Relaciones transitivas Una relación R sobre un conjunto A es transitiva si siempre que aRb y bRc entonces aRc; es decir, siempre que (a, b), (b, c) ∈ R entonces (a, c) ∈ R. Por tanto, R no es transitiva si existe a, b, c ∈ R tal que (a, b), (b, c) ∈ R pero (a, c) ∈ R. EJEMPLO 2.9 a) Determine cuáles de las relaciones en el ejemplo 2.5 son transitivas. La relación R3 no es transitiva porque (2, 1), (1, 3) ∈ R3 pero (2, 3) ∈ R3. Todas las otras relaciones son transitivas. b) Determine cuáles de las relaciones en el ejemplo 2.6 son transitivas. Las relaciones ≤, ⊆ y | son transitivas, aunque ciertamente ⊥ no lo es. También, puesto que ninguna línea recta es paralela a sí misma, se tiene que a b y b a, pero a a. Por tanto, no es transitiva. (Se observa que la relación “es paralela o igual a” es una relación transitiva sobre el conjunto L de líneas rectas en el plano.) La propiedad de transitividad también se expresa en términos de la composición de relaciones. Para una relación R sobre A se definió R2 = R ◦ R y, de manera más general, Rn = Rn−1 ◦ R. Entonces se tiene el siguiente resultado: Teorema 2.2: Una relación R es transitiva si y sólo si para toda n ≥ 1, se tiene Rn ⊆ R. RELACIONES DE ORDEN PARCIAL Una relación R sobre un conjunto S se denomina ordenamiento parcial u orden parcial de S si R es reflexiva, antisimétrica y transitiva. Un conjunto S junto con un orden parcial R se denomina conjunto parcialmente ordenado o conjunto PO. EJEMPLO 2.14 a) La relación ⊆ de inclusión de conjuntos es un ordenamiento parcial sobre cualquier colección de conjuntos, ya que la inclusión de conjuntos posee las tres propiedades deseadas. Es decir, 1) A ⊆ A para cualquier conjunto A. 2) Si A ⊆ B y B ⊆ A, entonces A = B. 3) Si A ⊆ B y B ⊆ C, entonces A ⊆ C. b) La relación ≤ sobre el conjunto R de números reales es reflexiva, antisimétrica y transitiva. Así, ≤ significa un orden parcial sobre R. c) La relación “a divide a b”, escrita a| b, es un ordenamiento parcial sobre el conjunto N de enteros positivos. Sin embargo, “a divide a b” no es un ordenamiento parcial sobre el conjunto Z de enteros, puesto que a | b y b | a no necesariamente implica a = b. Por ejemplo, 3 |−3 y −3 | 3, pero 3 = −3.