Economic Geology Vol. 98, 2003, pp. 1683–1696 SCIENTIFIC COMMUNICATIONS 40 Ar-39Ar AGES OF HYPOGENE AND SUPERGENE MINERALIZATION IN THE CERRO VERDE-SANTA ROSA PORPHYRY Cu-Mo CLUSTER, AREQUIPA, PERU CHAN X. QUANG,† ALAN H. CLARK, JAMES K.W. LEE, Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada AND JORGE GUILLÉN B. Sociedad Minera Cerro Verde S.A., Asiento Minero Cerro Verde-Uchumayo, Avenida Alfonso Ugarte 304, Casilla 299, Arequipa, Peru Abstract The contiguous Cerro Verde and Santa Rosa porphyry copper deposits are hosted by Paleogene granitoid rocks and Precambrian gneiss, and spatially associated with 61 ± 1 Ma (U-Pb zircon: Mukasa, 1986) dacitic porphyry stocks. The age of hydrothermal activity is constrained by laser-induced incremental-heating 40Ar-39Ar sericite (muscovite-2M1) dates of 61.8 ± 0.7 (2σ) and 62.0 ± 1.1 Ma for Cerro Verde, and 62.2 ± 2.9 Ma for Santa Rosa, representing the terminal event in the Arequipa segment of the Coastal batholith. The deposits crop out on the Santa Rosa erosional pediment, which itself is incised into the older La Caldera surface. Two populations, of ages 36.1 to 38.8 Ma and 24.4 to 28.0 Ma, are identified by multiple analyses of a sample from Cerro Verde comprising alunite partially replaced by natroalunite, demonstrating that supergene activity had commenced by the latest Eocene, during the Incaic orogeny, thereafter continuing through the Oligocene. In the Santa Rosa deposit, deep (ca. 300–350 m) leaching in the late Oligocene is recorded by ca. 26 Ma natroalunite that is inferred to have formed beneath the La Caldera surface. At the top of the Cerro Verde pit (2738 m bench), veins of alunite (ca. 23 Ma) and natroalunite (ca. 21 Ma) in a hematitic leached zone are truncated by the Santa Rosa surface, which is inferred to have developed after 21 Ma. Decreasing ages of alunitegroup minerals with increasing depth in the Cerro Verde pit (e.g., ca. 12 Ma at the 2648 m level, and 4.9–6.7 Ma at the 2618 m level) are evidence for deepening of the supergene profile through the Miocene beneath this pediment. Jarosite dates (0.7–1.3 Ma) record the persistence of minor supergene activity into the Pleistocene. Introduction The contiguous Cerro Verde and Santa Rosa deposits and the neighboring Cerro Negro prospect constitute the northernmost demonstrably economic hydrothermal systems in the central Andean upper Paleocene-middle Eocene porphyry Cu-Mo belt, which parallels the South American plate boundary for at least 800 km in southern Peru and northern Chile (Fig. 1a). Centered at latitude 16°33' S, longitude 71°34' W, 30 km southwest of the city of Arequipa, the Cerro Verde and Santa Rosa open pits have been operated since 1994 by Sociedad Minera Cerro Verde, initially formed by Cyprus Amax and now a subsidiary of Phelps Dodge Copper Corporation (82.5%) and Compañía de Minas Buenaventura (9.2%). SXEW recovery attained 84,000 t of fine Cu at US $0.44/lb in 2001, and output was expected to rise to 86,900 t at US $0.40/lb in 2002 (Ednie, 2002). Production, 70 percent from Cerro Verde, is almost entirely from reserves of 331 Mt of supergene ore grading 0.52 percent copper, but the development of 464 Mt of largely hypogene material at 0.61 percent copper is under consideration (Ednie, 2002). The geology of the deposits is documented by Estrada (1969, 1978), Kihien (1975), Le Bel (1985), Perea et al. (1983), and Phelps Dodge (2000). Stewart (1968) provides a detailed account of the “Caldera Complex,” the cluster of granitoid intrusions that hosts much of the mineralization, representing a segment of the Peruvian Coastal batholith † Corresponding author: e-mail, [email protected] 0361-0128/01/3398/1683-14 $6.00 (e.g., Pitcher et al., 1985). Age relationships in the district are, in part, defined through U-Pb zircon (62–67 ± 1 Ma: Mukasa and Tilton, 1985; Mukasa 1986) and Rb-Sr (68 ± 3 Ma: Le Bel, 1985) dates for the precursor Yarabamba granodiorites (Fig. 1b), and U-Pb zircon (61 ± 1 Ma: Mukasa, 1986) and KAr biotite (56-59 ± 2 Ma: Estrada, 1978) dates for the porphyry bodies most closely associated with hypogene activity. However, no age data are recorded for the economically critical supergene oxide and sulfide mineralization. In the present communication, we document new multistep, laser-induced 40Ar-39Ar dates for sericites directly associated with hypogene chalcopyrite-pyrite mineralization and for supergene alunite-group minerals from both Cerro Verde and Santa Rosa, the latter representing the first such data for a porphyry deposit in southern Peru. Geologic Framework Host rocks and structural relationships The Cerro Verde and Santa Rosa deposits crop out at elevations of 2,680 to 2,750 m a.s.l. on a subplanar pediment, herein termed the Santa Rosa surface. This was eroded into the older La Caldera surface (Jenks, 1948), which lies ca. 200 m higher (Fig. 2) and is now locally represented by isolated summits, including Cerro Verde (2,904 m a.s.l.) and Cerro Negro (2,910 m a.s.l.). Whereas the Santa Rosa deposit (Fig. 1b) is hosted entirely by Paleogene granitoid units, the Cerro Verde center straddles 1683 1684 SCIENTIFIC COMMUNICATIONS (b) N 8172000 250 E 222000 0 LEGEND 500 m Cerro Verde pit A’ “Dacite Monzonite Porphyry” Tourmaline Breccia Yarabamba Granodiorite “Silica Breccia” Tiabaya Granodiorite Fault A-A’ Pit Outline in 2000 Location of Dated Sample Augite Diorite •A • E 221000 N 8171000 SURF-111 ( sr, al, jr) A - A’ •• • •• SURF-109 SURF-114 ( na) Yura Group Charcani Gneiss al na jr sr Alunite Natroalunite Jarosite Sericite SURF-109 ( al,na, jr) Santa Rosa pit Arequipa (a) PERU Chapi Cuajone SURF-110 ( sr, al ) 200 km CERRO VERDE Quellaveco Toquepala BOLIVIA SURF-119 ( sr) SURF-113 ( na) N 8170000 Arica 20°S Cerro Colorado CHILE 70°W Spence 66°W N 8169000 E 224000 SURF-112 ( na) E 223000 Iquique •• • B E 225000 B’ B - B’ FIG. 1. a. Locations of Cerro Verde-Santa Rosa and other Paleocene to middle Eocene porphyry Cu deposits of southern Peru and northern Chile. B. Local geology of the Cerro Verde-Santa Rosa district, showing the locations of dated alunitegroup and sericite samples. Heavy lines show limits of panoramas in Figures 6 (A-A') and 8 (B-B'). Modified after Phelps Dodge (2000). El Misti 5822 m a.s.l. Cerro Verde Santa Rosa deposit 2904 m a.s.l. Cerro Verde deposit Cerro Negro 2910 m a.s.l. Looking NE (045°) Cordillera Occidental Dissected La Caldera Surface Santa Rosa Surface FIG. 2. Panoramic view, looking northeast (045°), of the Cerro Verde-Santa Rosa-Cerro Negro district, showing the Santa Rosa pediment (in foreground), remnants of the La Caldera surface (accordant summits in middleground), and active and dormant stratovolcanoes of the Cordillera occidental (skyline) in August, 2001. (NB. The term “La Caldera surface” reflects the basinal local topography, with no volcanological implications). Approximate width of the foreground is 2 to 3 km. 0361-0128/98/000/000-00 $6.00 1684 SCIENTIFIC COMMUNICATIONS the contact between these and the Precambrian Charcani gneiss. The latter comprises a series of amphibolite-facies metasedimentary and metaigneous rocks, representing part of the Mesoproterozoic (Wasteneys et al., 1995) Arequipa Massif, which constitutes much of the Andean basement in southern Peru and northernmost Chile. Each of the deposits is associated with ca. 0.12-km2 steep-walled stock of hypabyssal quartz- and feldspar-phyric rock, traditionally termed “dacite monzonite porphyry” or “quartz-bearing monzonite porphyry” (Fig. 1b), but with quartz, alkali feldspar, and plagioclase modal contents indicating a dacitic composition. These are the youngest major intrusive units in the district. However, a dike of postmineralization dacitic, quartz-feldspar porphyry is exposed in the southern quadrant of the 2563 m level of the Cerro Verde pit, and a weakly altered quartz porphyry exposed in the Santa Rosa pit may represent the same late intrusive event. Tourmaline-cemented breccias are widespread only in the Cerro Verde and Cerro Negro deposits, but small volumes of tourmalinefree “silica breccia” occur at all three centers (Fig. 1b). Northwest-southeast– striking bodies of tourmaline-rich granitic pegmatite and aplite widely cut all granitoid and basement rocks, but their relationship to the tourmaline breccias is uncertain. The northwest-southeast elongation of the Santa Rosa hydrothermal system (Fig. 1b), as well as the overall distribution of the Cerro Verde, Santa Rosa, and Cerro Negro deposits, represent a segment of a linear array of porphyry, breccia, and vein copper deposits that extends at least to the Chapi mine, 7 km to the southeast. This trend parallels a system of northwest-striking and steeply northeast dipping regional faults (Phelps Dodge, 2000), plausibly the northwestern equivalent of the major Incapuquio fault system in the Cuajone-Quellaveco-Toquepala district, ca. 115 km to the southeast (Fig. 1a). As at Toquepala (Zweng and Clark, 1995), shallow intrusion and mineralization at Cerro Verde and Santa Rosa are considered to have been controlled by the intersections of these northwest-southeast structures and local northeast-southwest tensional faults. Widespread northeast-southwest and east-west postmineral fractures and tensional faults cut the northwest-southeast structures and were associated with reverse reactivation (Fig. 1b; Phelps Dodge, 2000). Hypogene alteration-mineralization relationships Hydrothermal alteration extends over a northwest-elongated, 5- by 1.5-km area in the Cerro Verde-Santa Rosa district, potassic and phyllic zones lying within a propylitic envelope. Potassic alteration, characteristically with a blotchy development, is most extensively preserved at depth, but persists to shallower levels at Cerro Verde. Two main subfacies are represented: orthoclase with lesser biotite (ca. 30%) and magnetite (<5%) in Yarabamba granodiorite and the dacitic porphyries; and biotite-magnetite, best developed in Charcani gneiss and andesite. In addition, pit exposures and drill intersections at Cerro Verde reveal magnetite-biotite-albite alteration, which may be characteristic of the deeper, lowgrade (0.1–0.15% Cu) subfacies of the early alteration. Magnetite-cemented hydrothermal breccias at Santa Rosa probably developed contemporaneously. Perea et al. (1983) 0361-0128/98/000/000-00 $6.00 1685 estimate an average sulfide content of 3 percent in the potassic zones, with a chalcopyrite/pyrite ratio of ca. 3. Phyllic (i.e., quartz-sericite-pyrite) alteration surrounds the potassic zones in the upper portions of the deposits and represents the major host of economic mineralization, with average sulfide contents of 5 to 7 percent and a chalcopyrite/ pyrite ratio of 0.3 to 0.7 (Perea et al., 1983). The characteristic pervasive assemblage is best developed in Yarabamba granodiorite and the dacitic porphyries, but is also represented in Charcani gneiss. The age relationships between the phyllic alteration and the tourmaline breccia bodies in the Cerro Verde deposit are uncertain. Clasts in these breccias exhibit intense quartz > sericite, pyrite-free alteration, appearing silicified, as at Toquepala (cf. Zweng and Clark, 1995). The Bonanza breccia, the main body of silica breccia at Santa Rosa (Fig. 1b), comprises angular fragments with intense sericite > quartz alteration and disseminated chalcopyrite in a matrix dominated by massive chalcopyrite and minor pyrite, magnetite, and ferberite. Supergene mineralization The earliest large-scale mining in the district was initiated in 1968 by Mineroperú, who exploited brochantite-dominated oxide ores at Cerro Verde, averaging 1 percent Cu, but with restricted zones exceeding 2 percent. The supergene activity attained depths of over 300 m (from ca. 2,750 to 2,438 m a.s.l.) within the main body of tourmaline breccia, probably a reflection of its high permeability, but the supergene profile is significantly thinner at Santa Rosa. In most areas of the deposits, the main zone of chalcocite mineralization exhibits a very irregular and discontinuous distribution. Moreover, the southwestern sector of the Cerro Verde pit reveals the presence of at least two sulfide enrichment blankets: an older horizon, ca. 15 m thick, discontinuously preserved on and above the 2648 m bench; and a younger, more localized, but thicker zone located within a large body of tourmaline breccia and juxtaposed with hypogene mineralization between the 2573 and 2633 m benches. This lower blanket averages 60 to 80 m in thickness but increases to 100 m, and locally 150 m, in the main tourmaline breccia body. In general, the supergene sulfide zone thins to the north and northeast. At Santa Rosa, the single preserved blanket ranges from 20 to 45 m thick, with an underlying transitional section in which chalcopyrite is partially replaced by chalcocite, covellite, and bornite. The chalcocite blankets at both Cerro Verde and Santa Rosa are overlain by the brochantite subzone of the oxide zone, in which minor chrysocolla occurs as veins cutting a brochantite stockwork. Chalcedony, antlerite, and malachite are minor constituents. The highest oxide-Cu grades occur in the matrix of hydrothermal breccias, and the thickest development of such ores is in the eastern half of the Cerro Verde deposit. The brochantite ores are, in turn, overlain by the copper pitch subzone, in which Cu-Fe-Mn oxides predominate. The distribution of the oxide ores is erratic and commonly spatially associated with chalcocite-kaolinite or hematitic zones. The uppermost part of the profile is the leached zone, which averages 70 m in thickness, but locally attains depths of 250 m in the Cerro Verde deposit. Hematite, goethite, and minor jarosite are most abundantly developed 1685 1686 SCIENTIFIC COMMUNICATIONS in breccia zones. The widespread hematite is evidence for the previous existence of chalcocite (Anderson, 1982), and relict zones of chalcocite-kaolinite occur throughout the supergene profiles. Jarosite is locally abundant over the originally more pyritic margins of the two deposits. (a) Age (Ma) 100 (b) SURF 110 , Sericite Ar/40Ar 60 39 40 20 0.04 0.02 Integrated Age: 61.8±3.3 Ma 0 0.0 120 SURF 110 , Sericite Correlation Age: 61.8±0.7 Ma 0.06 PA = 62.3±2.0 80 (c) 100 0 1.0 39 Fraction Ar 0 0.002 36 (d) SURF 111 , Sericite 0.004 Ar/40Ar SURF 111 , Sericite Correlation Age: 62.0±1.1 Ma 0.06 PA = 61.3±2.7 80 0.04 60 40 0.02 20 Integrated Age: 56.2±5.5 Ma 0 0.0 100 (e) 1 0 0 0 1.0 0 SURF 119 , Sericite 0.10 0 . 1 0 PA = 61.2±1.4 8 0 0.002 (f) 9 0 80 0.004 SURF 119 , Sericite Correlation Age: 62.2±2.9 Ma 0.08 0 . 0 8 7 0 60 6 0 39Ar/40Ar Age(M a) Sampling and Geochronology Samples rich in sericite were selected from the Cerro Verde and Santa Rosa pits to determine the age of the preponderant hypogene Cu mineralization. Fine-grained (<50 µm) sericite is distributed throughout a matrix of quartz (± tourmaline) and iron oxides with residual disseminated pyrite. Pure separates, yielding muscovite(-2M1) X-ray powder diffraction patterns, were prepared for 40Ar-39Ar incrementalheating analysis. The locations, hypogene and supergene contexts, and inferred ages of the sericites are summarized in Table 1, and the Ar-Ar analytical data are summarized as age spectra and inverse isochron plots in Figure 3. The occurrence of supergene alunite-group minerals at Cerro Verde and Santa Rosa has been described by Kihien (1975), Cedillo et al. (1979), and Cedillo and Wolf (1982). Representative samples of alunite-group minerals were collected from different levels of the supergene profiles that were superimposed on the phyllic alteration zones of the Cerro Verde and Santa Rosa deposits (Fig. 1b). The locations, petrographic relationships, and inferred ages of the dated supergene minerals are recorded in Table 2 and in Figure 1. One critical sample, SURF-110, from the 2648 m bench of the Cerro Verde pit, is discussed separately. Full 40Ar-39Ar analytical data are recorded in Appendix 1. All dates are quoted with an uncertainty of ±2σ. For the purposes of this paper, an age plateau is defined as three or more separate outgassing steps with ages that are concordant at 2σ errors and that account for at least 50 percent of the 39Ar released; ideally, 120 5 0 40 4 0 3 0 20 2 0 0 0 . 0 6 0.04 0 . 0 4 0.02 0 . 0 2 Integrated Age: 60.7±1.5 Ma 1 0 0.06 0 0 . 0 0.0 1 . 0 F r a c t i o n 3 9 A r 1.0 0 . 0 0 0 0 . 0 0 0 0 0 . 0 0 1 0 . 0 0 2 0.002 3 6 A r / 4 0 A r 0 . 0 0 3 0 . 0 0 4 0.004 FIG. 3. 40Ar-39Ar step-heating isochron plots and age spectra for hydrothermal sericites from Cerro Verde (a-d) and Santa Rosa (e, f). PA = plateau age. there should be no consistent increase or decrease in apparent age across the plateau. Age of Hypogene Mineralization The age of hypogene mineralization in the district is established by 40Ar-39Ar hydrothermal sericite dates (Fig. 3). SURF-110 and SURF-111, both from Cerro Verde, yielded identical correlation ages of 61.8 ± 0.7 Ma and 62.0 ± 1.1 Ma (Fig. 3b, d; Table 1). These dates are preferred to the plateau TABLE 1. Locations and Ages of Hydrothermal Sericite Samples from Cerro Verde-Santa Rosa Sample Elevation (m a.s.l.) Location Latitude (°S) Longitude (°W) Hypogene setting SURF-110 2,648 Cerro Verde pit, upper benches on southern wall 16.5326 71.5980 Q-s-p (quartzsericite-pyrite) altered quartz monzodiorite Hematite-goethite capping with slightly weathered pyrite and minor "sooty" chalcocite and covellite SURF-111 2,738 Cerro Verde pit, top of western wall 16.5311 70.6074 Q-s-p altered tourmaline breccia SURF-119 2,558 Santa Rosa pit, southwestern wall 16.5420 71.5841 Bonanza breccia comprising intense sericite-quartz– altered fragments with disseminated chalcopyrite ± pyrite cemented by massive chalcopyrite associated with sericite, molybdenite ± pyrite 0361-0128/98/000/000-00 $6.00 1686 Mineralogy by powder X-ray diffraction Habit Age ± 2σ (Ma) Muscovite-(2M1) Finegrained, pervasive 61.8 ± 0.7 correlation age Hematite leached cap Muscovite-(2M1) Finegrained, pervasive 62.0 ± 1.1 correlation age Transitional zone between secondary sulfide enrichment and hypogene zones Muscovite-(2M1) Fine- to mediumgrained, pervasive 61.0 ± 1.2 plateau age Supergene setting 1687 SCIENTIFIC COMMUNICATIONS TABLE 2. Locations and Ages of Supergene Alunite-Group Minerals a. Cerro Verde Sample Elevation (m a.s.l.) Location Latitude (°S) Hypogene Longitude (°W) setting Supergene setting SURF-111 2,738 Cerro Verde pit, western margin 16.5311 70.6074 Q-s-p–altered tourmaline breccia Hematite leached cap SURF-114 2,648 Cerro Verde pit, eastern slopes 16.5285 71.5963 SURF-109 2,618 Cerro Verde pit, southeastern wall SURF-110 2,648 Cerro Verde pit, upper benches on southern wall SURF-112 SURF-113 Age ± 2σ (Ma) Mineral Habit (a) Natroalunite (b) Alunite (c) Jarosite 4-cm-wide, white to pale yellow porcelaneous vein comprising aggregates of up to 20-µm-size alunite (b) crystals cut by finer-grained, massive natroalunite (a); both are cut by mm-scale jarosite (c) veins (a) 20.7 ± 0.3 (a) 21.2 ± 0.3 (b) 23.3 ± 0.3 (c) 0.74 ± 0.03 plateau ages Silicified and Hematitesericite-altered goethite intrusive leached Cap Natroalunite 1-cm-wide, pale green-light brown, porcelaneous vein 12.0 ± 0.5 12.6 ± 0.9 plateau ages 16.5308 71.5955 Q-s-p–altered dacite porphyry Jarositic leached cap (a) Natroalunite (b) Alunite (c) Jarosite Millimeter-wide, pale yellow, porcelaneous alunite (b) veinlets cut by cm-scale, tan-white porcelaneous natroalunite (a) veins; both are cut by thin, fine-grained jarosite (c) veinlets (a) 4.9 ± 0.3 (b) 6.7 ± 0.2 (c) 1.3 ± 0.2 plateau ages 16.5326 71.5980 Q-s-p–altered quartz monzodiorite Hematitegoethite capping with slightly weathered pyrite and minor 'sooty' chalcocite and covellite (a) Alunite (b) Natroalunite Pink, porcelaneous, fine-grained (1–3-µm size), zoned alunite (a) veins cut by cryptocrystalline, natroalunite (b) veinlets (a) (36.1 ± 0.3) to (38.8 ± 0.7) minimum ages (b) (24.4 ± 0.3) to (28.0 ± 0.4) maximum ages 2,588 Santa Rosa pit, 16.5426 southwestern wall 71.5862 Strong quartzsericite-clay– altered intrusive Lower portion of the secondary sulfide enrichment zone Natroalunite Tan, massive clots in leached quartz veinlets 26.8 ± 1.7 26.2 ± 0.8 plateau ages 2,573 Santa Rosa pit, 16.5410 southwestern wall 71.5854 Q-s-p–altered quartz monzodiorite Transitional Natroalunite zone between secondary sulfide enrichment and hypogene zones Gray-tan, massive patches in quartztourmaline-sulfide vein with chalcocite-covellite enrichment (26.9 ± 0.3) (27.4 ± 0.3) maximum ages b. Santa Rosa ages (Fig. 3a, c) because the isochron plots display linear arrays that clearly define the age of the samples, whereas the spectra exhibit atmospheric argon and slight recoil effects in the lower temperature increments, resulting in greater uncertainty in the plateaus. Sericite (SURF-119), from the matrix of the Bonanza breccia at Santa Rosa, gave a correlation age of 62.2 ± 2.9 Ma (Fig. 3f), which corresponds closely to those from Cerro Verde. Although composed of only four 0361-0128/98/000/000-00 $6.00 steps, the age spectrum defines a plateau (Fig. 3e), even though much of the 39Ar was released in a single step and the lowest- and highest-temperature steps are associated with large errors due to the small amounts of gas released. These dates overlap within error with the 61 ± 1 Ma UPb zircon date of Mukasa (1986) for “dacitic-monzonitic porphyries” at Cerro Verde and a 62 ± 2 Ma Rb-Sr wholerock isochron age reported by Beckinsale et al. (1985) for 1687 1688 SCIENTIFIC COMMUNICATIONS 13 samples of intrusive rocks in the vicinity of Cerro Verde. In contrast, the conventional K-Ar dates of Estrada (1969, 1978), 56 to 59 Ma, are markedly younger and may reflect the loss of radiogenic 40Ar*. Hypogene mineralization in the Cerro Verde-Santa Rosa district was, at ca. 62 Ma, the final event in the evolution of the Arequipa segment of the Coastal batholith (e.g., Pitcher et al., 1985). (a) Age (Ma) 40 (b) SURF 111b, Alunite 30 SURF 111a, Natroalunite 30 PA = 23.3±0.3 PA = 20.7±0.3 20 20 10 10 Integrated Age: 24.1±0.4 Ma 0 0.0 0 0.0 1.0 Fraction 39Ar (c) SURF 111a, Natroalunite (2) 5 Integrated Age: 19.5±0.4 Ma 1.0 (d) SURF 111c, Jarosite 5 4 Integrated Age: 0.72±0.03 Ma 20 Age and Geomorphologic Setting of Supergene Mineralization Whereas the first recorded conventional K-Ar dates for supergene alunite group minerals (Gustafson and Hunt, 1975) were interpreted as problematic, subsequent K-Ar (Alpers and Brimhall, 1988; Sillitoe and McKee, 1996) and, particularly, 40Ar-39Ar incremental-heating (Vasconcelos et al., 1994; Bouzari and Clark, 2000, 2002; Mote et al., 2001) studies have convincingly demonstrated the efficacy of this approach in the elucidation of the history of weathering profiles. The Ar systematics of alunite are documented by Love et al. (1998) and Vasconcelos (1999). The age spectra determined herein for alunite-group minerals reveal complex relationships between the Cerro Verde and Santa Rosa supergene profiles, and the data are therefore discussed separately below. The dates provide, in turn, age constraints for the local landforms that controlled subjacent supergene processes. 4 Age(M a) PA = 21.2±0.3 10 30 (e) 3 PA = 0.74±0.03 2 1 Integrated Age: 20.1±0.3 Ma 0 0.0 3 2 1 1.0 SURF 114, Natroalunite 0 0.0 0 0 . 0 (f) 40 1 . 0 F r a c t i o n 3 9 A r 1.0 SURF 114, Natroalunite (2) 4 0 30 3 0 PA = 12.6±0.9 Age(M a) 20 10 PA = 12.0±0.5 20 2 0 10 1 0 Integrated Age: 12.5±1.1 Ma 0 0.0 (g) 40 Integrated Age: 11.9±0.6 Ma 0 0.0 0 1 .0 SURF 109b, Alunite 0 . 15 30 0 1 . 0 F r a c t i o n (h) 10 PA = 6.7±0.2 0 0.0 5 Integrated Age: 5.4±2.4 Ma 0 0.0 1.0 Integrated Age: 4.7±0.4 Ma 1.0 SURF 109c, Jarosite (i) 10 1.0 PA = 4.9±0.3 20 10 3 9 A r SURF 109a, Natroalunite 1 0 9 Integrated Age: 1.6±0.4 Ma 8 8 Cerro Verde Plateau ages for seven samples broadly decrease with depth (Fig. 4; Table 2a). White to pale yellow alunite (SURF111b) from the 2738 m level gave an age of 23.3 ± 0.3 Ma, derived from a four-step plateau comprising 74.6 percent of the 39Ar released (Fig. 4a). A supergene origin for this sample is supported by a δ34S value of 7.5 per mil, which is similar to the 8.3 per mil determined for hypogene pyrite from SURF-110, a value slightly higher than those reported by Le Bel (1985) for hypogene pyrite (5.1–6.9‰) from the deposit. Duplicate analyses of a natroalunite vein (SURF-111a) that cuts, and contains fragments of, the SURF-111b alunite veins (Fig. 5) yielded ages of 20.7 ± 0.3 and 21.2 ± 0.3 Ma from five-step plateaus (Fig. 4b, c) comprising 83.0 and 86.7 percent of the 39Ar released, respectively. This implies a ca. 2- to 3-m.y. history of leaching and alunite-group mineral precipitation at this horizon of the supergene profile. Moreover, a four-step plateau comprising 72.4 percent of the 39Ar released (Fig. 4d) gave an age of 0.74 ± 0.03 Ma for finegrained jarosite (SURF-111c), coating fracture surfaces and forming millimeter-scale veinlets that cut both the alunite (SURF-111b) and natroalunite (SURF-111a) veins (Fig. 5), providing evidence for a persistence of supergene activity into the Pleistocene. Ninety meters deeper, on the 2648 m mine bench, natroalunite (SURF-114) gave duplicate ages of 12.6 ± 0.9 and 12.0 ± 0.5 Ma from three-step plateaus comprising 87.2 and 82.8 percent of the 39Ar released, respectively (Fig. 4e, f). Pale yellow alunite (SURF-109b) from close to the bottom of the Cerro Verde pit, at 2618 m, yielded a plateau age of 6.7 ± 0.2 Ma, from five steps representing 94.7 percent of the 39Ar released (Fig. 4g). These veins are cut by cm-wide veins of 0361-0128/98/000/000-00 $6.00 Age(M a) 7 6 6 5 4 4 PA = 1.3±0.2 3 2 2 1 0 0 0 . 0 1 . 0.0 F r a c t i o n 0 1.0 3 9 A r FIG. 4. 40Ar-39Ar step-heating age spectra for supergene alunite group minerals from Cerro Verde. PA = plateau age. Alunite L Natroalunite L L T L L Jarosite L M 0 1 2 3 4 5 cm FIG. 5. Slabbed surface of SURF-111 (2738 m level, Cerro Verde pit), showing crosscutting relationships among supergene alunite, natroalunite, and jarosite veins. Fragments of paler alunite and wall rock are included in the natroalunite vein. L = leached wall rock, M = hypogene molybdenitequartz vein, T = hypogene tourmaline veinlet. 1688 1689 SCIENTIFIC COMMUNICATIONS white to tan natroalunite (SURF-109a), which yielded a plateau age of 4.9 ± 0.3 Ma from three steps representing 96.7 percent of the 39Ar released (Fig. 4h). The natroalunite veins are, in turn, cut by thin jarosite (SURF-109c) veinlets, dated at 1.3 ± 0.2 Ma from two contiguous steps that represent 63.6 percent of the 39Ar released (Fig. 4i). These data indicate that the major leached, oxidized, and supergene sulfide zones exposed at Cerro Verde developed over an interval of at least 18 m.y., from the latest Oligocene to the Late Miocene. The data do not discriminate between quasicontinuous or episodic downward encroachment of supergene processes, but we favor the latter model in view of the clearly episodic landform history of the region, in which abrupt uplift and erosional events were separated by more quiescent intervals (Tosdal et al., 1984). At two sites, natroalunite precipitation followed that of alunite. 40 Ar-39Ar dates for alunite (23 Ma) and natroalunite (21 Ma) veins associated with pulverulent, supergene hematite at the top of the Cerro Verde pit, record the time of oxidation and leaching of a preexisting chalcocite blanket (Fig. 6). This older, enriched blanket and its associated higher-altitude leached zone were eroded by the Santa Rosa pediment that, therefore, is inferred to have formed after 21 Ma. The ca. 23 Ma alunite (SURF-111b) and 21 Ma natroalunite (SURF111a) veins are inferred to have formed beneath the older La Caldera surface, represented by remanent accordant summits overlooking the Santa Rosa pediment. Natroalunite and alunite dated at 12.6 to 4.9 Ma were subsequently generated in the course of continued or, more probably, renewed leaching (a) A 2738 m 2723 m 2708 m 2693 m 2678 m 2663 m Santa Rosa Two natroalunites from the Santa Rosa deposit gave ca. 26 Ma dates (Figs. 7 and 8; Table 2b). Duplicate analyses of SURF-112 from the chalcocite zone (2588 m level) yielded concordant plateau ages of 26.2 ± 0.8 and 26.8 ± 1.7 Ma, representing 95.7 and 100 percent, respectively, of the total 39Ar released (Fig. 7a, b). In contrast, the two age spectra for SURF-113, from the slightly deeper transitional zone (2573 m level), display progressively decreasing apparent ages toward higher-temperature steps. Such complex spectra may either record 39Ar recoil or the occurrence of two or more alunite-group minerals with different Ar-retention temperatures (Vasconcelos et al., 1994; Bouzari and Clark, 2002). In the former case, the highest-temperature steps would yield maximum crystallization ages (25.5 ± 0.6 and 26.4 ± 0.8 Ma; Fig. 7c, d) and, in the latter, would reveal the presence of separate minerals with ages of ca. 28 to 29 and 26 Ma. The natroalunites are interpreted as recording deep (ca. 300–350 m) penetration of supergene solutions beneath the La Caldera surface, remnants of which are preserved on ca. 2,900 m a.s.l. summits. A minimum age for this surface is constrained by the ca. 26 Ma natroalunites associated with chalcocite mineralization in the Santa Rosa pit on the 2588 m 2753 m 2723 m 2708 m 2693 m 2678 m 2663 m 2648 m 2633 m 2618 m m 2603 m 2603 2588 m m 2588 26032603 m m 2588 m 2588 2588 m 2738 m 2648 m 2633 m 2618 m 2603 m SURF-109, 2618 m A’ 2738 m 2708 m 2693 m 2678 m 2663 m 2648 m 2633 m 2618 m 2603 m SURF-111, 2723 m SURF-114, 2648 m 2573 m 2573 m La Caldera Surface Santa Rosa Surface (b) beneath the Santa Rosa pediment. The 1.3 Ma (SURF-109c) and 0.74 Ma (SURF-111c) jarosite veins reflect episodes of minor supergene activity under hyperarid conditions beneath the fossilized landscape, and were probably not associated with significant Cu mobility. SURF-111a, na 20.6±0.3 Ma, 21.2±0.3 Ma SURF-111b, al 23.3±0.3Ma SURF-111c, ja 0.74±0.05 Ma SURF-110, al 36.1-38.8 Ma, na 24.4-28.0 Ma SURF-109a, na 4.9±0.3 Ma SURF-109b, al 6.7±0.2 Ma, 6.5±0.2 Ma SURF-109c, ja 1.32±0.15 Ma SURF-114, na 12.0±0.5 Ma, 12.6±0.9 Ma Hypogene Zone Transition Zone Chalcocite Zone Hematite Leached Cap Hematite-Goethite Leached Cap Jarositic Leached Cap SURF-111a Sample number Oxide Zone 2738 m Bench level (m a.s.l.) Unconsolidated 20.6±0.3 Ma Plateau age (37.3±3.3 Ma) Minimum age Material al Alunite na Natroalunite ja Jarosite FIG. 6. a. Panorama of Cerro Verde pit, looking southwest (245°), in August, 2001, showing the bench elevations (m a.s.l.). b. Sketch showing the distribution of supergene facies and locations of 40Ar-39Ar dates discussed in the text. The leached cap is dominated by hematite with local jarosite. Local faulting coupled with the presence of highly permeable breccia bodies may have caused the complexities in the spatial distribution of supergene facies (e.g., chalcocite enrichment occurs on the 2618 m bench adjacent to hypogene mineralization). Dashed lines show remnants of the La Caldera surface and the subplanar Santa Rosa pediment. 0361-0128/98/000/000-00 $6.00 1689 1690 (a) SURF 112, Natroalunite (b) SURF 112, Natroalunite (2) 40 60 Integrated Age: 26.8±1.7 Ma 30 PA = 26.2±0.8 40 20 10 20 Integrated Age: 27.2±0.9 Ma 0 0.0 Fraction Ar (c) SURF 113, Natroalunite PA = 26.8±1.7 0 0.0 1.0 39 40 1.0 (d) SURF 113, Natroalunite (2) 30 30 20 20 25.5±0.6 Ma 10 26.4±0.8 Ma 10 0 0.0 Integrated Age: 26.9±0.3 Ma Integrated Age: 27.4±0.3 Ma 0 1.0 0.0 1.0 FIG. 7. 40Ar-39Ar step-heating age spectra for supergene alunite group minerals from Santa Rosa. PA = plateau age. (a) B B’ 2678 m 2663 m 2648 m 2633 m 2618 m 2603 m 2588 2573 m (b) La Caldera surface Santa Rosa surface SURF-112, na 26.8±1.7 Ma, 26.2±0.8 Ma Landform correlations A simple landform chronology for the Cerro Verde-Santa Rosa district is implied by the supergene 40Ar-39Ar data presented above. The La Caldera surface, represented by remnant accordant summits, is inferred to have reached its final configuration before ca. 26 Ma. The Santa Rosa pediment, comprising broad, subplanar valley floors on which the Cerro Verde and Santa Rosa deposits crop out, is no older than 21 Ma. This landform extends west-southwest along the Quebrada Cerro Verde drainage, to merge with the vast Pampa de La Joya surface to the southwest, the dominant landform in this area of the Pacific piedmont. Evidence for Eocene supergene activity Six analyses of alunite from sample SURF-110, from the 2648 m level of the Cerro Verde pit, yielded age spectra with consistent configurations that record unexpectedly old dates (Table 2a; Appendix 1). The spectra (Fig. 9) are defined by a staircase pattern in the lower-temperature steps and a flatter profile in the mid- to high-temperature steps, exhibiting progressively rising ages with increasing temperature. Two apparent populations of ages, 36.1 ± 0.3 to 38.8 ± 0.7 Ma and 24.4 ± 0.3 to 28.0 ± 0.4 Ma, are recognized in, respectively, the highest-temperature steps and in the lowest-temperature steps that record less than 10 percent atmospheric argon (Table 2a). The spectra would be in permissive agreement with the occurrence of a subordinate younger species, with an age of ≤ 28 Ma, and a dominant species at least 38 to 39 Ma in age (cf. Vasconcelos et al., 1994; Bouzari and Clark, 2002). Whereas cathodoluminescence imaging did not distinguish two phases because of pervasive quenching by Fe, backscattered electron images reveal a network of dark (i.e., low aggregate at. wt) veinlets and patches that cut an extremely fine grained (1–3 µm) intergrowth of zoned crystals with pale SURF-113, na ( 25.5 ± 0.6 Ma), (26.4 ± 0.8 Ma) (a) Oxide Zone Hematite-Goethite Leached Cap Hematite na Leached Cap 6 0 5 0 FIG. 8. a. Panorama of Santa Rosa pit, looking southwest (205°), in August 2001. b. Sketch showing the distribution of supergene facies and 40Ar39 Ar dates. The leached cap is dominated by hematite, with minor goethite. Relatively thin zones of oxide and secondary chalcocite enrichment occur below the leached cap and pass downward to a zone of transitional sulfide mineralization. 4 0 3 0 2 0 1 0 0 0 . 0 1 . 0 F r a c t i o n (c) 60 50 40 30 37.3±3.3 (al) 20 27.5±2.0 (na) 10 Integrated Age: 34.2±0.5 Ma 0 0.0 (d) 6 0 5 0 4 0 1 0 0 0 . 0 (e) 4 0 3 0 2 0 1 0 0 1 . 0 3 9 A r 1 . 0 F r a c t i o n 5 0 F r a c t i o n 3 0 2 0 60 50 40 30 37.2±0.4 (al) 20 28.0±0.4 (na) 10 0 Integrated Age: 33.8±0.3 Ma 0.0 1.0 0 . 0 3 9 A r 60 50 40 30 20 36.1±0.3 (al) 10 26.3±0.4 (na) 0 Integrated Age: 33.8±0.3 Ma 0.0 1.0 1.0 6 0 Age( M a) mine bench, inferred to represent the lower limit of the supergene chalcocite development beneath the La Caldera surface in the late Oligocene. The lack of fault offset of either the Santa Rosa or La Caldera surface in the area of the mines precludes significant relative vertical displacement of the two porphyry centers in the Oligo-Miocene. The occurrence of these upper Oligocene natroalunites more than 150 m below the ca. 23 Ma alunite and ca. 21 Ma natroalunites of SURF111 at Cerro Verde is therefore interpreted as reflecting the importance of local controls on permeability, such as the distribution of breccia bodies and fracture systems, in focusing meteoric fluid flow. 0361-0128/98/000/000-00 $6.00 60 60 50 50 40 40 30 30 37.7±0.4 (al) 38.8±0.7 (al) 20 20 27.4±1.6 (na) 24.4±0.3 (na) 10 10 Integrated Age: 36.2±0.3 Ma Integrated Age: 34.3±0.2 Ma 0 0 0.0 1.0 39 0.0 Fraction Ar 1 .0 Age( M a) Chalcocite Zone SURF-112 Sample number Unconsolidated 2588 m Bench level (m a.s.l.) Material 26.8±1.7 Ma Plateau age Natroalunite (27.4±0.3 Ma) Maximum age Age(M a) Transition Zone Age (Ma) Bonanza Breccia SURF 110, Alunite (al) & N atroalunite (na) (b) Age(M a) Age (Ma) 80 SCIENTIFIC COMMUNICATIONS 3 9 A r (f) 60 50 40 30 37.0±0.4 (al) 20 25.8±0.7 (na) 10 Integrated Age: 34.3±0.2 Ma 0 0.0 1 .0 6 0 5 0 4 0 3 0 2 0 1 0 0 0 . 0 1 . 0 F r a c t i o n 3 9 A r FIG. 9. 40Ar-39Ar step-heating age spectra displaying two populations of ages for porcelaneous alunite veins in sample SURF-110, from the 2648 m level, Cerro Verde. 1690 SCIENTIFIC COMMUNICATIONS cores and darker rims, recording remanent compositional zoning (Fig. 10). Qualitative microprobe analyses (EDS) confirm the presence of phosphorus and strontium in the centers of the zoned alunite crystals. In a similar setting, Stoffregen and Alpers (1987) assigned a supergene origin to cryptocrystalline aluminum-phosphate-sulfate (APS) minerals in late fractures from the leached cap of the La Escondida porphyry deposit on the basis of their grain size and geologic setting. Comparative backscattered electron imaging and microprobe analysis of ca. 6.5 Ma alunite (SURF-109b) also revealed zoned crystals and the presence of phosphorus and calcium. We tentatively accept this as evidence that these elements can occur in supergene alunite, whereas Watanabe and Hedenquist (2001) considered the occurrence of svanbergite and woodhouseite cores in supergene alunite from El Salvador to represent relict hypogene alunite. Elemental X-ray mapping of the Cerro Verde assemblages is precluded by their extremely fine grain size, but the EDS spectra and the modest intensity contrasts in the backscattered electron images (Fig. 10) suggest that the P and Sr in SURF-110 are present in solid solution in the alunite structure rather than as discrete aluminum-phosphate-sulfate minerals. A supergene origin for alunite from this specimen is supported by bulk δ34S values of 6.4 and 7.7 per mil from duplicate analyses, which are similar to the 8.3 per mil determined for hypogene pyrite in the same sample and overlap with the 5.1 to 6.9 per mil values reported by Le Bel (1985) for hypogene pyrite at Cerro Verde. Although the analytical data are probably insufficient to rule out the presence of relict hypogene alunite (see Vasconselos et al., 1994), there is no record of late Eocene-early Oligocene hydrothermal activity in this Andean transect (Clark et al., 1990), and we tentatively conclude that the alunite group minerals in SURF-110 are wholly supergene. The 36.1 to 38.8 Ma dates for alunite from SURF-110 therefore imply that supergene activity was underway by the latest Eocene, probably in response to uplift and erosion during Incaic tectonism (Sandeman et al., 1995). This early episode of deep leaching and sulfate precipitation, controlled by highly permeable structures, occurred long before the late-Oligocene development of the La Caldera surface and the concomitant initial development of the main supergene profile at Cerro Verde and Santa Rosa. Similar late-Eocene to early-Oligocene ages for supergene activity are documented (b) (a) 2µm Pits on surface with edge effects Natroalunite Zoned alunite with APS-rich core FIG. 10. a. Backscattered electron image of pink porcelaneous alunite vein (SURF-110). b. Sketch of the same field, showing zoned crystals of alunite with pale centers, reflecting concentrations of phosphorus and strontium, and irregular veinlets of a “darker” material, inferred to be natroalunite. 0361-0128/98/000/000-00 $6.00 1691 in northern Chile. Thus, at the ca. 51.8 Ma Cerro Colorado deposit, Bouzari and Clark (2000, 2002) recorded a 35.3 ± 0.7 Ma 40Ar-39Ar age for alunite from a hematitic leached cap, and Sillitoe and McKee (1996) determined a K-Ar date of 34.3 ± 1.1 Ma for alunite from jarositic leached cap. Farther south, in the ca. 57.0 Ma Spence deposit, supergene processes were active as early as 44.4 ± 0.5 Ma (Rowland and Clark, 2001). Comparably early initial supergene activity (43.9 ± 2.6 Ma) has been inferred for the El Salvador deposit, near the southern limit of the Atacama Desert, but the significance of the older age data for supergene minerals in this upper Eocene center (Gustafson and Hunt, 1975; Gustafson et al., 2001; Mote et al., 2001) has been questioned by Bouzari and Clark (2002). The 24.4 to 28.0 Ma dates in SURF-110 for the late natroalunite veinlets correspond to the ca. 26 Ma natroalunite dates from Santa Rosa, providing further evidence of leaching and sulfate precipitation during the late Oligocene. Conclusions Porphyry intrusion and hypogene mineralization in the Cerro Verde-Santa Rosa district occurred at ca. 62 Ma, marking the local termination of magmatic activity. Subsequently, supergene activity controlled by local subplanar landforms, as well as by highly permeable breccia zones, generated profiles in the Cerro Verde and Santa Rosa deposits with variable thicknesses and complex age relationships (Fig. 11). Dates of 36.1 to 38.8 Ma for alunite from Cerro Verde are evidence that deeply penetrating supergene processes were in progress locally by the late Eocene, to be subsequently overprinted by 24.4 to 28.0 Ma activity that generated minor natroalunite veinlets. Equivalent ages of 25.5 to 26.8 Ma are also documented for natroalunite from the bottom of the Santa Rosa supergene profile, evidence for ongoing leaching and penetration of supergene solutions at both Cerro Verde and Santa Rosa. The late Oligocene leaching inferred to have occurred beneath the La Caldera surface provides a minimum age of ca. 26 Ma for the final configuration of this landform, which is now preserved as accordant summits including Cerro Verde and Cerro Negro (Fig. 11). The Santa Rosa pediment, comprising broad, subplanar valley floors, subsequently degraded the La Caldera surface, truncating a previously hematitized chalcocite horizon with 21 Ma natroalunite veins now exposed at the top of the Cerro Verde pit. These relationships provide a maximum age of ca. 21 Ma for this erosional surface, beneath which the Cerro Verde profile continued to deepen through the Miocene (Fig. 11). Minor supergene activity persisted into the Pleistocene. Acknowledgments This study, a component of the senior author’s M.Sc. thesis, was funded by Rio Tinto Mining and Exploration Ltd., Lima, Peru, who also provided a graduate bursary to C.X.Q., and by grants to A.H.C. and J.K.W.L. from the Natural Sciences and Engineering Research Council of Canada (NSERC). The dated samples were collected by C.X.Q. in 2001 during a mapping project sponsored by the Society of Economic Geologists: its leaders, William X. Chávez, Jr., and Erich Petersen, provided stimulating discussions in the field. Doug Archibald, Kerry Klassen, Dave Kempson, and Alan Grant assisted with 1691 1692 SCIENTIFIC COMMUNICATIONS SE Santa Rosa deposit NW Cerro Verde deposit Cerro Verde La Caldera surface (> 26 Ma) 36.1 - 38.8 Ma 24.4 - 28.0 Ma (SURF 110) ? 10.9 - 12.6 Ma 20.6 - 23.3 Ma (SURF 111a, b) 4.9 - 6.7 Ma (SURF 114) ? (SURF 109a, b) ? Ma) Santa Rosa surface (< 21 ? ? 100 m 26.9 - 27.4 Ma ? (SURF 113) 26.2 - 26.8 Ma (SURF 112) 0 ? Hypogene Zone Transition Zone Chalcocite Zone Hematite Leached Cap Hematite-Goethite Leached Cap Jarositic Leached Cap 100 m Oxide Zone ? Inferred Fault Preserved Landforms FIG. 11. Idealized cross section, looking southwest, of the Cerro Verde-Santa Rosa supergene profile, summarizing the relationships between supergene mineralization and post-hypogene landform development. Ar-Ar, sulfur isotope, microprobe, and X-ray analyses, respectively. Dave Andrews, Bob Harrington, and Tim Moody at Rio Tinto are thanked for their unstinting support of this research. Paulo Vasconcelos provided an insightful and constructive review of the original manuscript. Permission to publish this study, a contribution to the Queen’s University Central Andean Metallogenetic Project (QCAMP), has been given by Sociedad Minera Cerro Verde S.A. We thank Randy Davenport and Jim Jones for their cooperation. October 22 2002; June 4, 2003 REFERENCES Alpers, C.N., and Brimhall, G.H., 1988, Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida: Geological Society of America Bulletin, v. 100, p. 1640–1656. Anderson, J.A., 1982 Characteristics of leached capping and techniques of appraisal, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits, Southwestern North America: Tucson, University of Arizona Press, p. 275–295. Beckinsale, R.D., Sánchez, A.W., Brook, M., Cobbing, E.J., Taylor, W.P., and Moore, N.D., 1985, Rb-Sr whole-rock isochron and K-Ar age determinations for the Coastal batholith of Peru, in Pitcher, W.S., Atherton, M.P., Cobbing, E.J., and Beckinsale, R.D., eds., Magmatism at a plate edge: The Peruvian Andes: Glasgow, Blackie, p. 250–260. Bouzari, F., and Clark, A.H., 2000, Definition of a protracted history of supergene alteration in the Cerro Colorado porphyry copper deposit, Chile, through Ar-Ar dating of alunite-group minerals [abs.]: Geological Society of America, Abstracts with Programs, v. 32 p. A110. ––––2002 Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Región, northern Chile: ECONOMIC GEOLOGY, v. 97, p. 1701–1740. Cedillo, E., and Wolf, D., 1982 Estudio mineralogico por DRX de las rocas alteradas en la zona de oxidos de Cerro Verde: Boletín de la Sociedad Geológica del Perú, v. 69, p. 19–29. Cedillo, E., Muñoz, C., and Yana, G., 1979, Procesos de alunitizatión en el yacimiento de Cerro Verde: Boletín de la Sociedad Geológica del Perú, v. 62 p. 1–18. Clark, A.H., Farrar, E., Kontak, D.J., Langridge, R.J., Arenas F., M.J., France, L.J., McBride, S.L., Woodman, P.L., Wasteneys, H.A., Sandeman, H.A., and Archibald, D.A., 1990, Geologic and geochronologic constraints on the metallogenic evolution of the Andes of southeastern Peru: ECONOMIC GEOLOGY, v. 85, pp. 1520–1583. 0361-0128/98/000/000-00 $6.00 Ednie, H., 2002 Cerro Verde––continuous improvements mean profit: Canadian Institute of Mining, Metallurgy, and Petroleum Bulletin, v. 95, p. 14–15. Estrada, F., 1969, Edades radiométricas en las cercanías de Cerro Verde: Tésis Ingeniería, Universidad Nacional San Agustín, Arequipa, Perú. ––––1978, Edades K-Ar de los principales eventos geológicos de Cerro Verde: Lima, Perú, Boletín del Instituto Científico y Tecnológico Minero, p. 1–15. Gustafson, L.B., and Hunt, J.P., 1975, The porphyry copper deposit at El Salvador, Chile: ECONOMIC GEOLOGY, v. 70, p. 857–912. Gustafson, L.B., Orquera, W., McWilliams, M., Castro, M., Olivares, O., Rojas, G., Maleunda, J., and Mendez, M., 2001, Multiple centers of mineralization in the Indio Muerto district, El Salvador, Chile: ECONOMIC GEOLOGY, v. 96, p. 325–350. Jenks, W.F., 1948, Geología de la Hoja de Arequipa: Instituto Geológico del Perú, Boletín no. 9, 204 p. Kihien, C.A., 1975, Alteración y su relación con la mineralización en el pórfido de cobre de Cerro Verde: Boletín de la Sociedad Geológica del Perú, v. 46, p. 103–126. Le Bel, L.M., 1985, Mineralization in the Arequipa segment: The porphyry Cu deposit of Cerro Verde/Santa Rosa, in Pitcher, W.S., Atherton, M.P., Cobbing, E.J., and Beckinsale, R.D., eds., Magmatism at a plate edge: The Peruvian Andes: Glasgow, Blackie, p. 250–260. Love, D.A., Clark, A.H., Hodgson, C.J., Mortensen, J.K., and Archibald, D.A., 1998, The timing of adularia-sericite-type and alunite-kaolinite-type alteration, Mount Skukum epithermal gold deposit, Yukon Territory, Canada: ECONOMIC GEOLOGY, v. 93, p. 437–462. Mote, T.I., Becker, T.A., Renne, P., and Brimhall, G.H., 2001, Chronology of exotic mineralization at El Salvador, Chile by 40Ar/39Ar dating of copper wad and supergene alunite: ECONOMIC GEOLOGY, v. 96, p. 351–366. Mukasa, S.B., 1986, Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes: Geological Society of America Bulletin, v. 97, p. 241–254. Mukasa, S.B., and Tilton, G.R., 1985, Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes, in Pitcher, W.S., Atherton, M.P., Cobbing, E.J., and Beckinsale, R.D., eds., Magmatism at a plate edge: The Peruvian Andes: Glasgow, Blackie, p. 203–207. Perea, E., Bedoya, R., and Valencia, F., 1983, Geología económica de Cerro Verde: Universidad Nacional del Centro, Anales del IV Symposium Nacional de Minería, Huancayo, Peru, p. 123–129. Phelps Dodge, 2000, Geología de los pórfidos de cobre Cerro Verde y Santa Rosa, Arequipa, Perú: Arequipa, Departmento de Geología, Sociedad Minera Cerro Verde S.A., 21 p. Pitcher, W.S., Atherton, M.P., Cobbing, E.J., and Beckinsale, R.D., eds., 1985, Magmatism at a plate edge: The Peruvian Andes: Glasgow, Blackie, 328 p. 1692 1693 SCIENTIFIC COMMUNICATIONS Rowland, M., and Clark, A.H., 2001, Temporal overlap of supergene alteration and high-sulfidation mineralization in the Spence porphyry copper deposit, II Región, Chile [abs.]: Geological Society of America, Abstracts with Programs, v. 33, p. A-358. Sandeman, H.A., Clark, A.H., and Farrar, E., 1995, An integrated tectonomagmatic model for the evolution of the southern Peruvian Andes (13°–20°S) since 55 Ma: International Geology Review, v. 37, p. 1039–1037. Sandeman, H.A., Archibald, D.A., Grant, J.W., Villeneuve, M.E., and Ford, F.D., 1999, Characterization of the chemical composition and 40Ar-39Ar systematics of intralaboratory standard MAC-83 biotite, in Radiogenic Age and Isotopic Studies: Report 12 Geological Survey of Canada––Current Research 1999-F, p. 13–26. Sillitoe, R.H., and McKee, E.H., 1996, Age of supergene oxidation and enrichment in the Chilean porphyry copper province: ECONOMIC GEOLOGY, v. 91, p. 164–179. Stewart, J.W., 1968, Rocas intrusivas del Cuadrángulo de La Joya: Servicios Geología y Minería, Perú Boletín 19, p. 43–95. Stoffregen, R.E., and Alpers, C.N., 1987, Woodhouseite and svanbergite in hydrothermal ore deposits: Products of apatite destruction during advanced argillic alteration: Canadian Mineralogist, v. 25, p. 201–211. Tosdal, R.M., Clark, A.H., and Farrar, E., 1984, Cenozoic polyphase landscape and tectonic evolution of the Cordillera occidental, southernmost Peru: Geological Society of America Bulletin, v. 95, p. 1318–1332. Vasconcelos, P.M., 1999, K-Ar and 40Ar-39Ar geochronology of weathering processes: Annual Review of Earth Planetary Sciences, v. 27, p. 133–229. Vasconcelos, P.M., Brimhall, G.H., Becker, T.A., and Renne, P.R., 1994, 40Ar39 Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and West Africa: Geochimica et Cosmochimica Acta, v. 58, p. 401–420. Wasteneys, H.A., Clark, A.H., Farrar, E., and Langridge, R.J., 1995, Grenvillian granulite-facies metamorphism in the Arequipa Massif, Peru: A Laurentia-Gondwana link: Earth and Planetary Science Letters, v. 132 p. 63–73. Watanabe, Y., and Hedenquist, J.W., 2001, Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile: ECONOMIC GEOLOGY, v. 96, p. 1775–1797. Zweng, P.L., and Clark, A.H., 1995, Hypogene evolution of the Toquepala porphyry copper-molybdenum deposit, Moquegua, southeastern Peru: Arizona Geological Society Digest 20, p. 566–612. Appendix 1 40Ar-39Ar Laser1 Power (watts) 40Ar/39Ar Isotope ratios 38Ar/39Ar 37Ar/39Ar Analytical Data 36Ar/39Ar Ca/K Cl/K 40Ar (%) 39Ar (%) 40Ar*/39Ar K Age ± 2σ a. Hydrothermal sericites from Cerro Verde and Santa Rosa SURF-110, sericite, J = 0.002426 ± 0.000072; volume 39ArK = 20.07 × 10–10cm3, integrated age = 61.80 ± 3.27 Ma (2σ) 0.75 1831.466 ± 0.329 1.326 ± 0.367 0.168 ± 1.688 6.472 ± 0.330 1.052 0.024 101.67 0.83 -32.215 ± 64.791 -146.81 ± 307.61 0.90> 1250.463 0.041 0.912 0.090 0.057 0.941 4.283 0.044 0.357 0.023 98.42 0.79 20.931 24.246 89.36 100.99 1.10> 512.848 0.033 0.370 0.082 0.021 1.134 1.714 0.036 0.116 0.007 95.98 1.61 21.230 8.666 90.61 36.07 1.30> 331.933 0.018 0.240 0.084 0.019 0.928 1.086 0.025 0.105 0.004 93.83 1.77 21.065 6.155 89.92 25.63 <1.60> 142.716 0.010 0.106 0.103 0.007 0.604 0.444 0.022 0.028 0.001 88.98 3.39 15.998 2.590 68.69 10.91 <2.00> 67.648 0.007 0.057 0.072 0.004 0.714 0.185 0.024 0.022 0.002 78.27 6.90 14.840 1.307 63.81 5.52 <3.00> 29.978 0.005 0.026 0.068 0.002 0.353 0.054 0.022 0.012 0.000 51.87 20.06 14.513 0.356 62.43 1.51 <4.00> 20.291 0.004 0.020 0.063 0.002 0.531 0.021 0.044 0.010 0.000 29.52 19.70 14.379 0.287 61.86 1.22 <5.00> 18.508 0.004 0.019 0.089 0.001 0.799 0.015 0.053 0.006 0.000 21.80 17.07 14.564 0.241 62.64 1.02 <7.00> 18.893 0.004 0.019 0.069 0.002 0.240 0.017 0.053 0.009 0.000 25.27 27.88 14.190 0.272 61.06 1.15 SURF-111, sericite, J = 0.002426 ± 0.000064; volume 39ArK = 26.70 × 10–10cm3, integrated age = 56.22 ± 5.54 Ma (2σ) 0.50> 669.039 ± 0.050 0.525 ± 0.179 0.021 ± 1.787 2.304 ± 0.062 0.119 0.019 99.09 3.22 6.161 ± 25.857 0.75> 502.677 0.034 0.394 0.141 0.038 1.245 1.719 0.043 0.227 0.014 98.47 3.92 7.770 14.006 1.00> 345.413 0.037 0.279 0.187 0.027 0.828 1.197 0.046 0.158 0.010 99.71 5.21 0.994 9.872 <1.25> 387.986 0.022 0.294 0.087 0.014 0.614 1.298 0.031 0.069 0.009 96.24 3.11 14.797 8.631 <1.50> 330.103 0.018 0.252 0.084 0.012 1.394 1.099 0.024 0.055 0.007 95.64 2.43 14.609 5.416 <1.75> 210.627 0.012 0.171 0.100 0.008 1.450 0.693 0.024 0.034 0.006 94.64 3.99 11.414 4.371 <2.00> 162.036 0.010 0.127 0.057 0.008 0.800 0.519 0.018 0.035 0.004 92.00 4.08 13.091 2.343 <2.25> 134.685 0.014 0.109 0.075 0.006 0.477 0.422 0.030 0.024 0.003 90.12 3.48 13.477 3.348 <2.50> 92.503 0.010 0.077 0.081 0.004 1.254 0.274 0.030 0.006 0.003 85.10 4.28 13.938 2.368 <3.00> 57.729 0.007 0.050 0.080 0.005 0.271 0.151 0.019 0.026 0.002 74.79 8.62 14.657 0.843 <4.00> 33.782 0.005 0.033 0.062 0.003 0.390 0.067 0.030 0.013 0.002 56.38 14.18 14.819 0.594 <5.00> 33.111 0.006 0.033 0.066 0.002 0.638 0.066 0.033 0.008 0.001 56.48 13.10 14.498 0.640 <6.00> 31.609 0.005 0.031 0.061 0.002 0.613 0.061 0.022 0.008 0.001 54.79 13.48 14.376 0.400 <8.00> 25.511 0.005 0.028 0.077 0.002 0.471 0.040 0.024 0.011 0.001 44.14 16.90 14.319 0.293 26.77 ± 111.50 33.69 60.17 4.34 43.10 63.63 36.47 62.83 22.89 49.28 18.61 56.40 9.94 58.04 14.19 59.99 10.02 63.04 3.56 63.72 2.51 62.36 2.71 61.85 1.69 61.61 1.24 SURF-119, sericite, J = 0.002195 ± 0.000014; volume 39ArK = 0.72 × 10–10cm3, integrated age = 60.71 ± 1.51 Ma (2σ) <1.00> 16.534 ± 0.047 0.104 ± 0.473 0.069 ± 0.326 0.067 ± 0.293 0.109 0.005 9.21 2.69 <3.00> 16.330 0.008 0.029 0.122 0.008 0.239 0.006 0.208 0.022 0.002 5.13 46.55 <5.00> 15.925 0.007 0.032 0.159 0.007 0.275 0.006 0.227 0.013 0.003 2.68 42.26 7.00> 15.783 0.018 0.060 0.251 0.029 0.269 0.026 0.287 0.047 0.006 12.46 8.51 66.85 ± 27.54 60.91 1.47 61.05 1.68 56.00 9.20 0361-0128/98/000/000-00 $6.00 1693 17.197 ± 7.216 15.644 0.383 15.681 0.439 14.364 2.397 1694 SCIENTIFIC COMMUNICATIONS Appendix (Cont.) Laser1 Power (watts) 40Ar/39Ar Isotope ratios 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K 40Ar (%) 39Ar (%) 40Ar*/39Ar K Age ± 2σ b. Supergene alunite-group minerals from Cerro Verde SURF-111a, natroalunite, J = 0.002413 ± 0.000010; volume 39ArK = 64.05 × 10–10cm3, integrated age = 19.50 ± 0.45 Ma (2σ) 0.30 181.047 ± 0.023 0.154 ± 0.133 0.012 ± 1.417 0.685 ± 0.035 0.004 0.002 107.10 0.27 -13.397 ± 5.779 0.75 18.961 0.004 0.059 0.023 0.001 0.991 0.055 0.030 0.003 0.008 82.61 15.57 3.287 0.493 <1.00> 9.052 0.004 0.063 0.017 0.001 0.648 0.015 0.037 0.002 0.010 48.67 23.16 4.641 0.170 <1.25> 7.621 0.004 0.060 0.013 0.001 0.375 0.010 0.057 0.003 0.010 36.84 17.62 4.806 0.170 <1.50> 6.734 0.004 0.065 0.013 0.001 0.570 0.007 0.071 0.002 0.011 28.74 13.19 4.787 0.149 <2.00> 8.759 0.005 0.062 0.023 0.003 0.396 0.014 0.083 0.005 0.010 43.20 4.03 4.948 0.351 <4.00> 6.052 0.004 0.068 0.011 0.001 0.415 0.004 0.091 0.002 0.012 20.12 24.96 4.827 0.120 6.00 14.791 0.007 0.069 0.065 0.005 0.726 0.034 0.123 0.008 0.011 59.19 1.19 5.999 1.252 -59.28 ± 26.00 14.25 2.13 20.09 0.73 20.80 0.73 20.72 0.64 21.41 1.51 20.89 0.52 25.93 5.37 SURF-111a, natroalunite, J = 0.002413 ± 0.000010; volume 39ArK = 90.39 × 10–10cm3, integrated age = 20.08 ± 0.34 Ma (2σ) 0.50 188.629 ± 0.041 0.186 ± 0.187 0.020 ± 1.635 0.671 ± 0.072 0.000 0.007 99.42 0.06 1.155 ± 12.748 0.75 194.660 0.016 0.168 0.081 0.008 1.487 0.715 0.029 0.000 0.003 104.45 0.17 -8.994 5.459 1.00 66.329 0.006 0.064 0.059 0.001 2.458 0.226 0.017 0.001 0.002 97.67 2.35 1.530 1.084 1.20 40.133 0.005 0.050 0.039 0.001 1.321 0.135 0.020 0.002 0.002 96.47 2.66 1.397 0.799 1.50 38.400 0.005 0.054 0.040 0.002 1.160 0.125 0.018 0.005 0.004 93.19 3.42 2.605 0.671 <1.75> 13.665 0.003 0.055 0.026 0.001 1.022 0.031 0.023 0.002 0.008 65.60 11.57 4.694 0.220 <2.00> 8.141 0.003 0.059 0.018 0.000 1.226 0.011 0.036 0.001 0.010 39.84 27.43 4.892 0.124 <2.20> 7.242 0.003 0.061 0.020 0.000 0.851 0.008 0.044 0.002 0.010 31.20 26.13 4.975 0.106 <2.40> 8.640 0.003 0.064 0.018 0.001 0.521 0.013 0.038 0.003 0.011 43.04 12.09 4.910 0.148 <3.00> 8.879 0.003 0.063 0.021 0.001 0.370 0.014 0.033 0.005 0.011 44.13 9.52 4.947 0.139 4.20 9.785 0.003 0.064 0.020 0.002 0.391 0.016 0.039 0.006 0.011 46.16 4.59 5.242 0.190 5.02 ± 55.34 -39.59 24.29 6.65 4.70 6.07 3.47 11.31 2.90 20.32 0.95 21.17 0.53 21.53 0.46 21.25 0.64 21.41 0.60 22.67 0.82 SURF-111b, alunite, J = 0.002417 ± 0.000012; volume 39ArK = 138.16 × 10–10cm3, integrated age = 24.06 ± 0.39 Ma (2σ) 0.50 39.941 ± 0.162 0.253 ± 0.558 0.166 ± 0.726 0.227 ± 0.497 0.006 0.013 79.05 0.00 34.947 ± 181.043 146.29 ± 727.95 0.75 152.370 0.099 0.233 0.355 0.098 0.792 0.594 0.150 0.011 0.003 101.58 0.01 -4.712 40.037 -20.66 176.59 1.00 273.501 0.045 0.259 0.130 0.043 0.768 0.948 0.057 0.021 0.008 96.74 0.04 11.247 12.397 48.39 52.63 2.00 345.202 0.045 0.261 0.082 0.008 1.402 1.152 0.048 0.041 0.007 95.91 0.75 14.272 5.231 61.18 22.05 2.50 33.942 0.006 0.056 0.041 0.001 1.571 0.096 0.017 0.005 0.005 81.51 8.17 6.286 0.480 27.21 2.06 2.75 11.786 0.003 0.040 0.028 0.001 0.327 0.022 0.020 0.003 0.005 52.69 16.41 5.581 0.132 24.17 0.57 <3.00> 8.670 0.003 0.040 0.028 0.001 0.343 0.011 0.037 0.004 0.005 38.11 30.36 5.368 0.127 23.26 0.55 <3.20> 9.091 0.003 0.042 0.025 0.001 0.477 0.013 0.024 0.005 0.006 40.94 28.63 5.372 0.095 23.27 0.41 <3.40> 10.258 0.003 0.043 0.020 0.001 0.652 0.017 0.031 0.005 0.006 47.47 11.51 5.392 0.160 23.36 0.69 <3.60> 12.890 0.004 0.047 0.032 0.002 0.256 0.026 0.029 0.008 0.006 57.59 4.12 5.473 0.224 23.71 0.96 SURF-111c, jarosite, J = 0.002188 ± 0.000014; volume 39ArK = 51.09 × 10–10cm3, integrated age = 0.72 ± 0.03 Ma (2σ) 0.50 2.004 ± 0.003 0.015 ± 0.027 0.001 ± 0.188 0.006 ± 0.018 0.002 -0.000 91.54 15.19 <1.00> 0.567 0.007 0.014 0.030 0.001 0.105 0.001 0.030 0.002 -0.000 63.67 29.62 <1.50> 0.361 0.004 0.013 0.019 0.000 0.255 0.001 0.059 0.000 -0.000 36.57 30.76 <2.00> 0.428 0.004 0.013 0.027 0.000 0.359 0.001 0.073 0.000 -0.000 48.66 12.06 2.50 0.437 0.006 0.013 0.036 0.000 0.280 0.001 0.118 0.001 -0.000 36.30 9.36 3.00 0.605 0.021 0.016 0.060 0.002 0.185 0.002 0.123 0.006 0.000 66.45 3.02 0.140 ± 0.035 0.175 0.013 0.198 0.009 0.186 0.019 0.241 0.029 0.160 0.077 0.55 ± 0.14 0.69 0.05 0.78 0.04 0.73 0.08 0.95 0.11 0.63 0.31 SURF-114, natroalunite, J = 0.002147 ± 0.000018; volume 39ArK = 28.28 × 10–10cm3, integrated age = 11.86 ± 0.56 Ma (2σ) 0.50> 499.571 ± 0.024 0.440 ± 0.061 0.054 ± 0.178 1.805 ± 0.028 0.132 0.016 103.61 0.26 -19.556 ± 8.597 1.00 99.825 0.007 0.187 0.044 0.011 0.178 0.340 0.016 0.037 0.025 98.29 5.30 1.689 1.466 <1.50> 15.820 0.004 0.109 0.022 0.003 0.128 0.044 0.015 0.012 0.020 81.07 30.85 2.979 0.199 <2.00> 13.759 0.004 0.107 0.022 0.004 0.066 0.037 0.016 0.014 0.020 77.48 27.87 3.083 0.179 <2.50> 16.035 0.004 0.126 0.016 0.005 0.067 0.044 0.016 0.018 0.024 79.13 24.05 3.334 0.204 3.00 22.508 0.005 0.154 0.018 0.007 0.076 0.065 0.017 0.024 0.029 83.37 8.34 3.736 0.323 5.00 45.269 0.005 0.169 0.032 0.010 0.097 0.143 0.016 0.032 0.029 90.67 3.33 4.228 0.658 -77.38 ± 34.76 6.53 5.66 11.50 0.77 11.90 0.69 12.87 0.78 14.41 1.24 16.30 2.53 SURF-114, natroalunite, J = 0.002425 ± 0.000028; volume 39ArK = 17.76 × 10–10cm3, integrated age = 12.51 ± 1.09 Ma (2σ) 0.50 377.362 ± 0.092 0.411 ± 0.384 0.110 ± 1.233 1.373 ± 0.138 0.456 0.044 95.90 0.06 21.987 ± 59.974 1.00 1230.844 0.049 0.903 0.102 0.011 6.713 4.352 0.052 0.024 0.020 101.52 0.60 -19.568 24.905 <1.50> 30.918 0.005 0.126 0.026 0.002 0.346 0.098 0.016 0.014 0.021 91.23 23.65 2.701 0.447 <1.75> 16.613 0.004 0.120 0.022 0.003 0.231 0.048 0.027 0.014 0.022 81.97 29.40 2.984 0.382 <2.00> 11.127 0.004 0.108 0.017 0.003 0.151 0.029 0.021 0.018 0.020 73.38 34.12 2.949 0.184 2.25 22.698 0.006 0.142 0.025 0.005 0.273 0.067 0.028 0.027 0.026 83.71 12.17 3.696 0.555 93.71 ± 249.10 -87.71 114.39 11.78 1.94 13.01 1.66 12.86 0.80 16.10 2.40 SURF-109a, natroalunite, J = 0.002403 ± 0.000014; volume 39ArK = 50.96 × 10–10cm3, integrated age = 4.68 ± 0.38 Ma (2σ) 0.50 307.469 ± 0.022 0.304 ± 0.111 0.032 ± 0.458 1.103 ± 0.031 0.011 0.018 101.38 0.18 -4.780 ± 7.746 1.00 170.257 0.015 0.169 0.060 0.012 0.427 0.602 0.022 0.054 0.009 101.41 1.67 -2.482 3.057 <1.50> 8.252 0.003 0.076 0.017 0.003 0.074 0.024 0.017 0.017 0.013 85.02 42.52 1.213 0.122 <1.70> 4.240 0.003 0.081 0.014 0.002 0.099 0.011 0.021 0.011 0.015 74.61 36.47 1.052 0.072 -20.84 ± 33.97 -10.79 13.33 5.25 0.53 4.56 0.31 0361-0128/98/000/000-00 $6.00 1694 1695 SCIENTIFIC COMMUNICATIONS Appendix (Cont.) Laser1 Power (watts) <1.90> 2.50> 40Ar/39Ar Isotope ratios 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K 6.212 0.003 13.140 0.007 0.107 0.015 0.106 0.043 0.004 0.116 0.016 0.164 0.018 0.023 0.041 0.061 0.022 0.070 0.020 0.019 40Ar (%) 81.29 84.70 39Ar (%) 17.72 1.44 40Ar*/39Ar K Age ± 2σ 1.139 0.123 2.010 0.758 4.93 0.53 8.69 3.27 SURF-109b, alunite, J = 0.002397 ± 0.000018; volume 39ArK = 50.61 × 10–10cm3, integrated age = 5.35 ± 2.44 Ma (2σ) 0.75> 420.870 ± 0.060 0.349 ± 0.128 0.071 ± 0.663 1.497 ± 0.072 0.198 0.013 102.40 3.12 -10.205 ± 18.067 <1.00> 7.100 0.004 0.039 0.016 0.024 0.028 0.019 0.034 0.067 0.005 76.05 17.61 1.677 0.195 <1.25> 2.349 0.003 0.032 0.010 0.016 0.016 0.003 0.064 0.045 0.004 34.01 32.21 1.524 0.056 <1.50> 2.036 0.003 0.030 0.013 0.017 0.021 0.002 0.149 0.048 0.004 23.90 20.82 1.518 0.085 <2.00> 1.904 0.004 0.029 0.021 0.019 0.036 0.002 0.295 0.053 0.003 20.91 9.99 1.462 0.160 4.00 5.005 0.006 0.033 0.086 0.026 0.103 0.006 0.331 0.071 0.004 25.73 2.23 3.624 0.622 <7.00> 2.083 0.004 0.031 0.017 0.016 0.030 0.002 0.203 0.045 0.004 20.18 14.03 1.627 0.110 SURF-109c, jarosite, J = 0.002210 ± 0.000012; volume 39ArK = 36.28 × 10–10cm3, integrated age = 1.56 ± 0.42 Ma (2σ) 0.50> 27.797 ± 0.004 0.057 ± 0.031 0.000 ± 0.515 0.094 ± 0.015 0.001 0.006 98.14 25.14 <1.00> 3.435 0.003 0.060 0.014 0.000 0.226 0.011 0.016 0.001 0.010 89.93 42.18 <1.50> 2.934 0.003 0.071 0.012 0.000 0.231 0.009 0.017 0.001 0.013 86.67 21.43 2.50 5.078 0.004 0.077 0.026 0.001 0.227 0.016 0.021 0.003 0.014 89.68 6.05 4.00 4.070 0.005 0.078 0.025 0.001 0.281 0.013 0.029 0.004 0.014 86.94 5.20 0.489 ± 0.403 0.317 0.051 0.362 0.046 0.494 0.103 0.501 0.109 -44.68 ± 80.09 7.24 0.84 6.58 0.24 6.55 0.37 6.31 0.69 15.60 2.67 7.02 0.47 1.95 ± 1.61 1.26 0.20 1.44 0.18 1.97 0.41 2.00 0.44 c. Supergene alunite-group minerals from Santa Rosa SURF-112, natroalunite, J = 0.002420 ± 0.000014; volume 39ArK = 6.58 × 10–10cm3, integrated age = 26.82 ± 1.69 Ma (2σ) 0.50> 14.300 ± 0.016 0.683 ± 0.025 0.555 ± 0.025 0.036 ± 0.278 1.614 0.159 61.20 4.93 5.459 ± 3.135 <1.00> 10.353 0.005 1.243 0.006 0.581 0.008 0.016 0.073 1.635 0.282 42.74 42.91 5.911 0.363 <1.25> 10.797 0.009 1.115 0.012 0.591 0.013 0.018 0.270 1.689 0.257 36.59 10.56 6.745 1.510 <2.50> 12.217 0.010 1.078 0.013 0.568 0.016 0.023 0.274 1.632 0.249 46.05 8.81 6.509 1.905 <5.00> 11.704 0.005 1.090 0.007 0.600 0.009 0.019 0.093 1.698 0.248 43.89 27.59 6.549 0.541 7.00> 10.828 0.015 1.118 0.019 0.581 0.022 0.024 0.437 1.693 0.264 46.52 5.20 5.611 3.302 23.68 ± 13.51 25.62 1.56 29.21 6.49 28.19 8.19 28.37 2.33 24.33 14.22 SURF-112, natroalunite, J = 0.002420 ± 0.000014; volume 39ArK = 6.29 × 10–10cm3, integrated age = 27.25 ± 0.92 Ma (2σ) 0.50 27.377 ± 0.114 0.362 ± 0.624 0.223 ± 0.451 0.193 ± 0.536 1.724 0.108 73.98 0.11 11.232 ± 60.543 1.00 18.736 0.022 0.576 0.060 0.232 0.087 0.066 0.223 1.361 0.131 64.79 1.46 6.782 4.678 <1.50> 7.917 0.007 1.002 0.011 0.243 0.019 0.010 0.173 1.426 0.227 28.10 12.59 5.676 0.537 <2.00> 9.651 0.004 1.325 0.007 0.236 0.011 0.014 0.040 1.390 0.300 38.37 54.12 5.955 0.169 <2.25> 10.726 0.004 1.030 0.008 0.226 0.011 0.017 0.090 1.331 0.233 40.58 28.98 6.387 0.446 3.00 16.739 0.016 0.278 0.079 0.098 0.096 0.022 0.388 0.554 0.061 16.71 2.73 14.254 2.640 48.38 ± 257.33 29.37 20.09 24.61 2.31 25.81 0.73 27.67 1.92 61.18 11.14 SURF-113, natroalunite, J = 0.002423 ± 0.000020; volume 39ArK = 34.07 × 10–10cm3, integrated age = 26.88 ± 0.32 Ma (2σ) 0.50 7.998 ± 0.011 0.259 ± 0.052 0.067 ± 0.072 0.016 ± 0.402 0.362 0.055 29.95 0.90 5.565 ± 1.964 1.00 7.572 0.005 0.271 0.012 0.053 0.023 0.005 0.164 0.300 0.059 13.64 6.98 6.541 0.245 1.25 7.229 0.004 0.309 0.013 0.048 0.022 0.003 0.162 0.273 0.067 9.50 12.57 6.548 0.152 1.50 7.052 0.003 0.313 0.011 0.048 0.020 0.003 0.116 0.273 0.068 10.10 19.58 6.345 0.106 1.75 6.905 0.003 0.301 0.009 0.048 0.017 0.003 0.102 0.276 0.066 10.38 31.35 6.195 0.090 2.00 6.657 0.003 0.287 0.011 0.051 0.017 0.003 0.074 0.294 0.062 11.90 27.34 5.869 0.072 2.50 6.644 0.009 0.221 0.046 0.074 0.050 0.009 0.474 0.408 0.046 9.04 1.27 6.013 1.233 24.16 ± 8.47 28.37 1.06 28.40 0.66 27.53 0.46 26.88 0.39 25.47 0.31 26.09 5.31 SURF-113, natroalunite, J = 0.002423 ± 0.000020; volume 39ArK = 31.12 × 10–10cm3, integrated age = 27.37 ± 0.32 Ma (2σ) 0.50 8.327 ± 0.010 0.281 ± 0.031 0.071 ± 0.059 0.017 ± 0.247 0.377 0.061 37.42 1.11 5.150 ± 1.260 1.00 7.758 0.004 0.282 0.014 0.057 0.032 0.006 0.154 0.331 0.061 17.52 5.43 6.384 0.299 1.25 7.486 0.003 0.306 0.008 0.048 0.015 0.004 0.118 0.281 0.067 11.32 14.68 6.640 0.127 1.50 7.280 0.003 0.326 0.011 0.049 0.018 0.003 0.133 0.288 0.071 10.69 20.92 6.504 0.132 1.75 7.127 0.003 0.326 0.008 0.051 0.017 0.003 0.058 0.300 0.071 12.23 29.62 6.259 0.063 3.00 6.988 0.003 0.313 0.009 0.053 0.015 0.004 0.088 0.312 0.068 13.04 28.23 6.080 0.095 22.37 ± 5.44 27.69 1.29 28.79 0.55 28.21 0.57 27.15 0.27 26.38 0.41 d. Alunite sample SURF-110 from Cerro Verde SURF-110, alunite, J = 0.002409 ± 0.000012; volume 39ArK = 115.45 × 10–10cm3, integrated age = 36.17 ± 0.25 Ma (2σ) 0.75 35.254 ± 0.038 0.083 ± 0.440 0.056 ± 0.448 0.136 ± 0.158 0.270 -0.004 93.56 0.04 2.583 ± 7.628 1.50 82.325 0.031 0.111 0.178 0.043 0.323 0.300 0.076 0.142 0.005 103.30 0.07 -3.054 6.936 2.50 9.625 0.004 0.030 0.039 0.014 0.049 0.012 0.053 0.091 0.003 34.00 2.79 6.352 0.188 3.00 8.484 0.004 0.023 0.036 0.011 0.052 0.002 0.138 0.069 0.002 5.98 6.66 7.989 0.088 3.50 8.802 0.003 0.022 0.041 0.012 0.044 0.001 0.326 0.079 0.002 3.09 6.47 8.558 0.125 4.25 7.832 0.003 0.023 0.034 0.011 0.038 0.001 0.352 0.072 0.002 2.56 10.40 7.651 0.095 5.00 8.383 0.003 0.021 0.037 0.009 0.062 0.001 0.293 0.058 0.002 1.43 21.26 8.285 0.051 6.00 8.730 0.003 0.019 0.034 0.007 0.050 0.000 0.869 0.045 0.001 1.29 24.23 8.641 0.125 7.00 8.818 0.003 0.019 0.043 0.005 0.072 0.001 0.557 0.036 0.001 1.17 13.46 8.741 0.090 8.00 9.033 0.003 0.018 0.061 0.006 0.070 0.000 0.759 0.040 0.001 0.53 14.61 9.013 0.083 0361-0128/98/000/000-00 $6.00 1695 11.19 ± 32.95 -13.32 30.37 27.40 0.81 34.39 0.37 36.82 0.53 32.95 0.41 35.65 0.22 37.17 0.53 37.60 0.38 38.75 0.35 1696 SCIENTIFIC COMMUNICATIONS Appendix (Cont.) Laser1 Power (watts) 40Ar/39Ar Isotope ratios 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K 40Ar (%) 39Ar (%) 40Ar*/39Ar K Age ± 2σ SURF-110, alunite, J = 0.002173 ± 0.000014; volume 39ArK = 120.24 × 10–10cm3, integrated age = 34.28 ± 0.23 Ma (2σ) 1.00 11.735 ± 0.006 0.036 ± 0.069 0.022 ± 0.042 0.027 ± 0.028 0.090 0.003 64.70 0.73 4.142 ± 0.226 1.50 6.892 0.003 0.027 0.022 0.009 0.028 0.002 0.047 0.039 0.003 8.99 4.40 6.273 0.040 2.00 7.459 0.003 0.023 0.030 0.010 0.024 0.001 0.097 0.041 0.002 3.40 11.02 7.211 0.038 2.50 8.887 0.003 0.019 0.032 0.007 0.029 0.000 0.189 0.030 0.001 1.25 17.41 8.789 0.039 3.00 9.153 0.003 0.019 0.041 0.008 0.033 0.000 0.296 0.032 0.001 1.18 14.52 9.059 0.051 3.50 9.274 0.003 0.019 0.040 0.008 0.027 0.000 0.292 0.034 0.001 0.95 16.54 9.200 0.045 4.00 9.575 0.003 0.018 0.040 0.011 0.033 0.001 0.145 0.046 0.001 1.49 10.93 9.449 0.042 5.00 9.424 0.003 0.019 0.040 0.014 0.020 0.000 0.180 0.059 0.001 1.08 13.00 9.338 0.040 6.00 9.801 0.003 0.018 0.042 0.011 0.026 0.000 0.234 0.048 0.001 1.06 11.45 9.714 0.047 16.17 ± 0.88 24.42 0.15 28.05 0.15 34.13 0.15 35.17 0.20 35.71 0.17 36.67 0.16 36.24 0.15 37.69 0.18 SURF-110, alunite, J = 0.002409 ± 0.000012; volume 39ArK = 45.41 × 10–10cm3, integrated age = 34.20 ± 0.45 Ma (2σ) 0.40 20.642 ± 0.094 0.107 ± 0.773 0.102 ± 0.775 0.102 ± 0.776 0.167 0.003 112.52 0.07 -2.224 ± 29.984 0.75 37.848 0.073 0.118 0.595 0.106 0.655 0.170 0.371 0.155 0.004 112.09 0.09 -4.780 22.409 1.00 63.703 0.057 0.122 0.420 0.101 0.459 0.248 0.182 0.212 0.006 103.93 0.13 -2.776 14.869 2.00 7.572 0.005 0.023 0.041 0.020 0.044 0.005 0.171 0.055 0.002 15.43 8.57 6.366 0.234 3.00 8.449 0.004 0.020 0.028 0.021 0.032 0.001 0.550 0.057 0.001 2.86 45.50 8.222 0.161 3.25 8.109 0.005 0.022 0.036 0.024 0.031 0.002 0.319 0.065 0.002 5.04 14.63 7.695 0.180 3.60 8.034 0.005 0.022 0.033 0.020 0.042 0.001 0.601 0.056 0.002 2.21 9.43 7.837 0.212 4.50 8.414 0.005 0.020 0.035 0.017 0.044 0.001 0.725 0.048 0.001 1.73 17.20 8.270 0.171 6.00 8.736 0.005 0.020 0.084 0.017 0.096 0.001 0.986 0.046 0.001 -0.02 4.39 8.681 0.390 -9.69 ± 131.01 -20.90 98.53 -12.10 65.06 27.46 1.00 35.38 0.69 33.13 0.77 33.74 0.90 35.59 0.73 37.34 1.66 SURF-110, alunite, J = 0.002152 ± 0.000016; volume 39ArK = 61.63 × 10–10cm3, integrated age = 33.81 ± 0.26 Ma (2σ) 0.50 25.732 ± 0.017 0.070 ± 0.070 0.063 ± 0.053 0.091 ± 0.031 0.220 0.008 94.05 0.27 1.00 8.331 0.004 0.024 0.013 0.023 0.015 0.006 0.023 0.085 0.002 17.97 9.81 1.50 8.977 0.003 0.020 0.013 0.022 0.013 0.001 0.065 0.081 0.001 3.49 20.39 2.75 9.065 0.003 0.020 0.013 0.020 0.014 0.001 0.255 0.076 0.001 1.93 25.66 2.00 9.318 0.003 0.021 0.015 0.024 0.015 0.001 0.092 0.091 0.002 2.36 11.23 2.50 9.449 0.003 0.021 0.015 0.028 0.013 0.001 0.141 0.104 0.002 1.93 7.93 3.50 9.340 0.003 0.020 0.016 0.023 0.014 0.001 0.160 0.087 0.001 1.48 9.56 5.00 9.528 0.003 0.021 0.015 0.028 0.013 0.001 0.122 0.106 0.001 1.53 15.16 1.533 ± 0.768 6.835 0.049 8.675 0.039 8.902 0.065 9.111 0.042 9.279 0.048 9.214 0.048 9.396 0.040 5.94 ± 2.97 26.34 0.19 33.37 0.15 34.24 0.25 35.03 0.16 35.67 0.18 35.42 0.18 36.11 0.15 SURF-110, alunite, J = 0.002147 ± 0.000018; volume 39ArK = 86.75 × 10–10cm3, integrated age = 33.83 ± 0.29 Ma (2σ) 0.50 36.487 ± 0.040 0.095 ± 0.426 0.083 ± 0.270 0.142 ± 0.128 0.259 0.008 88.76 0.06 0.75 36.385 0.021 0.085 0.286 0.070 0.201 0.139 0.076 0.204 0.005 91.41 0.06 1.25 15.489 0.005 0.040 0.071 0.032 0.046 0.039 0.033 0.110 0.004 67.95 0.70 2.00 7.836 0.003 0.026 0.037 0.021 0.019 0.002 0.073 0.078 0.003 7.06 13.67 2.25 8.108 0.003 0.023 0.028 0.012 0.025 0.001 0.109 0.044 0.002 2.27 11.40 2.50 8.879 0.003 0.020 0.036 0.013 0.021 0.001 0.160 0.048 0.001 1.21 10.01 2.75 9.165 0.003 0.019 0.044 0.010 0.029 0.000 0.212 0.036 0.001 0.68 9.81 3.00 9.347 0.003 0.020 0.035 0.016 0.022 0.000 0.213 0.057 0.001 0.84 12.62 3.25 9.351 0.003 0.019 0.036 0.014 0.022 0.000 0.331 0.051 0.001 0.90 11.08 3.50 9.587 0.004 0.020 0.033 0.018 0.022 0.001 0.190 0.068 0.001 1.21 11.62 4.00 9.391 0.003 0.022 0.034 0.026 0.016 0.001 0.275 0.097 0.002 0.91 9.57 5.00 9.777 0.003 0.020 0.038 0.020 0.018 0.001 0.267 0.075 0.001 0.90 9.40 4.411 ± 5.747 3.288 3.297 4.965 0.383 7.285 0.051 7.929 0.038 8.780 0.041 9.113 0.043 9.282 0.044 9.279 0.056 9.485 0.047 9.318 0.055 9.703 0.054 17.01 ± 22.05 12.69 12.68 19.13 1.47 28.00 0.19 30.45 0.14 33.69 0.16 34.96 0.16 35.60 0.17 35.59 0.21 36.37 0.18 35.73 0.21 37.20 0.21 SURF-110, alunite, J = 0.002173 ± 0.000014; volume 39ArK = 46.44 × 10–10cm3, integrated age = 34.27 ± 0.23 Ma (2σ) 0.50 11.612 ± 0.021 0.066 ± 0.348 0.059 ± 0.283 0.055 ± 0.161 0.115 0.007 49.22 0.09 1.00 8.714 0.005 0.031 0.087 0.020 0.064 0.013 0.061 0.069 0.003 36.02 1.38 1.50 7.089 0.004 0.027 0.047 0.015 0.030 0.002 0.131 0.052 0.003 6.46 5.62 2.00 7.766 0.003 0.023 0.034 0.011 0.026 0.001 0.085 0.041 0.002 3.03 11.51 2.25 8.716 0.003 0.021 0.041 0.009 0.031 0.001 0.160 0.034 0.001 1.24 10.55 2.50 8.834 0.003 0.020 0.040 0.009 0.031 0.000 0.173 0.032 0.001 0.90 14.67 2.75 9.528 0.003 0.017 0.040 0.008 0.031 0.000 0.352 0.030 0.001 0.59 19.08 3.00 9.758 0.003 0.018 0.041 0.011 0.029 0.000 0.234 0.039 0.001 0.75 11.17 3.50 9.146 0.003 0.019 0.053 0.010 0.029 0.001 0.261 0.037 0.001 1.26 11.44 5.00 9.607 0.003 0.018 0.046 0.013 0.024 0.000 0.188 0.049 0.001 0.80 14.48 5.774 ± 2.942 5.542 0.242 6.618 0.091 7.533 0.038 8.616 0.044 8.763 0.040 9.486 0.049 9.698 0.049 9.040 0.056 9.543 0.043 22.49 ± 11.39 21.60 0.94 25.76 0.35 29.29 0.15 33.46 0.17 34.03 0.15 36.81 0.19 37.63 0.19 35.10 0.21 37.03 0.17 1 "<" indicates step used in plateau age calculations, ">" indicates step used in inverse correlation calculations Neutron flux monitor: 24.36 ± 0.17 Ma MAC-83 biotite (Sandeman et al., 1999) Isotope production ratios: (40Ar/39Ar)K = 0.0302, (37Ar/39Ar)Ca = 1416.4306, (36Ar/39Ar)Ca = 0.3952, Ca/K = 1.83(37ArCa/39ArK) 0361-0128/98/000/000-00 $6.00 1696