INVESTUGAR FUNCIONES DE VARIAS VARABLES DERIVADA PARCIALES Si w=f(x,y,z) , entonces 𝜕𝑤 𝜕𝑦 = 𝑓𝑦 (𝑥, 𝑦, 𝑧) ; 𝜕𝑤 𝜕𝑧 𝜕𝑤 𝜕𝑥 = 𝑓𝑥 (𝑥, 𝑦, 𝑧) = 𝑓𝑧 (𝑥, 𝑦, 𝑧) f(x,y,z)=xy+yz+xz; determine las derivadas parciales 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 (xy + yz + xz) =y+z→𝑓𝑥 (xy + yz + xz) =y+z (xy + yz + xz) =x+z→𝑓𝑦 (xy + yz + xz) =x+z (xy + yz + xz) =y+z→ 𝑓𝑧 (xy + yz + xz) = y+z Si f(x,y,z) =xy+y𝑧 2 +xz, determine 𝑓𝑧 (x, y, z) 𝜕 𝜕𝑧 (xy + y𝑧 2 + xz)= 𝑓𝑧 (x, y, z) =2yz+x Hallar las derivadas parciales: a)f(x,y)=2x-5y+1 𝑓𝑥 (x,y)=2 𝑓𝑦 (x,y)=-5 b) f(x.y)=𝑥 2 − 3𝑦 2 + 4 𝑓𝑥 (𝑥, 𝑦)= 2x 𝑓𝑦 (𝑥, 𝑦)= -6y c) z=x√𝑦 𝑓𝑥 (𝑥, 𝑦) =√𝑦 𝑓𝑦 (𝑥, 𝑦) = 𝑥 2√𝑦 d) z==𝑥 2 − 4𝑥𝑦 + 3𝑦 2 -5 𝑓𝑥 (𝑥, 𝑦) =2x-4y 𝑓𝑦 (𝑥, 𝑦) =-4x+6y 𝑑 𝑑𝑥 𝑒 𝑢 =u’𝑒 𝑢 e) z=𝑒 𝑥𝑦 𝑓𝑥 (𝑥, 𝑦)=y𝑒 𝑥𝑦 𝑓𝑦 (𝑥, 𝑦) = x𝑒 𝑥𝑦 f)z= 𝑥 2 𝑒 2𝑦 𝑓𝑥 (𝑥, 𝑦) = 2x𝑒 2𝑦 𝑓𝑦 (𝑥, 𝑦)= 2𝑥 2 𝑒 2𝑦 g) z=ln c 𝑥 𝑦 1 𝑦 𝑥 𝑦 𝑓𝑥 (𝑥, 𝑦) = = 1 𝑥 −𝑥 𝑦2 𝑥 𝑦 𝑓𝑦 (𝑥, 𝑦) = = - 1 𝑦 h) z=ln(𝑥 2 𝑦 2 ) 𝑓𝑥 (𝑥, 𝑦)= 𝑓𝑦 (𝑥, 𝑦)= 2𝑥𝑦 2 𝑥2𝑦2 = 2 𝑥 2𝑥 2 𝑦 2 𝑥2𝑦 𝑦 = 2 i) f(x,y,z)=sen(x+2y+3z) 𝑓𝑥 (𝑥, 𝑦, 𝑧) =cos(x+2y+3z) 𝑓𝑦 (𝑥, 𝑦, 𝑧) = 2cos(x+2y+3z) 𝑓𝑧 (𝑥, 𝑦, 𝑧) =3cos(x+2y+3z) j) f(x,y,z)=3𝑥 2 𝑦 − 5𝑥𝑦𝑧 + 10𝑦𝑧 2 𝑓𝑥 (𝑥, 𝑦, 𝑧)=6xy-5yz 𝑓𝑦 (𝑥, 𝑦, 𝑧) =3𝑥 2 − 5𝑥𝑧+10𝑧 2 𝑓𝑧 (𝑥, 𝑦, 𝑧) =-5xy+20yz Evaluar la derivada en el punto dado a) f(x,y,z)=𝑥 3 𝑦𝑧 2 (1,1,1) 𝑓𝑥 (𝑥, 𝑦, 𝑧)=3𝑥 2 y𝑧 2 →𝑓𝑥 (𝑥, 𝑦, 𝑧)=3(1)2 (1)(1)2 =3 𝑓𝑦 (𝑥, 𝑦, 𝑧) =𝑥 3 𝑧 2 →𝑓𝑥 (𝑥, 𝑦, 𝑧)=(1)3 (1)2 =1 𝑓𝑧 (𝑥, 𝑦, 𝑧) =6𝑥 2 yz→𝑓𝑥 (𝑥, 𝑦, 𝑧)=2(1)3 (1)(1)=2 b) f(x,y,z)=𝑥 2 𝑦 3 + 2𝑥𝑦𝑧 − 3𝑦𝑧 (-2,1,2) 𝑓𝑥 (𝑥, 𝑦, 𝑧)=→𝑓𝑥 (𝑥, 𝑦, 𝑧)=2x𝑦 3 +2yz=2(-2)(1)3 +2(1)(2)=0 𝑓𝑦 (𝑥, 𝑦, 𝑧) =→𝑓𝑥 (𝑥, 𝑦, 𝑧) =3𝑥 2 𝑦 2 +2xz-3z=3(−2)2 (1)2 + 2(−2)(2)-3(2)=-2 𝑓𝑧 (𝑥, 𝑦, 𝑧) =→𝑓𝑥 (𝑥, 𝑦, 𝑧)=2xy-3y=2(-2)(1)-3(2)=-10