Datos del problema 1: Esfuerzol en X : εx = 200 ⋅ 10 -6 Esfuerzo xy γxy = 0 : Esfuerzo en Y : εy = -100 ⋅ 10 -6 θ = 20 deg Angulo de rotación: ((1)) εx + εy εx - εy γxy εx1 = ―― + ――⋅ cos (2 ⋅ θ) + ― ⋅ sin (2 ⋅ θ) = 1.649 ⋅ 10 -4 2 2 2 ((2)) ⎛ ⎛ εx - εy ⎞ ⎞ γxy -4 γx1y1 = 2 ⋅ ⎜-⎜―― ⎟ ⋅ sin (2 ⋅ θ) + ―⋅ cos (2 ⋅ θ)⎟ = -1.928 ⋅ 10 2 ⎝ ⎝ 2 ⎠ ⎠ ((3)) εy1 = εx + εy - εx1 = -6.491 ⋅ 10 -5 Deformacion Unitaria εx1 εy εx1 = 1.649 ⋅ 10 γxy -4 1 -5 Deformacion Unitaria εy1 εy1 = -6.491 ⋅ 10 Deformacion Unitaria γx1y1 γx1y1 = -1.928 ⋅ 10 -4 1 Datos del problema 2: ((1)) Esfuerzol en X : εx = 300 ⋅ 10 -6 Esfuerzo en Y : εy = 750 ⋅ 10 -6 Esfuerzo xy γxy = 450 ⋅ 10 -6 Angulo de rotación: : εx + εy εx - εy γxy εx1 = ―― + ――⋅ cos (2 ⋅ θ) + ― ⋅ sin (2 ⋅ θ) = 2.08 ⋅ 10 -4 2 2 2 γx1y1 2 ⎛ ⎛ εx - εy ⎞ sin 2 θ γxy cos 2 θ ⎞ 5.547 10 -5 θ = -20 deg εx ((2)) ⎛ ⎛ εx - εy ⎞ ⎞ γxy -5 γx1y1 = 2 ⋅ ⎜-⎜―― ⎟ ⋅ sin (2 ⋅ θ) + ―⋅ cos (2 ⋅ θ)⎟ = 5.547 ⋅ 10 2 ⎝ ⎝ 2 ⎠ ⎠ ((3)) εy1 = εx + εy - εx1 = 8.42 ⋅ 10 -4 Deformacion Unitaria εx1 εx1 = 2.08 ⋅ 10 -4 Deformacion Unitaria εy1 εy1 = 8.42 ⋅ 10 -4 Deformacion Unitaria γx1y1 γx1y1 = 5.547 ⋅ 10 -5