v = 2 2 Substitution yields ! A + B $& ! A 'B $& & sin ## & = 1 (cos(B)' cos(A)+sin ### , #" 2 &&% ##" 2 &&% 2 *) ! A + B $& ! A 'B $& & sin ## & = cos(B)' cos(A) 2 sin ### #" 2 &&% ##" 2 &&% ! A + B $& ! A 'B $& & sin ## & cos(B)' cos(A) = 2 sin ### #" 2 &&% ##" 2 &&% Õ Prepared by Kunio Mitsuma, Ph.D.