4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 4.1 Teoría preliminar: Ecuaciones lineales 4.1.1 Problemas con valores iniciales y con valores en la frontera 4.1.2 Ecuaciones homogéneas 4.1.3 Ecuaciones no homogéneas 4.2 Reducción de orden 4.3 Ecuaciones lineales homogéneas con coeficientes constantes 4.4 Coeficientes indeterminados: Método de superposición 4.5 Coeficientes indeterminados: Método del anulador 4.6 Variación de parámetros 4.7 Ecuación de Cauchy-Euler 4.8 Solución de sistemas de ED lineales por eliminación 4.9 Ecuaciones diferenciales no lineales REPASO DEL CAPÍTULO 4 Ahora trataremos la solución de ecuaciones diferenciales de orden dos o superior. En las primeras siete secciones de este capítulo se analizan la teoría fundamental y cierta clase de ecuaciones lineales. El método de eliminación para resolver sistemas de ecuaciones lineales se introduce en la sección 4.8 porque este método simplemente desacopla un sistema en ecuaciones lineales de cada variable dependiente. El capítulo concluye con un breve análisis de ecuaciones no lineales de orden superior. 117 08367_04_ch04_p117-180-ok.indd 117 6/4/09 12:18:00 PM 118 ● CAPÍTULO 4 4.1 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR TEORÍA PRELIMINAR: ECUACIONES LINEALES REPASO DE MATERIAL ● Lea nuevamente los Comentarios al final de la sección 1.1. ● Sección 2.3 (especialmente páginas 54 a 58). INTRODUCCIÓN En el capítulo 2 vimos que se pueden resolver algunas ecuaciones diferenciales de primer orden si se reconocen como separables, exactas, homogéneas o quizás como ecuaciones de Bernoulli. Aunque las soluciones de estas ecuaciones estuvieran en la forma de una familia uniparamétrica, esta familia, con una excepción, no representa la solución de la ecuación diferencial. Sólo en el caso de las ED lineales de primer orden se pueden obtener soluciones generales considerando ciertas condiciones iniciales. Recuerde que una solución general es una familia de soluciones definida en algún intervalo I que contiene todas las soluciones de la ED que están definidas en I. Como el objetivo principal de este capítulo es encontrar soluciones generales de ED lineales de orden superior, primero necesitamos examinar un poco de la teoría de ecuaciones lineales. 4.1.1 PROBLEMAS CON VALORES INICIALES Y CON VALORES EN LA FRONTERA PROBLEMA CON VALORES INICIALES En la sección 1.2 se definió un problema con valores iniciales para una ecuación diferencial de n-ésimo orden. Para una ecuación diferencial lineal, un problema con valores iniciales de n-ésimo orden es Resuelva: an(x) Sujeta a: y(x0) d ny dx n y0, an 1(x) y (x0) d n 1y dx n 1 a1(x) y1 , . . . , y(n dy dx 1) (x0) a0(x)y g(x) (1) yn 1. Recuerde que para un problema como éste se busca una función definida en algún intervalo I, que contiene a x0, que satisface la ecuación diferencial y las n condiciones iniciales que se especifican en x0: y(x0) y0, y(x0) y1, . . . , y(n1)(x0) yn1. Ya hemos visto que en el caso de un problema con valores iniciales de segundo orden, una curva solución debe pasar por el punto (x0, y0) y tener pendiente y1 en este punto. EXISTENCIA Y UNICIDAD En la sección 1.2 se expresó un teorema que daba las condiciones con las que se garantizaba la existencia y unicidad de una solución de un problema con valores iniciales de primer orden. El teorema siguiente tiene condiciones suficientes para la existencia y unicidad de una solución única del problema en (1). TEOREMA 4.1.1 Existencia de una solución única Sean an(x), an 1(x), . . . , a1(x), a0(x) y g(x) continuas en un intervalo I, y sea an(x) 0 para toda x en este intervalo. Si x x0 es cualquier punto en este intervalo, entonces una solución y(x) del problema con valores iniciales (1) existe en el intervalo y es única. EJEMPLO 1 Solución única de un PVI El problema con valores iniciales 3y 08367_04_ch04_p117-180-ok.indd 118 5y y 7y 0, y(1) 0, y (1) 0, y (1) 0 6/4/09 12:18:00 PM 4.1 TEORÍA PRELIMINAR: ECUACIONES LINEALES ● 119 tiene la solución trivial y 0. Debido a que la ecuación de tercer orden es lineal con coeficientes constantes, se cumplen las condiciones del teorema 4.1.1. Por tanto y 0 es la única solución en cualquier intervalo que contiene a x 1. EJEMPLO 2 Solución única de un PVI Se debe comprobar que la función y 3e 2x e2x 3x es una solución del problema con valores iniciales y 4y 12x, y(0) 4, y (0) 1. Ahora la ecuación diferencial es lineal; los coeficientes, así como g(x) 12x, son continuos y a2(x) 1 0 en algún intervalo I que contenga a x 0. Concluimos del teorema 4.1.1 que la función dada es la única solución en I. Los requisitos en el teorema 4.1.1 de que ai(x), i 0, 1, 2, . . . , n sean continuas y an(x) 0 para toda x en I son importantes. En particular, si an(x) 0 para algún x en el intervalo, entonces la solución de un problema lineal con valores iniciales podría no ser única o ni siquiera existir. Por ejemplo, se debe comprobar que la función y cx 2 x 3 es una solución de problema con valores iniciales x2 y 2xy 2y 6, y(0) 3, y (0) 1 en el intervalo (, ) para alguna elección del parámetro c. En otras palabras, no hay solución única del problema. Aunque se satisface la mayoría de las condiciones del teorema 4.1.1, las dificultades obvias son que a2(x) x2 es cero en x 0 y que las condiciones iniciales también se imponen en x 0. y PROBLEMA CON VALORES EN LA FRONTERA Otro tipo de problema consiste en resolver una ecuación diferencial lineal de orden dos o mayor en que la variable dependiente y o sus derivadas se específican en diferentes puntos. Un problema tal como soluciones de la ED (b, y1) (a, y0) I x FIGURA 4.1.1 Curvas solución de un PVF que pasan a través de dos puntos. Resuelva: a2(x) Sujeto a: y(a) d 2y dx2 y0 , a1(x) dy dx y(b) a0(x)y g(x) y1 se llama problema con valores en la frontera (PVF). Los valores prescritos y(a) y0 y y(b) y1 se llaman condiciones en la frontera. Una solución del problema anterior es una función que satisface la ecuación diferencial en algún intervalo I, que contiene a a y b, cuya gráfica pasa por los puntos (a, y0) y (b, y1). Véase la figura 4.1.1. Para una ecuación diferencial de segundo orden, otros pares de condiciones en la frontera podrían ser y (a) y0 , y(b) y1 y(a) y0 , y (b) y1 y (a) y0 , y (b) y1, donde y0 y y1 denotan constantes arbitrarias. Estos pares de condiciones son sólo casos especiales de las condiciones en la frontera generales. 1 y(a) 1y (a) 1 2 y(b) 2y (b) 2. En el ejemplo siguiente se muestra que aun cuando se cumplen las condiciones del teorema 4.1.1, un problema con valores en la frontera puede tener varias soluciones (como se sugiere en la figura 4.1.1), una solución única o no tener ninguna solución. 08367_04_ch04_p117-180-ok.indd 119 6/4/09 12:18:00 PM 120 ● CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR EJEMPLO 3 Un PVF puede tener muchas, una o ninguna solución En el ejemplo 4 de la sección 1.1 vimos que la familia de soluciones de dos parámetros de la ecuación diferencial x 16x 0 es x x c2 = 1 1 c2 = 2 c2 = 1 c2 = 0 1 4 t 1 (0, 0) c2 = − 1 2 solución de (3) c2 sen 4t. (2) a) Suponga que ahora deseamos determinar la solución de la ecuación que satisface más condiciones en la frontera x(0) 0, x(p兾2) 0. Observe que la primera condición 0 c1 cos 0 c2 sen 0 implica que c1 0, por tanto x c2 sen 4t. Pero cuando t p兾2, 0 c2 sen 2p se satisface para cualquier elección de c2 ya que sen 2p 0. Por tanto el problema con valores en la frontera (π /2, 0) FIGURA 4.1.2 Algunas curvas c1 cos 4t x 16x 0, x(0) 0, x (3) 0 2 tiene un número infinito de soluciones. En la figura 4.1.2 se muestran las gráficas de algunos de los miembros de la familia uniparamétrica x c2 sen 4t que pasa por los dos puntos (0, 0) y (p兾2, 0). b) Si el problema con valores en la frontera en (3) se cambia a x 16x 0, x(0) 0, x 0, 8 (4) entonces x(0) 0 aún requiere que c1 0 en la solución (2). Pero aplicando x(p兾8) 0 a x c2 sen 4t requiere que 0 c2 sen (p兾2) c2 ⴢ 1. Por tanto x 0 es una solución de este nuevo problema con valores en la frontera. De hecho, se puede demostrar que x 0 es la única solución de (4). c) Por último, si se cambia el problema a x 16x 0, x(0) 0, x (5) 1, 2 se encuentra de nuevo de x(0) 0 que c1 0, pero al aplicar x(p兾2) 1 a x c2 sen 4t conduce a la contradicción 1 c2 sen 2p c2 ⴢ 0 0. Por tanto el problema con valores en la frontera (5) no tiene solución. 4.1.2 ECUACIONES HOMOGÉNEAS Una ecuación diferencial lineal de n-ésimo orden de la forma an(x) dny dx n an 1(x) d n 1y dx n 1 a1(x) dy dx a0(x)y 0 (6) g(x), (7) se dice que es homogénea, mientras que una ecuación an(x) dny dx n an 1(x) d n 1y dx n 1 a1(x) dy dx a0(x)y con g(x) no igual a cero, se dice que es no homogénea. Por ejemplo, 2y 3y 5y 0 es una ecuación diferencial lineal homogénea de segundo orden, mientras que x3y 6y 10y ex es una ecuación diferencial lineal de tercer orden no homogénea. La palabra homogénea en este contexto no se refiere a los coeficientes que son funciones homogéneas, como en la sección 2.5. Después veremos que para resolver una ecuación lineal no homogénea (7), primero se debe poder resolver la ecuación homogénea asociada (6). Para evitar la repetición innecesaria en lo que resta de este libro, se harán, como algo natural, las siguientes suposiciones importantes cuando se establezcan 08367_04_ch04_p117-180-ok.indd 120 6/4/09 12:18:01 PM 4.1 ■ Por favor recuerde estas dos suposiciones TEORÍA PRELIMINAR: ECUACIONES LINEALES 121 ● definiciones y teoremas acerca de las ecuaciones lineales (1). En algún intervalo común I, • las funciones coeficientes ai(x), i 0, 1, 2, . . . , n y g(x) son continuas; • a n(x) 0 para toda x en el intervalo. OPERADORES DIFERENCIALES En cálculo la derivación se denota con frecuencia con la letra D mayúscula, es decir, dy兾dx Dy. El símbolo D se llama operador diferencial porque convierte una función derivable en otra función. Por ejemplo, D(cos 4x) 4 sen 4x y D(5x3 6x2) 15x2 12x. Las derivadas de orden superior se expresan en términos de D de manera natural: d 2y dx2 d dy dx dx D(Dy) D2y y, en general dny dxn Dn y, donde y representa una función suficientemente derivable. Las expresiones polinomiales en las que interviene D, tales como D 3, D2 3D 4 y 5x3D3 6x2D2 4xD 9, son también operadores diferenciales. En general, se define un operador diferencial de n-ésimo orden u operador polinomial como L an(x)D n an1(x)D n1 a1(x)D a 0(x). (8) Como una consecuencia de dos propiedades básicas de la derivada, D(cf(x)) cDf(x), c es una constante y D{f(x) g(x)} Df(x) Dg(x), el operador diferencial L tiene una propiedad de linealidad; es decir, L operando sobre una combinación lineal de dos funciones derivables es lo mismo que la combinación lineal de L operando en cada una de las funciones. Simbólicamente esto se expresa como L{a f (x) bg(x)} aL( f (x)) bL(g(x)), (9) donde a y b son constantes. Como resultado de (9) se dice que el operador diferencial de n-ésimo orden es un operador lineal. ECUACIONES DIFERENCIALES Cualquier ecuación diferencial lineal puede expresarse en términos de la notación D. Por ejemplo, la ecuación diferencial y 5y 6y 5x 3 se puede escribir como D2y 5Dy 6y 5x – 3 o (D2 5D 6)y 5x 3. Usando la ecuación (8), se pueden escribir las ecuaciones diferenciales lineales de n-énesimo orden (6) y (7) en forma compacta como L(y) 0 y L(y) g(x), respectivamente. PRINCIPIO DE SUPERPOSICIÓN En el siguiente teorema se ve que la suma o superposición de dos o más soluciones de una ecuación diferencial lineal homogénea es también una solución. TEOREMA 4.1.2 Principio de superposición; ecuaciones homogéneas Sean y1, y2, . . . , yk soluciones de la ecuación homogénea de n-ésimo orden (6) en un intervalo I. Entonces la combinación lineal y c1 y1(x) c2 y2(x) ck yk(x), donde las ci, i 1, 2, . . . , k son constantes arbitrarias, también es una solución en el intervalo. DEMOSTRACIÓN Se demuestra el caso k 2. Sea L el operador diferencial que se definió en (8) y sean y1(x) y y2(x) soluciones de la ecuación homogénea L(y) 0. Si se define y c1y1(x) c2y2(x), entonces por la linealidad de L se tiene que L( y) 08367_04_ch04_p117-180-ok.indd 121 L{c1 y1(x) c2 y2(x)} c1 L(y1) c2 L(y2) c1 0 c2 0 0. 6/4/09 12:18:01 PM 122 ● CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR COROLARIOS DEL TEOREMA 4.1.2 A) Un múltiplo constante y c1y1(x) de una solución y1(x) de una ecuación diferencial lineal homogénea es también una solución. B) Una ecuación diferencial lineal homogénea tiene siempre la solución trivial y 0. EJEMPLO 4 Superposición; ED homogénea Las funciones y1 x2 y y2 x2 ln x son soluciones de la ecuación lineal homogénea x3y 2xy 4y 0 en el intervalo (0, ). Por el principio de superposición, la combinación lineal y c1x2 c2 x2 ln x es también una solución de la ecuación en el intervalo. La función y e7x es una solución de y 9y 14y 0. Debido a que la ecuación diferencial es lineal y homogénea, el múltiplo constante y ce7x es también una solución. Para varios valores de c se ve que y 9e7x, y 0, y 15e7x , . . . son todas soluciones de la ecuación. DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL Los dos conceptos son básicos para el estudio de ecuaciones diferenciales lineales. DEFINICIÓN 4.1.1 Dependencia e independencia lineal Se dice que un conjunto de funciones f1(x), f2(x), . . . , fn(x) es linealmente dependiente en un intervalo I si existen constantes c1, c2, . . . ,cn no todas cero, tales que c1 f1(x) c2 f2(x) cn fn(x) 0 para toda x en el intervalo. Si el conjunto de funciones no es linealmente dependiente en el intervalo, se dice que es linealmente independiente. y f1 = x x a) y f2 = |x| x b) FIGURA 4.1.3 El conjunto que consiste en f1 y f2 es linealmente independiente en (, ). 08367_04_ch04_p117-180-ok.indd 122 En otras palabras, un conjunto de funciones es linealmente independiente en un intervalo I si las únicas constantes para las que c1 f1(x) c2 f2(x) cn fn(x) 0 para toda x en el intervalo son c1 c2 . . . cn 0. Es fácil entender estas definiciones para un conjunto que consiste en dos funciones f1(x) y f2(x). Si el conjunto de funciones es linealmente dependiente en un intervalo, entonces existen constantes c1 y c2 que no son ambas cero de manera tal que, para toda x en el intervalo, c1 f1(x) c2 f2(x) 0. Por tanto, si suponemos que c1 0, se deduce que f1(x) (c2兾c1) f2(x); es decir, si un conjunto de dos funciones es linealmente dependiente, entonces una función es simplemente un múltiplo constante del otro. A la inversa, si f1(x) c2 f2(x) para alguna constante c2, entonces ( 1) ⴢ f1(x) c2 f2(x) 0 para toda x en el intervalo. Por tanto, el conjunto de funciones es linealmente dependiente porque al menos una de las constantes (en particular, c1 1) no es cero. Se concluye que un conjunto de dos funciones f1(x) y f2(x) es linealmente independiente cuando ninguna función es un múltiplo constante de la otra en el intervalo. Por ejemplo, el conjunto de funciones f1(x) sen 2x, f2(x) sen x cos x es linealmente dependiente en (, ) porque f1(x) es un múltiplo constante de f2(x). Recuerde de la fórmula del seno del doble de un ángulo que sen 2x 2 sen x cos x. Por otro lado, el conjunto de funciones f1(x) x, f2(x) 兩x兩 es linealmente independiente en (, ). Al examinar la figura 4.1.3 usted debe convencerse de que ninguna función es un múltiplo constante de la otra en el intervalo. 6/4/09 12:18:02 PM 4.1 TEORÍA PRELIMINAR: ECUACIONES LINEALES 123 ● Del análisis anterior se tiene que el cociente f2(x)兾f1(x) no es una constante en un intervalo en el que el conjunto f1(x), f2(x) es linealmente independiente. Esto se usará en la siguiente sección. EJEMPLO 5 Conjunto de funciones linealmente dependiente El conjunto de funciones f1(x) cos2x, f2(x) sen2x, f3(x) sec2x, f4(x) tan2x es linealmente dependiente en el intervalo (p兾2, p兾2) porque c1 cos2x c2 sen2x c3 sec2x c4 tan2x 0 donde c1 c2 1, c3 1, c4 1. Aquí se usa cos2x sen2x 1 y 1 tan2x sec2x. Un conjunto de funciones f1(x), f2(x), . . . , fn(x) es linealmente dependiente en un intervalo si por lo menos una función se puede expresar como una combinación lineal de las otras funciones. EJEMPLO 6 Conjunto de funciones linealmente dependientes El conjunto de funciones f1(x) 1x 5, f2(x) 1x 5x, f3(x) x 1, f4(x) x 2 es linealmente dependientes en el intervalo (0, ) porque f2 puede escribirse como una combinación lineal de fl, f3 y f4. Observe que f2(x) 1 f1(x) 5 f3(x) 0 f4(x) para toda x en el intervalo (0, ). SOLUCIONES DE ECUACIONES DIFERENCIALES Estamos interesados principalmente en funciones linealmente independientes o con más precisión, soluciones linealmente independientes de una ecuación diferencial lineal. Aunque se podría apelar siempre en forma directa a la definición 4.1.1, resulta que la cuestión de si el conjunto de n soluciones yl, y2, . . . , yn de una ecuación diferencial lineal homogénea de nésimo orden (6) es linealmente independiente se puede establecer en forma un poco mecánica usando un determinante. DEFINICIÓN 4.1.2 Wronskiano Suponga que cada una de las funciones f1(x), f2(x), . . . , fn(x) tiene al menos n 1 derivadas. El determinante W( f1, f2, . . . , fn ) f1 f1 f1(n fn fn f2 f2 1) f2(n 1) fn(n , 1) donde las primas denotan derivadas, se llama el Wronskiano de las funciones. TEOREMA 4.1.3 Criterio para soluciones linealmente independientes Sean yl, y2, . . . , yn n soluciones de la ecuación diferencial lineal homogénea de n-ésimo orden (6) en el intervalo I. El conjunto de soluciones es linealmente independiente en I si y sólo si W(yl, y2, . . . , yn) 0 para toda x en el intervalo. 08367_04_ch04_p117-180-ok.indd 123 6/4/09 12:18:02 PM 124 ● CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Se tiene del teorema 4.1.3 que cuando yl, y2, . . . , yn son n soluciones de (6) en un intervalo I, el Wronskiano W(yl, y2, . . . , yn) es igual a cero o nunca es cero en el intervalo. Al conjunto de n soluciones linealmente independientes de una ecuación diferencial lineal homogénea de n-ésimo orden se le da un nombre especial. DEFINICIÓN 4.1.3 Conjunto fundamental de soluciones Cualquier conjunto yl, y2, . . . , yn de n soluciones linealmente independientes de la ecuación diferencial lineal homogénea de n-ésimo orden (6) en un intervalo I es un conjunto fundamental de soluciones en el intervalo. La respuesta a la cuestión básica sobre la existencia de un conjunto fundamental de soluciones para una ecuación lineal está en el siguiente teorema. TEOREMA 4.1.4 Existencia de un conjunto fundamental Existe un conjunto fundamental de soluciones para la ecuación diferencial lineal homogénea de n-ésimo orden (6) en un intervalo I. Similar al hecho de que cualquier vector en tres dimensiones se puede expresar como una combinación lineal de los vectores linealmente independientes i, j, k, cualquier solución de una ecuación diferencial lineal homogénea de n-ésimo orden en un intervalo I se expresa como una combinación lineal de n soluciones linealmente independientes en I. En otras palabras, n soluciones linealmente independientes yl, y2, . . . , yn son los bloques básicos para la solución general de la ecuación. TEOREMA 4.1.5 Solución general; ecuaciones homogéneas Sea yl, y2, . . . , yn un conjunto fundamental de soluciones de la ecuación diferencial lineal homogénea de n-ésimo orden (6) en el intervalo I. Entonces la solución general de la ecuación en el intervalo es y c1 y1(x) c2 y2(x) cn yn(x), donde ci, i 1, 2, . . . , n son constantes arbitrarias. El teorema 4.1.5 establece que si Y(x) es alguna solución de (6) en el intervalo, entonces siempre se pueden encontrar constantes Cl, C2, . . . , Cn tales que Y(x) C1 y1(x) C2 y2(x) Cn yn(x). Demostraremos el caso cuando n 2. Sea Y una solución y yl y y2 soluciones linealmente independientes de a2 y al y a0 y 0 en un intervalo I. Suponga que x t es un punto en I para el cual W(yl(t), y2(t)) 0. Suponga también que Y(t) kl y Y(t) k2. Si ahora examinamos las ecuaciones C1 y1(t) C2 y2(t) k1 DEMOSTRACIÓN C1 y 1(t) C2 y 2(t) k2, se tiene que podemos determinar Cl y C2 de manera única, a condición de que el determinante de los coeficientes satisfaga y1(t) y2(t) y1 (t) y2 (t) 08367_04_ch04_p117-180-ok.indd 124 0. 6/4/09 12:18:03 PM 4.1 TEORÍA PRELIMINAR: ECUACIONES LINEALES ● 125 Pero este determinante es simplemente el Wronskiano evaluado en x t y por suposición, W 0. Si se define G(x) Cl yl(x) C2 y2(x), se observa que G(x) satisface la ecuación diferencial puesto que es una superposición de dos soluciones conocidas; G(x) satisface las condiciones iniciales G(t) C1 y1(t) C2 y2(t) k1 y G (t) C1 y 1 (t) C2 y 2(t) k2; y Y(x) satisface la misma ecuación lineal y las mismas condiciones iniciales. Debido a que la solución de este problema con valores iniciales lineal es única (teorema 4.1.1), se tiene Y(x) G(x) o Y(x) Cl yl(x) C2 y2(x). EJEMPLO 7 Solución general de una ED homogénea Las funciones yl e3x y y2 e3x son soluciones de la ecuación lineal homogénea y – 9y 0 en el intervalo (, ). Por inspección las soluciones son linealmente independientes en el eje x. Este hecho se corrobora al observar que el Wronskiano e3x e 3x 6 0 3e3x 3e 3x para toda x. Se concluye que yl y y2 forman un conjunto fundamental de soluciones y por tanto, y c1e 3x c2e3x es la solución general de la ecuación en el intervalo. W(e3x, e EJEMPLO 8 3x ) Una solución obtenida de una solución general La función y 4 senh 3x 5e3x es una solución de la ecuación diferencial del ejemplo 7. (Compruebe esto.) Aplicando el teorema 4.1.5, debe ser posible obtener esta solución a partir de la solución general y c1e3x c2e3x. Observe que si se elige c1 2 y c2 7, entonces y 2e3x 7e3x puede rescribirse como 2e 3x y 2e 3x 5e 3x 4 e 3x e 3x 5e 2 3x . Esta última expresión se reconoce como y 4 senh 3x 5e3x. EJEMPLO 9 Solución general de una ED homogénea Las funciones y1 ex, y2 e2x y y3 e3x satisfacen la ecuación de tercer orden y 6y l1y 6y 0. Puesto que W(ex, e2x, e3x ) ex p ex ex e2x e3x 2e2x 3e3x p 4e2x 9e3x 2e6x 0 para todo valor real de x, las funciones y1, y2 y y3 forman un conjunto fundamental de soluciones en (, ). Se concluye que y c1e x c2e2x c3e3x es la solución general de la ecuación diferencial en el intervalo. 4.1.3 ECUACIONES NO HOMOGÉNEAS Cualquier función yp libre de parámetros arbitrarios, que satisface (7) se dice que es una solución particular o integral particular de la ecuación. Por ejemplo, es una tarea directa demostrar que la función constante yp 3 es una solución particular de la ecuación no homogénea y 9y 27. 08367_04_ch04_p117-180-ok.indd 125 6/4/09 12:18:03 PM 126 ● CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Ahora si yl, y2, . . . , yk son soluciones de (6) en un intervalo I y yp es cualquier solución particular de (7) en I, entonces la combinación lineal y c1 y1 (x) c2 y2(x) ck yk(x) yp (10) es también una solución de la ecuación no homogénea (7). Si piensa al respecto, esto tiene sentido, porque la combinación lineal cl yl(x) c2 y2(x) . . . ckyk(x) se transforma en 0 por el operador L anDn an 1D n 1 . . . a1D a0, mientras que yp se convierte en g(x). Si se usa k n soluciones linealmente independientes de la ecuación de n-ésimo orden (6), entonces la expresión en (10) se convierte en la solución general de (7). TEOREMA 4.1.6 Solución general; ecuaciones no homogéneas Sea yp cualquier solución particular de la ecuación diferencial lineal no homogénea de n-ésimo orden (7) en un intervalo I, y sea yl, y2, . . . , yn un conjunto fundamental de soluciones de la ecuación diferencial homogénea asociada (6) en I. Entonces la solución general de la ecuación en el intervalo es y c1 y1(x) c2 y2(x) cn yn(x) yp , donde las ci, i 1, 2, . . . , n son constantes arbitrarias. DEMOSTRACIÓN Sea L el operador diferencial definido en (8) y sean Y(x) y yp(x) soluciones particulares de la ecuación no homogénea L(y) g(x). Si se define u(x) Y(x) – yp(x), entonces por la linealidad de L se tiene L(u) L{Y(x) yp(x)} L(Y(x)) L(yp(x)) g(x) g(x) 0. Esto demuestra que u(x) es una solución de la ecuación homogénea L(y) 0. Así por el teorema 4.1.5, u(x) cl yl(x) c2 y2(x) . . . cnyn(x), y así Y(x) o yp(x) c1 y1(x) c2 y2(x) cn yn(x) Y(x) c1 y1(x) c2 y2(x) cn yn(x) yp(x). FUNCIÓN COMPLEMENTARIA Vemos en el teorema 4.1.6 que la solución general de una ecuación lineal no homogénea está compuesta por la suma de dos funciones: y c1 y1(x) c2 y2(x) cn yn(x) yp(x) yc(x) yp(x). La combinación lineal yc(x) cl yl(x) c2 y2(x) . . . cn yn(x), que es la solución general de (6), se llama función complementaria para la ecuación (7). En otras palabras, para resolver una ecuación diferencial lineal no homogénea, primero se resuelve la ecuación homogénea asociada y luego se encuentra una solución particular de la ecuación no homogénea. La solución general de la ecuación no homogénea es entonces y función complementaria cualquier solución particular yc yp. EJEMPLO 10 Solución general de una ED no homogénea Por sustitución, se demuestra con facilidad que la función yp solución particular de la ecuación no homogénea y 08367_04_ch04_p117-180-ok.indd 126 6y 11y 6y 3x. 11 12 1 2x es una (11) 6/4/09 12:18:04 PM 4.1 TEORÍA PRELIMINAR: ECUACIONES LINEALES 127 ● Para escribir la solución general de (11), también se debe poder resolver la ecuación homogénea asociada y 6y 11y 6y 0. Pero en el ejemplo 9 vimos que la solución general de esta última ecuación en el intervalo (, ) fue yc clex c2e2x c3e3x. Por tanto la solución general de (11) en el intervalo es y yc c1ex yp c2e2x 11 12 c3e3x 1 x. 2 OTRO PRINCIPIO DE SUPERPOSICIÓN El último teorema de este análisis se usará en la sección 4.4 cuando se considera un método para encontrar soluciones particulares de ecuaciones no homogéneas. TEOREMA 4.1.7 Principio de superposición; ecuaciones no homogéneas Sean yp1, yp2, . . . , ypk k soluciones particulares de la ecuación diferencial lineal no homogénea de n-ésimo orden (7) en un intervalo I que corresponde, a su vez, a k funciones diferentes g1, g2, . . . , gk. Es decir, se supone que ypi denota una solución particular de la ecuación diferencial correspondiente an(x)y(n) an 1(x)y(n 1) a1(x)y a0(x)y gi (x), (12) donde i 1, 2, . . . , k. Entonces yp yp1(x) yp2(x) (13) ypk(x) es una solución particular de an(x)y(n) an 1(x)y(n g1(x) g2(x) 1) a1(x)y a0(x)y (14) gk(x). DEMOSTRACIÓN Se demuestra el caso k 2. Sea L el operador diferencial de- finido en (8) y sean yp1(x) y yp2(x) soluciones particulares de las ecuaciones no homogéneas L(y) g1(x) y L(y) g2(x), respectivamente. Si definimos yp yp1(x) yp2(x), queremos demostrar que yp es una solución particular de L(y) g1(x) g2(x). Nuevamente se deduce el resultado por la linealidad del operador L: L(yp) L{yp1(x) EJEMPLO 11 yp2(x)} L( yp1(x)) L( yp2(x)) g1(x) g2(x). Superposición, ED no homogénea Usted debe comprobar que yp1 4x2 es una solución particular de y 3y 4y 16x2 yp2 e2x es una solución particular de y 3y 4y 2e2x, yp3 xex es una solución particular de y 3y 4y 2xex 24x 8, ex. Se tiene de (13) del teorema 4.1.7 que la superposición de yp1, yp2, y yp3, y yp1 yp2 yp3 4x2 e2x xex, es una solución de y 3y 4y 16x2 24x 8 2e2x 2xex ex. g1(x) 08367_04_ch04_p117-180-ok.indd 127 g2(x) g3(x) 6/4/09 12:18:04 PM 128 ● CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR NOTA Si las ypi son soluciones particulares de (12) para i 1,2, . . . , k, entonces la combinación lineal yp c1 yp1 c2 yp2 ck ypk, donde las ci son constantes, es también una solución particular de (14) cuando el miembro del lado derecho de la ecuación es la combinación lineal c1g1(x) c2 g2(x) ck gk (x). Antes de que empecemos a resolver realmente ecuaciones diferenciales lineales homogéneas y no homogéneas, se necesita un poco más de la teoría, que se presenta en la siguiente sección. COMENTARIOS Esta observación es una continuación del breve análisis de sistemas dinámicos que se presentó al final de la sección 1.3. Un sistema dinámico cuya regla o modelo matemático es una ecuación diferencial lineal de n-ésimo orden an(t)y(n) an 1(t)y(n 1) a1(t)y a0(t)y g(t) se dice que es un sistema lineal de n-ésimo orden. Las n funciones dependientes del tiempo y(t), y(t), . . . , y(n1)(t) son las variables de estado del sistema. Recuerde que sus valores en el tiempo t dan el estado del sistema. La función g tiene varios nombres: función de entrada, función de fuerza o función de excitación. Una solución y(t) de la ecuación diferencial se llama salida o respuesta del sistema. Bajo las condiciones establecidas en el teorema 4.1.1, la salida o respuesta y(t) se determina de manera única por la entrada y el estado del sistema prescritos en el tiempo t0; es decir, por las condiciones iniciales y(t0), y(t0), . . . , y(n1)( t0). Para que un sistema dinámico sea un sistema lineal es necesario que se cumpla en el sistema el principio de superposición (teorema 4.1.7); es decir, la respuesta del sistema a una superposición de entradas es una superposición de salidas. Ya se analizaron algunos de los sistemas lineales simples en la sección 3.1 (ecuaciones lineales de primer orden); en la sección 5.l se examinan sistemas lineales en los que los modelos matemáticos son ecuaciones diferenciales de segundo orden. EJERCICIOS 4.1 Las respuestas a los problemas con número impar comienzan en la página RES-4. 4.1.1 PROBLEMAS CON VALORES INICIALES Y CON VALORES EN LA FRONTERA En los problemas 1 a 4 la familia de funciones que se proporciona es la solución general de la ecuación diferencial en el intervalo que se indica. Encuentre un miembro de la familia que sea una solución del problema con valores iniciales. 1. y c1e x c2ex, (, ); y y 0, y(0) 0, y(0) 1 2. y c1e 4x c2ex, (, ); y 3y 4y 0, y(0) 1, 3. y c1x c2x ln x, (0, ); x 2y xy y 0, y(1) 3, y(0) 2 y(1) 1 4. y c1 c2 cos x c3 sen x, (, ); y y 0, y(p) 0, y(p) 2, 08367_04_ch04_p117-180-ok.indd 128 y(p) 1 5. Dado que y c1 c2x2 es una familia de dos parámetros de soluciones de xy y 0 en el intervalo (, ), demuestre que no se pueden encontrar las constantes c1 y c2 tales que un miembro de la familia satisface las condiciones iniciales y(0) 0, y(0) 1. Explique por qué esto no viola el teorema 4.1.1. 6. Encuentre dos miembros de la familia de soluciones del problema 5 que satisfagan las condiciones iniciales y(0) 0, y(0) 0. 7. Como x(t) c1 cos vt c2 sen vt es la solución general de x v2x 0 en el intervalo (, ), demuestre que una solución que satisface las condiciones iniciales x(0) x0, x(0) x1 está dada por x(t) x0 cos vt x1 sen vt. v 6/4/09 12:18:05 PM 4.1 8. Use la solución general de x v2x 0 que se da en el problema 7 para demostrar que una solución que satisface las condiciones iniciales x(t0) x0, x(t0) x1 es la solución dada en el problema 7 cambiada por una cantidad t0: x1 x(t) x0 cos v (t t0 ) sen v(t t0 ). v En los problemas 9 y 10 encuentre un intervalo centrado en x 0 para el cual el problema con valores iniciales dado tiene una solución única. 9. (x 2)y 3y x, 10. y (tan x)y e x, y(0) 0, y(0) 1 y(0) 1, y(0) 0 11. a) Utilice la familia del problema 1 para encontrar una solución de y y 0 que satisfaga las condiciones en la frontera y(0) 0, y(l) 1. b) La ED del inciso a) tiene la solución general alternativa y c3 cosh x c4 senh x en (, ). Use esta familia para encontrar una solución que satisfaga las condiciones en la frontera del inciso a). c) Demuestre que las soluciones de los incisos a) y b) son equivalentes. 12. Use la familia del problema 5 para encontrar una solución de xy – y 0 que satisfaga las condiciones en la frontera y(0) 1, y(1) 6. En los problemas 13 y 14 la familia de dos parámetros dada es una solución de la ecuación diferencial que se indica en el intervalo (, ). Determine si se puede encontrar un miembro de la familia que satisfaga las condiciones en la frontera. 13. y c1e x cos x c2e x sen x; y 2y 2y 0 a) y(0) 1, y(p) 0 b) y(0) 1, y(p) 1 c) y(0) 1, y 2 1 d) y(0) 0, y(p) 0. 14. y c1x 2 c2x 4 3; x 2y 5xy 8y 24 a) y(1) 0, y(1) 4 b) y(0) 1, y(1) 2 c) y(0) 3, y(1) 0 d) y(1) 3, y(2) 15 4.1.2 ECUACIONES HOMOGÉNEAS En los problemas 15 a 22 determine si el conjunto de funciones es linealmente independiente en el intervalo (, ). 15. f1(x) x, f2(x) x 2, f3(x) 4x 3x 2 16. f1(x) 0, f2(x) x, f3(x) e x 17. f1(x) 5, f2(x) cos2x, 18. f1(x) cos 2x, 19. f1(x) x, f3(x) sen2x f2(x) 1, f3(x) cos2x f2(x) x 1, f3(x) x 3 20. f1(x) 2 x, 08367_04_ch04_p117-180-ok.indd 129 f2(x) 2 兩x兩 TEORÍA PRELIMINAR: ECUACIONES LINEALES 21. f1(x) 1 x, 22. f1(x) e x, f2(x) x, f2(x) ex, 129 ● f3(x) x 2 f3(x) senh x En los problemas 23 a 30 compruebe que las funciones dadas forman un conjunto fundamental de soluciones de la ecuación diferencial en el intervalo que se indica. Forme la solución general. e3x, e4x, (, ) 23. y y 12y 0; 24. y 4y 0; cosh 2x, senh 2x, (, ) 25. y 2y 5y 0; e x cos 2x, e x sen 2x, (, ) 26. 4y 4y y 0; e x/2, xe x/2, (, ) 27. x 2y 6xy 12y 0; 28. x 2y xy y 0; x 3, x 4, (0, ) cos(ln x), sen(ln x), (0, ) 29. x 3y 6x 2y 4xy 4y 0; x, x2, x2 ln x, (0, ) 30. y (4) y 0; 4.1.3 1, x, cos x, sen x, (, ) ECUACIONES NO HOMOGÉNEAS En los problemas 31 a 34 compruebe que dada la familia de soluciones de dos parámetros, se trata de la solución general de la ecuación diferencial no homogénea en el intervalo indicado. 31. y 7y 10y 24e x; y c1e 2x c2e 5x 6e x, (, ) 32. y y sec x; y c1 cos x c2 sen x x sen x (cos x) ln(cos x), (p兾2, p兾2) 33. y 4y 4y 2e 2x 4x 12; y c1e 2x c2xe 2x x 2e 2x x 2, (, ) 34. 2x 2y 5xy y x 2 x; y 1/2 c1x c2 x 1 2 15 x 1 1 6 x, (0, ) 35. a) Compruebe que yp1 3e2x y yp2 x2 3x son, respectivamente, soluciones particulares de y 6y 9e2x 5y y y 6y 5y 5x2 3x 16. b) Use el inciso a) para encontrar soluciones particulares de y y 6y 5y y 6y 5y 5x2 10x 2 3x 16 6x 9e2x 32 e2x. 36. a) Por inspección encuentre una solución particular de y 2y 10. b) Por inspección encuentre una solución particular de y 2y 4x. c) Encuentre una solución particular de y 2y 4x 10. d) Determine una solución particular de y 2y 8x 5. 6/4/09 12:18:05 PM 130 ● CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Problemas para analizar 37. Sea n 1, 2, 3, . . . . Analice cómo pueden utilizarse las observaciones Dnxnl 0 y Dnxn n! para encontrar soluciones generales de las ecuaciones diferenciales dadas. a) y 0 b) y 0 c) y (4) 0 d) y 2 e) y 6 f) y (4) 24 38. Suponga que y1 ex y y2 ex son dos soluciones de una ecuación diferencial lineal homogénea. Explique por qué y3 cosh x y y4 senh x son también soluciones de la ecuación. 39. a) Compruebe que y1 x3 y y2 兩x兩3 son soluciones linealmente independientes de la ecuación diferencial x2y 4xy 6y 0 en el intervalo (, ). b) Demuestre que W(y1, y2) 0 para todo número real x. ¿Este resultado viola el teorema 4.1.3? Explique. c) Compruebe que Y1 x3 y Y2 x2 son también soluciones linealmente independientes de la ecuación diferencial del inciso a) en el intervalo (, ). d) Determine una solución de la ecuación diferencial que satisfaga y(0) 0, y(0) 0. 4.2 e) Por el principio de superposición, teorema 4.1.2, ambas combinaciones lineales y c1y1 c2y2 y Y c1Y1 c2Y2 son soluciones de la ecuación diferencial. Analice si una, ambas o ninguna de las combinaciones lineales es una solución general de la ecuación diferencial en el intervalo (, ). 40. ¿El conjunto de funciones f1(x) ex 2, f2(x) ex 3 es linealmente dependiente o independiente en (, )? Explique. 41. Suponga que yl, y2, . . . , yk son k soluciones linealmente independientes en (, ) de una ecuación diferencial lineal homogénea de n-ésimo orden con coeficientes constantes. Por el teorema 4.1.2 se tiene que yk1 0 es también una solución de la ecuación diferencial. ¿Es el conjunto de soluciones yl, y2, . . . , yk, yk1 linealmente dependiente o independiente en (,)? Explique. 42. Suponga que yl, y2, . . . , yk son k soluciones no triviales de una ecuación diferencial lineal homogénea de n-ésimo orden con coeficientes constantes y que k n 1. ¿Es el conjunto de soluciones yl, y2, . . . , yk linealmente dependiente o independiente en (, )? Explique. REDUCCIÓN DE ORDEN REPASO DE MATERIAL ● Sección 2.5 (utilizando una sustitución). ● Sección 4.1. INTRODUCCIÓN En la sección anterior vimos que la solución general de una ecuación diferencial lineal homogénea de segundo orden a2(x)y a1(x)y a0 (x)y 0 (1) es una combinación lineal y c1y1 c2y2, donde y1 y y2 son soluciones que constituyen un conjunto linealmente independiente en cierto intervalo I. Al comienzo de la siguiente sección se analiza un método para determinar estas soluciones cuando los coeficientes de la ED en (1) son constantes. Este método, que es un ejercicio directo en álgebra, falla en algunos casos y sólo produce una solución simple y1 de la ED. En estos casos se puede construir una segunda solución y2 de una ecuación homogénea (1) (aun cuando los coeficientes en (1) son variables) siempre que se conozca una solución no trivial y1 de la ED. La idea básica que se describe en esta sección es que la ecuación (1) se puede reducir a una ED lineal de primer orden por medio de una sustitución en la que interviene la solución conocida y1. Una segunda solución y2 de (1) es evidente después de resolver la ED de primer orden. REDUCCIÓN DE ORDEN Suponga que y1 denota una solución no trivial de (1) y que y1 se define en un intervalo I. Se busca una segunda solución y2 tal que y1 y y2 sean un conjunto linealmente independiente en I. Recuerde de la sección 4.1 que si y1 y y2 son linealmente independientes, entonces su cociente y2兾y1 no es constante en I, es decir, y2(x)兾 y1(x) u(x) o y2 (x) u(x)y1(x). La función u(x) se determina al sustituir y2(x) u(x)y1(x) en la ecuación diferencial dada. Este método se llama reducción de orden porque debemos resolver una ecuación diferencial lineal de primer orden para encontrar a u. 08367_04_ch04_p117-180-ok.indd 130 6/4/09 12:18:06 PM