a , y x , 4a 3x

Anuncio
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA
FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN
DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS
CENTRO UNIVERSITARIO DE VILLA NUEVA
CURSO MATEMÁTICA I
Lic. Manuel de Jesús Campos Boc
QUINTA UNIDAD
ALGEBRA
Conceptos Básicos
-La expresión algebraica: es una combinación de números de reales y
símbolos (letras), que los representan y que envuelven únicamente todas o
algunas de las operaciones de: adición, sustracción, multiplicación, división,
potenciación o radicación.
Ejemplos:
 2x3y + 1

√
(
 √
)
√
Los números representan valores constantes y las letras (o los símbolos)
representan valores variables.
-Término algebraico: se llama término a toda expresión algebraica cuyas
partes no están separadas por los signos + o -.
Por ejemplo:
5 a
,
6 y x
,
4a
3x
1
-Componentes de un término algebraico: en todo término algebraico
pueden distinguirse cuatro elementos: el signo, el coeficiente, la parte
literal y el grado o exponente.
-Signo: los términos que van precedidos del signo + se llaman términos
positivos, en tanto los términos que van precedidos del signo – se llaman
términos negativos. Pero, el signo + se acostumbra omitir delante de los
términos positivos; así pues, cuando un término no va precedido de ningún
signo se sobreentiende de que es positivo.
-Coeficiente: se llama coeficiente al número o letra que se le coloca
delante de una cantidad para multiplicarla. El coeficiente indica el número
de veces que dicha cantidad debe tomarse como sumando. En el caso de
que una cantidad no vaya precedida de un coeficiente numérico se
sobreentiende que el coeficiente es la unidad.
-Parte literal: la parte literal está formada por las letras que haya en el
término.
-Grado o exponente: el grado de un término con respecto a una letra es
el exponente de dicha letra. Así, por ejemplo:
Los términos:
x3y2z
es de tercer grado
ax
es segundo grado
y
es primer grado
2
-Clases de términos
-Por sus características
-Término entero: es el término que no tiene denominador literal.
Por ejemplo:
-4
1 y x
2
,
,
ab
2
-Término fraccionario: es el término que si tiene denominador literal.
Por ejemplo:
ab
a
2x
y
,
-7 a
b
,
-Término racional: es el término que no tiene radical. Por ejemplo:
ab
a
-3 a
,
ab
2
,
-Término irracional: es el término que si tiene radical. Por ejemplo:
 x +
7a
 8
y
,
-Por su grado absoluto
-Términos homogéneos: es un conjunto de términos algebraicos con
igual valor absoluto. Por ejemplo:
√


Los términos tiene cuarto grado de
valor absoluto.
3
-Términos heterogéneos: es un conjunto de términos algebraicos con
diferente valor absoluto. Por ejemplo:
√

Tiene octavo grado
absoluto.

Tiene quinto grado
absoluto.
Tiene cuarto grado
absoluto.
-Términos semejantes: son los términos que tienen la misma parte
literal, o dicho de otra forma aquellos que tienen las mismas letras y los
mismos exponentes Por ejemplo:



y
y
y
-Supresión de Signos de Agrupación
En ocasiones es necesario eliminar paréntesis antes de combinar términos
semejantes. Por ejemplo, para combinar términos semejantes en:
+ ( a - b ) = a - b
+ ( a + b ) = a + b
Tenemos que suprimir los paréntesis primero. Si hay un signo más (o
ningún signo) enfrente de los paréntesis, podemos simplemente eliminar;
esto es,
( 3x + 5) + ( 2x - 2) = 3 x + 5 + 2 x - 2
= ( 3 x + 2 x ) + ( 5 - 2)
= 5 x + 3
4
La eliminación de paréntesis precedidos por un signo menos se hará de la
manera siguiente. Por ejemplo:
8 x - 2( x - 1) - ( x - 3) = 8 x - 2 x + 2 - x + 3
= ( 8 x - 2 x - x ) ( 2 + 3)
= 5 x +5
En ocasiones los paréntesis se presentan dentro de otros paréntesis. Para
evitar confusión, utilizamos diferentes símbolos de agrupación. De este
modo, por lo general:
no escribimos,
( ( x + 5) + 3)
sino:
( x + 5) + 3
Para combinar términos semejantes en tales expresiones, los símbolos de
agrupación más internos se eliminan primero.
(
x² - 1 ) + ( 2 x + 5 ) + (
x - 2 ) - ( 3 x² + 3 ) = x² - 1 + 2 x + 5 + - 3 x²+ x - 2 - 3
= x² + 2 x + 4 + - 3 x² + x - 5
= x² + 2 x + 4 - 3 x² + x - 5
= - 2 x² + 3 x - 1
Como efecto de la propiedad distributiva tenemos, que:
La propiedad distributiva también puede extenderse a más de dos números
dentro de los paréntesis.
Por tanto
.
Además
5
-Reducción de términos semejantes
Es una operación que tiene por objeto convertir en un solo término dos o
más términos semejantes. En la reducción de términos semejantes pueden
ocurrir los tres casos siguientes:
1.- Reducción de dos o más términos semejantes del mismo signo:
Se suman los coeficientes, poniendo delante de esta suma el mismo signo
que tienen todos seguida de la parte literal. Por ejemplo:
a.-
3
a
+
2
a
=
5
b.-
- 2
a
-
9
a
=
- 11 a
c.-
1
2
x² y
+
1
4
x²
y
1 x²
8
y
=
1
2
+
1
4
+
1
8
= 32 + 16 +
64
8
= 56 = 28
64
32
=
- 1
3
x
y
-
2
3
x
y
- 1
3
-
2
3
=
d.-
a
+
y
7 x² y
8
=
-
1
x
y
=
- 1
-
2
=
-
1
- x
14 =
16
7
8
3
2) Reducción de dos términos semejantes de distinto signo: Se
restan los coeficientes, poniendo delante de esta diferencia el signo del
mayor seguida de la parte literal. Por ejemplo:
a.-
2
b.-
- 8 a
c.-
- 3
7
a² b
+
- 3
7
+
=
a
x
3
a
x
=
-
- 5
6
a
- 5
6
-
5 a
a² b
=
4 a² b
7
3
7
=
x+1
d.-
- a
x
+ 13 a
1
1
=
+
3
4
a
+
3
4
=
+
7
4
7
x+1
x+1
=
-
1
12
- 20 + 18
24
=
-
2 = 24
1
12
6
3) Reducción de más de dos términos semejantes de signos
distintos: se reducen a un solo término todos lo positivos, se reducen a un
solo término todos los negativos y a los dos resultados obtenidos se aplica
la regla del caso anterior. Por ejemplo:
a.-
5a
-
5a
+
27
b.- -
-
8a
a
8a
a
+
+
a
-
6a
21 a
=
27 a
- 6 a
- 14 a
=
+
21 a =
- 14 a
= 13 a
2 bx² +
5
1 bx² +
5
1 bx² +
5
3 bx² + bx² =
4
1
5
+
3
4
+
2 bx² 5
4 bx² =
-
4
1
=
-
39 bx² 20
22 bx² = 39 5
20
-
3 bx² 4
-
2
5
4
22 =
5
bx² + bx²
1 =
1
4+
15 +
20
2 - 20 = 5
195 - 440 = - 245 =
100
100
20 = 39 bx²
20
22 bx²
5
- 49 bx²
20
49 bx²
20
Clasificación de las Expresiones Algebraicas
-Monomio: es una expresión algebraica que consta de un solo término.
Por ejemplo:
◊
7 xy
◊ -
8b
◊ x² y
4n³
-Binomio: es un polinomio que consta de dos términos. Por ejemplo:
◊
5 x² y +
2 x² y³
◊
x
-
y
◊
a²
3
- 5mx³
6b²
-Trinomio: es un polinomio que consta de tres términos. Por ejemplo:
◊ a + b + c ◊ y³ - 6y -
8 ◊ 4 x² - 7y³ + b²
3
7
-Cuatrinomio: es un polinomio que consta de cuatro términos .Por
ejemplo:
◊ m² +
6m -
m³ +
m4
◊ a³
2
-
a³
3
+ a²
2
- a
-Operaciones con expresiones algebraicas
El orden para realizar las operaciones, siempre que no existan signos de
agrupación es el siguiente:
1.-
Potencia y raíces
2.-
Multiplicación y división
3.-
Sumas y restas
Cualquier cambio en este orden debe ser indicado por signos de agrupación.
-Suma: es el resultado de poner unas a continuación de las otras con sus
propios signos, seguidamente si hay términos semejantes se reducen a uno
solo, para lo cual basta con sumar los coeficientes numéricos y copiar la
parte literal. Por ejemplo:
( 3 x³ y + 2 x² - 2 xy ) + ( 2 xy² + x³y + xy )
( 3 x³ y + 2 x² - 2 xy ) + ( 2 xy² + x³y + xy )
3 x³ y + x³y =
2 x²
4 x³y
= 2 x²
- 2 xy + xy = - xy
2 xy²
R:
=
2 xy²
4 x³y + 2 x² - xy + 2 xy²
8
(
3 x²y +
5
1 xy² 2
3 y³
)
+
(
y³
-
xy
-
7 x²y -
2 xy² )
3
(
3 x²y +
5
1 xy² 2
3 y³
)
+
(
y³
-
xy
-
7 x²y -
2 xy² )
3
3 x²y 5
7 x²y =
3
5
-
7
1
=
3
- 35 =
5
- 32 x²y
5
2 xy² =
3
1
2
-
2
3
=
3
=
2 y³
-
xy
+
1 xy² 2
-
3 y³ + y³ =
-
2 y³
-
xy
=
-
xy
- 32 x²y 5
1 xy² 6
R:
(
6
4
-
1 xy²
6
- 7x + x² - 3 ) + ( 6x² - 8 + 2x ) + ( 3x - x² + 5 ) =
+ x² + 6x² - x² = 6x²
- 7x + 2x + 3x = - 2x
- 3 - 8 + 5 = - 6
R: 6x² - 2x - 6
-Resta: para restar expresiones algebraicas es el resultado de colocar el
minuendo y a continuación el sustraendo cambiando de signo. Luego se
reducen los términos. Por ejemplo:
9
a.- ( 6ab - 3b + 4a )
6ab -
-
( 7b - 2a - 5ab )
3b + 4a - 7b + 2a + 5ab
R: 6a + 11ab - 10b
b.-
(
3ab³ 5y
3ab³ 5y
ab
y²
ab - 4
y²
)
-
(
9ab - 2ab³ + 2b - 1
y
5
y²
y³
)
- 4 - 9ab + 2ab³ - 2b + 1
y
5
y²
y³
3ab³ + 2ab³ = 3 + 2 = 3 + 10 = 13 ab³
5
5y
y
5
1
5
-
ab
y²
-
2b
y³
-4
+
1
5
= -4 + 1 = -20 + 1 = -19
5
1
5
5
13 ab³
5
-
10 ab - 2b - 19
y²
5
y³
c.- (
- 9ab = -1 - 9 = -1 - 9 = -10 = -10 ab
1
y²
1
1
1
y²
3 a²xy - 2 ax²y )
3 a²xy -
-
(
- 18 ax²y + axy - 10 a²xy )
2 ax²y + 18 ax²y - axy + 10 a²xy
3 a²xy + 10 a²xy = 13 a²xy
-
2 ax²y + 18 ax²y = 16 ax²y
- axy
R: 13 a²xy + 16 ax²y - axy
10
-Multiplicación: es una operación algebraica que tiene por objeto hallar
una cantidad llamada producto dadas dos cantidades llamadas
multiplicando y multiplicador, tanto el multiplicando como el multiplicador
reciben el nombre de factores del producto.
-Leyes de exponentes: los exponentes se han utilizado para indicar el
número de veces que se repite un factor en un producto. Por ejemplo.
La notación exponencial proporciona un modo sencillo para multiplicar
expresiones que contienen potencias de la misma base.
1.
Primera ley de los exponentes: Los exponentes se suman para
multiplicar dos potencias de la misma base.
an . am = an+m

x5 . x 3 = x
5+3
= x8
y2 . y4 . y6 = y2+4+6 = y12
2.
Segunda ley de los exponentes: Los exponentes se multiplican para
elevar una potencia a otra potencia.
(a . b)n = an . bn 
(x . y)2 = x2 . y2
3.
Tercera ley de los exponentes: Mediante las propiedades asociativa y
conmutativa de la multiplicación es posible escribir una potencia de un
producto es igual al producto de las potencias de cada uno de los factores.
(an)
m
= an m  (x2)
3
=x
2 (3)
= x6
Regla de los Signos, siguiente:
+
+
-
×
×
×
×
+
+
-
=
=
=
=
+
+
11
En la multiplicación
siguientes:
a)
b)
c)
algebraica
pueden
considerarse
los
tres
casos
Multiplicación de monomios.
Multiplicación de un polinomio por un monomio
Multiplicación de polinomios
a)
Multiplicación de monomios: para multiplicar monomios, se
multiplican sus coeficientes y a continuación se escriben las letras
diferentes de los factores ordenados alfabéticamente, elevadas a un
exponente igual a la suma de los exponentes que cada letra tenga en los
factores. El signo del producto será el que le corresponda al aplicar la regla
de los signos. Por ejemplo:
3
a.-
(
3
x
4
)
(
5
2
x
2
3+4
)
=
3
(
5
2
)
x
7
= 15 x
1+2
2+2
b.- ( -8 a b ) ( 3 a b c ) = ( -8 . 3 ) a b
3
c
=
)
=
4
- 24 a b c
3
c.- (
-
4 x
)
(
2
5 x y
2
)
(
1+3+2
(
-
4
3
.
5
.
-
2
)
x
-
2 x y
2+1
6
3
y = 40 x y
2 2 2
2
d.- ( - 2 a b c ) ( - 4 a b c ) ( 5 a b c ) ( - 6 a b ) =
3+2+1+1 1+2+1+2 1+2+1
7 6 4
( - 2 . - 4 . 5 . - 6 ) a b c = - 240 a b c
12
b)
Multiplicación de un polinomio por un monomio: para multiplicar
un polinomio por un monomio se multiplica cada uno de los términos del
polinomio por el monomio, teniendo en cuenta la regla de los signos, y se
suman todos los productos parciales así obtenidos. Por ejemplo:
3
2
a.- ( 3 a + 5 a - 4 ) ( 3 a ) =
3
2
( 3 a . 3 a ) + ( 5 a . 3 a ) - ( 4 . 3 a ) =
4
3
9 a + 15 a - 12 a
3
2
2
3
b.- ( x - 3 x y + 3 x y - y ) ( 2 x y ) =
3
2
2
3
( x . 2 xy ) - ( 3 x y . 2 xy ) + ( 3 x y . 2 xy ) - ( y . 2 xy )
4
3 2
2 3
4
2 x y - 6 x y + 6 x y - 2 x y
3
c.-
(
2
2
3
4
2a b 3
1a b +
4
5a b 6
4
3
2
4
5
5
2b
5
2
) (
6
-
1a b
2
7
- 2 a b + 1 a b - 5 a b + 2 a b
6
8
12
10
13
c)
Multiplicación de polinomios: para multiplicar un polinomio por
otro se multiplican todos los términos del multiplicando por cada uno de los
términos del multiplicador, teniendo en cuenta la regla de los signos, y a
continuación se efectúa la suma algebraica de todos los productos parciales
así obtenidos. Por ejemplo:
3
2
2
3
2
2
a.- ( 2 a - 3 a b + 4 a b - 2 b ) ( 3 a +
3
2
2
4 ab - 5 b ) =
3
2 a - 3 a b + 4 a b - 2 b
2
2
3 a
5
+ 4 a b - 5 b
4
6 a -
3
9a b +
2
2
12 a b -
4
3
3
6a b
2
2
3
4
8 a b - 12 a b + 16 a b - 8 a b
3
2
2
3
4
5
- 10 a b + 15 a b - 20 a b + 10 b
5
4
6 a -
3
2
2
4
5
a b - 10 a b + 25 a b - 28 a b + 10 b
2
b.- (
3
2
3 x + 2 x
-
1
)
(
4 x
2
-
2 x + 2
)
(
-
8
-
8
2
x
-
3 x + 4
)
2
3 x + 2 x
-
1
2
4 x
-
2 x + 2
4
3
12 x + 8 x
2
-
4 x
-
4 x + 2 x
3
-
6 x
2
2
6 x + 4 x
4
3
12 x + 2 x
4
-
2 x + 6 x
-
2 x + 6 x
3
12 x + 2 x
-
2
-
2
-
2
2
2
2
2 x
6
5
24 x + 4 x
5
- 36 x
-
3 x + 4
4
4 x + 12 x
4
-
3
3
6 x + 6 x
4
24 x
5
4
- 32 x + 38 x + 26 x
4 x
2
- 18 x + 6 x
3
48 x + 8 x
6
2
2
3
8 x + 24 x
2
- 30 x + 30 x
14
-Reglas o Postulados de la División:
1.- Por si el exponente mayor está en el numerador, es decir si n es menor
que m entonces:
m
(
< m
n
)
=
a
5
=
a
n
3
a
5
.5-3
a
=
a
2
= a. a. a. a. a. = a. a. =
a. a. a.
a
a
2
=
a
3
a
1.- Por si el exponente mayor está en el denominador, es decir si n es
mayor que m entonces:
m
(
> m
n
)
=
b
4
=
b
n
7
b
b
b
3
=
7
= b. b. b. b.
=
1
=
b. b. b. b. b. b. b.
b. b. b.
b
4
b
-3
1
=
1
.7-4
b
=
b
3
b
Para efectuar una división algebraica hay que tener en cuenta los signos,
los exponentes y los coeficientes de las cantidades que se dividen.
(+) ÷ (+) = +
(–) ÷ (–) = +
(+) ÷ (–) = –
(–) ÷ (+) = –
15
3
2
2
3
a.- ( 3 x - 5 x y - 8 x y - 2 y )  ( 3 x + y )
2
2
x - 2x y - 2 y
3
2
2
3
3 x + y 3 x - 5 x y - 8 x y - 2 y
3
2
- 3 x -
x y
2
0
2
3
- 6 x y - 8 x y - 2 y
2
2
+ 6 x y + 2 x y
2
0
3
- 6 x y - 2 y
2
3
+ 6 x y + 2 y
0
5
b.- (
x
+
2
x
2
-
x
-
8
)
3
x
2
x
0
3

(
x
+
5
x
2
x
+
1
+
2
x
x
x
+
2
8
+
x
4
1
)
+
2
x
+
2
x
-
x
+
x
2
x
3
-
8
-
x
-
8
+
4
x
-
x
-
8
2
-
2
x
-
2
x
3
0
x
3
4
-
3
4
0
+
x
3
5
-
2
2
5
-
-
+
5
x
2
3
-
5
x
2
+ 10 x
-
5
x
-
6
x
-
8
+ 16 x
-
8
+ 10 x
- 16
2
0
+
8
x
2
-
8
x
0
3
R:
x
2
+
2
x
+
5
x
+
8
+ 10 x
- 16
2
x
-
2
x
+
1
16
Descargar