Subido por Ruben Diaz

Mecánica newtoniana

Anuncio
Mecánica newtoniana
(Redirigido desde «Mecanica vectorial»)
Ir a la navegaciónIr a la búsqueda
La primera y segunda ley de Newton, en latín, en la edición original de su obra Principia Mathematica.
La mecánica newtoniana o mecánica vectorial es una formulación específica de la mecánica
clásica que estudia el movimiento de partículas y sólidos en un espacio euclídeo tridimensional. Los
cuerpos tienen velocidad inicial básica de la misma se hace en sistemas de referencia
inerciales donde las ecuaciones básicas del movimiento se reducen a las leyes de Newton, en
honor a Isaac Newton, quien hizo contribuciones fundamentales a esta teoría.
La mecánica es la parte de la física que estudia el movimiento. Se subdivide en:



Estática, que trata sobre las fuerzas en equilibrio mecánico.
Cinemática, que estudia el movimiento sin tener en cuenta las causas que lo producen.
Dinámica, que estudia los movimientos y las causas que los producen (fuerza y energía).
La mecánica newtoniana es adecuada para describir eventos físicos de la experiencia diaria, es
decir, a eventos que suceden a velocidades muchísimo menores que la velocidad de la luz y tienen
escala macroscópica. En el caso de sistemas con velocidades próximas a la velocidad de la luz
debemos acudir a la mecánica relativista.
Índice



1Importancia de la mecánica newtoniana
2Descripción de la teoría
o 2.1Posición, velocidad y aceleración
o 2.2Fuerzas
o 2.3Energía
o 2.4Otros resultados
o 2.5Relaciones con otras teorías
3Véase también
Importancia de la mecánica newtoniana[editar]
La mecánica newtoniana es un modelo físico macroscópico para describir el movimiento de los
cuerpos en el espacio relacionando este movimiento con sus causas eficientes (fuerzas).
Históricamente, la mecánica newtoniana fue el primer modelo dinámico capaz de hacer
predicciones importantes sobre el movimiento de los cuerpos, incluyendo las trayectorias de los
planetas. Es conceptualmente más simple que otras formulaciones de la mecánica clásica como
la lagrangiana o hamiltoniana, por lo que aunque útil en problemas relativamente sencillos, pero su
uso en problemas complicados puede ser más enredado que las otras dos formulaciones.
Y, por supuesto, la mecánica newtoniana es relativamente más sencilla que una teoría como
la mecánica cuántica relativista, que describe adecuadamente incluso fenómenos partículas
elementales moviéndose a gran velocidad y entornos microscópicos, que no pueden ser
adecuadamente modelizados por la mecánica newtoniana.
La mecánica newtoniana es suficientemente válida para la gran mayoría de los casos prácticos
cotidianos en una gran cantidad de sistemas. Esta teoría, por ejemplo, describe con gran exactitud
sistemas como cohetes, movimiento de planetas, moléculas
orgánicas, trompos, trenes y trayectorias de móviles en general.
La mecánica clásica de Newton es ampliamente compatible con otras teorías clásicas como
el electromagnetismo y la termodinámica, también "clásicos" (estas teorías tienen también su
equivalente cuántico).
Descripción de la teoría[editar]
La mecánica newtoniana se formula sobre un espacio euclídeo tridimensional. La teoría asume la
existencia de un tiempo universal compartido por todos los observadores y asume que las partículas
siguen trayectorias trazables bien definidas. Varios de estos supuestos de la mecánica newtoniana
son abandonados en otras teorías físicas como la mecánica relativista o la mecánica cuántica.
Posición, velocidad y aceleración[editar]
La posición de una partícula con respecto a un punto fijo en el espacio se denota con el vector r,
cuya norma, | r | = r, corresponde a la distancia entre el punto fijo y la partícula, y su dirección es la
que va desde este punto fijo al lugar en que se ubica la partícula. Si r es una función del tiempo t,
denotado por r = f(t), el tiempo t se toma a partir de un tiempo inicial arbitrario:
Entonces resulta que la velocidad y la aceleración (que también son vectores) vienen dadas por:
La posición indica el lugar del objeto que se está analizando. Si dicho objeto cambia de lugar,
la función r describe el nuevo lugar del objeto. El punto clave de la dinámica newtoniana es que la
aceleración viene determinada por la fuerza, siendo una fuerza cualquier causa eficiente que puede
cambiar el estado de movimiento de una partícula (cambiado su capacidad de hacer trabajo o
curvando su trayectoria). Si se dispone de un medio de computar las fuerzas sobre una partícula la
trayectoria de una partícula vendrá dada por la ecuación diferencial:
(*)
donde m es la masa de la partícula. El tratamiento anterior es el usado para describir la dinámica de
la partícula, junto a ese tipo de sistemas de la mecánica newtoniana, la mecánica del sólido
rígido es una extensión de ese enfoque que también se considera parte de la mecánica newtoniana
y que requiere algunos supuestos adicionales, como el que cualquier combinación de fuerzas o
admite una fuerza resultante y un momento resultante, y que bajo esos esfuerzos el movimiento del
sólido rígido viene descrito por un grupo uniparamétrico de isometrías.
Nó es que el hecho de que la ecuación (*) sea de segundo orden tiene que ver con el hecho de que
para determinar una trayectoria (curva en el espacio), un teorema de geometría diferencial de
curvas demuestra que la curvatura y la torsión determina la curva salvo traslación y rotación, por lo
que si se especifica la posición inicial (traslación) y la velocidad (rotación) queda determinada la
curva o trayectoria de manera única (ya que tanto la curvatura y la torsión de dicha curva son
combinaciones de derivadas primeras y segundas).
Fuerzas[editar]
El principio fundamental de la dinámica (segundo principio de Newton) relaciona la masa y
la aceleración de un móvil con una magnitud vectorial, la fuerza. Si se supone que m es la masa de
un cuerpo y F el vector resultante de sumar todas las fuerzas aplicadas al mismo (resultante o
fuerza neta), entonces:
El segundo término del último miembro se anula para el caso de que la masa del cuerpo sea
constante. Nótese que en el caso general, la masa total del cuerpo no es necesariamente constante
(bien porque absorban o emitan partículas) entonces m es, necesariamente, independiente de t.
Ese caso se da por ejemplo, en un cohete expulsa gases disminuyendo la masa de combustible y
por lo tanto, su masa total, que decrece en función del tiempo. A la cantidad m v se le llama
momento lineal o cantidad de movimiento.
La función de F se obtiene de consideraciones sobre la circunstancia particular del objeto. La
tercera ley de Newton da una indicación particular sobre F: si un cuerpo A ejerce una fuerza F sobre
otro cuerpo B, entonces B ejerce una fuerza (fuerza de reacción) de igual magnitud y sentido
opuesto sobre A, -F (tercer principio de Newton o principio de acción y reacción).
La fuerza resultante sobre un sólido está caracterizada en mecánica newtoniana por un vector y por
una recta de acción. Para una fuerza puntual su recta de acción viene dada por una recta cuyo
vector director es paralelo a la fuerza y pasa por el punto de aplicación de dicha fuerza. Para un
sistema de fuerzas más complejo la recta de acción resultante es más difícil de encontrar, pero su
posición es necesaria para determinar el momento de fuerza resultante y describir si bajo las
fuerzas dadas el cuerpo rota cambiando su orientación.
Energía[editar]
Si una fuerza
se aplica a un cuerpo que sigue una trayectoria C, el trabajo realizado por la
fuerza es una magnitud escalar de valor:
Donde
es la velocidad para cada instante del tiempo. Si se supone que la masa del cuerpo es
constante, y
es el trabajo total realizado sobre el cuerpo, obtenido al sumar el trabajo
realizado por cada una de las fuerzas que actúa sobre el mismo, entonces, aplicando la segunda
ley de Newton se puede demostrar que:
En donde T es la llamada energía cinética, también denotada como K. Para una partícula puntual, T
se define:
Para objetos extensos compuestos por muchas partículas, la energía cinética es la suma de las
energías cinéticas de las partículas que lo constituyen. Un tipo particular de fuerzas, conocidas
como fuerzas conservativas, puede ser expresado como el gradiente de una función escalar,
llamada potencial, V:
Si se suponen todas las fuerzas sobre un cuerpo conservativas, y V es la energía potencial del
cuerpo (obtenida por suma de las energías potenciales de cada punto debidas a cada fuerza),
entonces existe una función llamada energía mecánica que es constante a lo largo del tiempo, para
ver esto se multiplica la (*) escalarmente por la velocidad:
La ecuación anterior puede ilustrarse de manera algo más sencilla si se considera el caso
unidimensional:
Este resultado es conocido como la ley de conservación de la energía, indicando que la energía
mecánica total
ó
es constante (no es función del tiempo). Se ha usado la notación de
Newton
. Nótese que la energía se conserva sólo si la masa del cuerpo es constante (no hay
emisión de materia) y si la fuerza sobre el cuerpo es conservativa.
Otros resultados[editar]
La segunda ley de Newton permite obtener otros resultados, a su vez considerados como leyes. Ver
por ejemplo momento angular.
Relaciones con otras teorías[editar]
Además de la formulación newtoniana de la mecánica clásica, existen otras dos importantes
formulaciones alternativas de la mecánica clásica con mayor grado de formalización: la mecánica
lagrangiana y la mecánica hamiltoniana.
Si se restringen estas dos formulaciones a estudio del movimiento de sistemas de partículas o
sólidos en un espacio euclídeo tridimensional ℝ³ y se consideran sobre él sistemas de coordenadas
inerciales, entonces ambas son equivalentes a las leyes de Newton y sus consecuencias. Sin
embargo, tanto la mecánica lagrangiana como la mecánica hamiltoniana, debido a la generalidad de
su formulación, pueden tratar adecuadamente los sistemas no inerciales sin cambio alguno,
además de que en la práctica la resolución de problemas complejos es más sencilla en estas
formulaciones más formales.
La mecánica relativista va más allá de la mecánica clásica y trata con objetos que se mueven
a velocidades relativamente cercanas a la velocidad de la luz). La mecánica cuánticatrata con
sistemas de dimensiones reducidas (a escala semejante a la atómica), y la teoría cuántica de
campos (véase también campo) trata con sistemas que exhiben ambas propiedades.[cita requerida]
Véase también[editar]






giróscopo
invariancia galileana
mecánica clásica
mecánica relativista
péndulo
sistema de referencia inercial
Descargar