Precalculus section 6.3 Sum and Difference formulas Thm (Sum and Difference formulas) (1) cos (A B) = cosAcosB sinAsinB (2) cos (A B) = cosAcosB sinAsinB (3) sin (A B) = sinAcosB cosAsinB (4) sin (A B) = sinAcosB cosAsinB A + tan B (5) tan (A B) = tan 1tanAtanB (6) A tan B tan (A B) = tan 1+ tanAtanB Ex1, Evaluate cos (15‰ ) Ex2, Evaluate sin (15‰ ) Ex3, Evaluate cos (105‰ ) Ex4, Evaluate sin(15‰ )cos(30‰ ) + cos(15‰ )sin(30‰ ) (Ex5-Ex7, after inverse functions in section 6.6) Ex5, Evaluate cos (sin1 ( 23 ) + cos1 ( 14 ) ) Ex6, Evaluate sin (tan1 (2) + sec1 (3) ) Ex7, Evaluate tan (tan1 ( 12 ) + cos1 ( 13 ) ) Ex8, Prove cos( 321 )) = sin ) Ex9, Prove sin (x + 16 ) sin (x 16 ) = cos x A cos x + B sin x Thm: If A2 +B2 = 1, then A = cos α, and B = sin α for a unique α − [0, 21] If A2 +B2 Á 1, then such α does not exist. Form A cos x + B sin x (a) A cos x + B sin x = A2 +B2 ( A2 2 cos x + B2 2 sin x) Let A A2 +B2 Let A A2 +B2 A +B A +B = cos α and B2 2 = sin α Note that cos2 α + sin2 α = 1 A +B = A2 +B2 ( cos α cos x + sin α sin x) = A2 +B2 cos (x α) (b) A cos x + B sin x = A2 +B2 ( A2 2 cos x + B2 2 sin x) Ex10, f(x) = 12 cos x + Ex11, f(x) = 3 2 cos = 3 2 x A +B B sin " and 2 2 = cos " A +B 2 2 = A +B ( sin " cos x + sin x 1 2 sin x Ex12, f(x) = cos x + 3 sin x Ex13, g(x) = cos x + sin x Ex14, f(x) = 3 cos x sin x A +B Note that cos2 " + sin2 " = 1 cos " sin x) = A2 +B2 sin (x + " )