Subido por alberto silva beriche

deformacion unitaria plana circulo de mohr

Anuncio
Datos del problema 1:
Esfuerzol en X :
εx = 200 ⋅ 10 -6
Esfuerzo xy
γxy = 0
:
Esfuerzo en Y : εy = -100 ⋅ 10 -6
θ = 20 deg
Angulo de rotación:
((1))
εx + εy εx - εy
γxy
εx1 = ――
+ ――⋅ cos (2 ⋅ θ) + ―
⋅ sin (2 ⋅ θ) = 1.649 ⋅ 10 -4
2
2
2
((2))
⎛ ⎛ εx - εy ⎞
⎞
γxy
-4
γx1y1 = 2 ⋅ ⎜-⎜――
⎟ ⋅ sin (2 ⋅ θ) + ―⋅ cos (2 ⋅ θ)⎟ = -1.928 ⋅ 10
2
⎝ ⎝ 2 ⎠
⎠
((3))
εy1 = εx + εy - εx1 = -6.491 ⋅ 10 -5
Deformacion Unitaria εx1
εy
εx1 = 1.649 ⋅ 10
γxy
-4
1
-5
Deformacion Unitaria εy1
εy1 = -6.491 ⋅ 10
Deformacion Unitaria γx1y1
γx1y1 = -1.928 ⋅ 10 -4
1
Datos del problema 2:
((1))
Esfuerzol en X :
εx = 300 ⋅ 10 -6
Esfuerzo en Y : εy = 750 ⋅ 10 -6
Esfuerzo xy
γxy = 450 ⋅ 10 -6
Angulo de rotación:
:
εx + εy εx - εy
γxy
εx1 = ――
+ ――⋅ cos (2 ⋅ θ) + ―
⋅ sin (2 ⋅ θ) = 2.08 ⋅ 10 -4
2
2
2
γx1y1
2
⎛ ⎛ εx
-
εy ⎞
sin 2 θ
γxy
cos 2 θ
⎞
5.547 10 -5
θ = -20 deg
εx
((2))
⎛ ⎛ εx - εy ⎞
⎞
γxy
-5
γx1y1 = 2 ⋅ ⎜-⎜――
⎟ ⋅ sin (2 ⋅ θ) + ―⋅ cos (2 ⋅ θ)⎟ = 5.547 ⋅ 10
2
⎝ ⎝ 2 ⎠
⎠
((3))
εy1 = εx + εy - εx1 = 8.42 ⋅ 10 -4
Deformacion Unitaria εx1
εx1 = 2.08 ⋅ 10 -4
Deformacion Unitaria εy1
εy1 = 8.42 ⋅ 10 -4
Deformacion Unitaria γx1y1
γx1y1 = 5.547 ⋅ 10 -5
Descargar