! " # $ % & ' ( I. 8 9 : ; 9 < = > = ?> @ ; ?A : BC 9 D E 1. NIVEL BÁSICO 3. − 3 ( x + 1 ) < 2x + 2 6. 1 − 2x x −9 > 3 2 9. 12. 15. 4. x > 3x − 2 G x 2 + 13 x − 14 > 0 6 x 2 − 73 x + 12 < 0 18. x < x 2 + 2 x + 1 19. 21. (x − 1)2 (x − 2)(x − 3)2 24. − 27. (x − 1)(1 − x ) 1 ≤ 7 30. 4 2 5x − 1 + < x + 3 x − 3 x2 − 9 33. 1< 36. 39. 42. 45. 3 x 2 − 7x + 8 2 x +1 2 3 > 2x − 1 3 x − 4 2x − 3 > x2 − 5 x +1 1 > −(x + 1) x +3 7x − 3 x 3 −4 x +4 =2 51. x− 54. x − (x + 3 ) ≤ 5 2 B9 E : A > : B; 9 E @ 2−x x +3 ≤5− 3 8 3 5 1 x − x + > − 2x 4 6 3 −3 x > x − 8 ó (2 x − 3 ) + 1 > 6 x x +6 1 < 16 2− x 2 x + 1 >0 x −5 1 ≤4 3x − 2 32. x + 2 < 2 4 1 ≤ x +3 4− x 2x − 1 1 >− x −3 x 1 1 + >0 3(x − 2) ( x + 1)(2 − x ) 38. x − 2 < 2 46. 7 − 3x > 2 47. 49. 2x − 3 > 4 52. 3< x +5 55. x −1 ≤ 2 y x+4 35. 67. 28 x − 11 + 4 < 7 x 3 74. x −1 x +1 - . / 0 1 ≤0 58. 69. 72. 75. 41. 3 + 1 ≥ 4 x −2 44. x − 2 (x − 1) ≥ 0 (x ) − x − 20 30 − 7 x − x 2 3 . 4 . 5 . 6 4 3 5 / / 3 5 1 , 7 / − 2 ≥0 x +1 (x − 1)(1 − x ) ≤ 1 x2 + x − 6 3x − 4 − 2 ≤ 0 50. 2 x −1 ≥ 2 3 53. x −3 =5 56. x +1 ≥ 4 59. 3 x + 1 > 1,7 62. 3x + 3 − 5x > 4 65. 68. 8 − x ≥ 2x + 1 73. 76. 7 x >2 G y x −1 > 1 2x + 1 ≤ 3 + x − 3 3x + 2 ≤ 7 70. 11 − 2 x + x > 4 2 x +5 ≤0 2x − 1 x +4 2−x ≤ 2 1 4x + 7 + − x − 2 > 2 71. 1 >4 x −2 29. x − 7 > 4x + 7 K N I O 2x 2x + 2 −3 ≤ 0 x −5 x −5 x +2 <2 x +4 1 4 < x − 1 (1 − x )(x − 5) 64. M 2 20. 28. 3x − 5 < 1 − 4x K L 1 2 x − 2x + 3 ≤ 0 4 x+ 63. 66. I J x 2 − 3 x + 54 < 0 26. 61. H 8. 23. 1 >0 x −3 2x − 3 ≤ 7 − x + 1 4 x − 3 x + 2 ≥ 5(x − 3 ) 6 17. x x − 1 + 1 > 0 3 2 60. <0 5. 1 1 ≤ 4−x x+4 43. x −2(x − 2 ) > 3 x − 3 25. 40. 4 3 2. 11. 9 + 18y − 16y 2 < 0 14. 22 x 2 − 7 x − 2 ≥ 0 x 34. 2 ≤2 3 1≤ x + 2 ≤ 2 : 22. 1 < 5 37. x −1 @ BF A BE 9 < E @ x <0 x +2 −7 x − 3 > 5,1 57. 2 <2 2x − 3 > y >0 31. >0 48. 7. & ( * % $ + % & " ( * ! , 10. m 2 + 16 m − 192 ≤ 0 13. − x 2 − x + 2 > 0 16. 200c 2 + 80c + 8 ≥ 0 x (x − 7 ) > 8 4 x 2 + 8 x − 12 ≥ 0 x2 + x − 6 1 x +1≥ 1− x ?> @ ) * 3 x +1 x +1 ≤ 0 4 x + 3 > 5 − 2x ! " # $ % & ' ( x −2 ≥0 78. 80. (1 − x ) 2 x − 9 > −5 81. 77. x −1 & ( * % $ + % & " ( * ! , 3 x 2 − 16 x − 12 x +4 79. x 2 > x ≥0 4 − x (x − 1) ≤ 4 (x − ) x + 1 > −2 2x − 3x − 2 ≤ 3 85. x 2 − 6 x + 10 < 2 23 − 5 x − 2 x 2 > 19 − 3 x 87. 14 + 6 x − 4 x 2 ≥ 4 x 2 − 6 88. 4 x 2 + 4 x − 11 ≥ 9 − 2 x − 4 x 2 89. x 2 + 3x + 2 ≤ 4 90. 91. 3x − 1 <2 x +1 92. 7−x 2 > 5x + 1 3 93. 94. 2x + 1 ≤3 1− x 95. 5 x +7 > 10 x − 1 17 96. x 86. H + 3x + 2 ≤ 4 I J K L 8 9 : K ; I O ; 2 82. 84. 83. 2 ) * 3x +4 ≤2 3x − 1 3 − 2x ≥4 x +2 (x − 2) x + 1 > −2 97. 3 x 2 − 11 x − 4 > 0 98. 2 x 2 − 5 x − 25 < 0 101. 99. − (x + 2)(x + 5 ) < 2 x − 1 100. (x − 2)2 − 2 102. 8 x 2 + 14 x − 13 > 9 103. 3 x 2 − 11 x − 4 ≥ 0 105. ( ) − x 2 − 2x + 1 < x 2 − 1 + 3 106. 2x − 3 x2 − 1 ≥ 2 x −1 7x − 2x 2 − 4 ≤ 1 104. 5 x 2 − 2 x − 3 ≤ 0 ≥2 II. Escriba una inecuación cuadrática cuyo conjunto solución sea (−∞ ,2 ) < (5, ∞ ) III. Escriba una inecuación cuadrática cuyo conjunto solución sea [−2,3] IV. ax 2 V. VI. El polinomio ax 2 + bx + c evaluado en 1 es 6. El conjunto solución de la inecuación + bx + c ≥ 0 es (−∞ ,−1] < [0, ∞ ) . Determine las constantes a, b, c que satisfacen las condiciones dadas. Es posible que una inecuación de la forma x ∈ (−∞,−6] < (3, ∞ ) ? Justifique su respuesta. VII. = VIII. J K G K 1. 3. > ? @ A B ? C L > ? A D B ? E FG M K NA G ? D B ? B ? O H NK D ID F I D FP > F? Q R ? D ? E > K E FA Q ? D (4m + 3)x + 5 x + 3 = 0 1. X. FQ K G NA D M K NA G ? D B ? x L > ? 2 9 x + 9 x − 54 U ? R ? G C FQ ? @ K G K L > ? V K E ? Q B ? O B A D G K FE ? D B ? E K B K 4x − 1 NK D ? W @ G ? D FX Q > Q 3. D FP > F ? Q R ? D FQ ? E > K E FA Q ? D x ∈ℜ 1. 3. 5. x 2 + 3x − m + 2 > 0 x − 3(m + 7 )x − 3m + 17 < 0 2 (m − 1)x 2 − 5 x + 6 < 0 - . / 0 1 2 3 . 4 . 5 . 6 4 3 5 / / 3 5 1 , 7 / 2. 4. 6. G ? K N? D B FS ? G ? Q R ? D T mx 2 + 4 x − 2m + 1 = 0 2 2. M K NA G ? D R F? Q ? Q 2x 2 − 3x + 1 − m = 0 2. 4. 2 U ? R ? G C tenga como conjunto solución x (x − 2) < 0 x 2 − 8 x − 4m = 0 IX. ax 2 + bx + c < 0 − 2 x 2 − x + 2m − 3 < 0 3 x 2 − (m − 1)x + 3 > 0 mx 2 − (1 + m )x + 1 > 0 Q Y C ? G A 3x 2 G ? K NT −4 7 D A Q M ? G B K B ? G K D @ K G K R A B A ! " # $ % & ' ( XI. = > ? > @ A > S Q @ > E BI C 1. BC D @ es ∅ D H B@ A D F BI C > E E K MR F BI C = a J > @ G D G > @ D G > MD 2. BC > F R D F BI C , a ≠ 0 a 1 x 5. 0 < x < 10 −3 7. Y Z [ \ ] ^ _ ] ` \ a \ Z_ [ Xb ] c d x −a < b 8. Y Z [ \ ] ^ _ ] ` \ a \ Z_ [ Xb ] c d x −a < b−a XII. e h c h c d Zh 10 3 < , entonces, c d a Xi _ h Zc h c c d f d [ o h p a1 c d q d ` d f l Zh Xj k _ Xd f c h X] h f a2 Z\ a n h f d a a3 [ \ ] ` Xd ] d L D ME D N B > E L D ME D F K @ @ > P B @ MD −5 ≤ x < 5 a2 2(1 − x ) > −2 x b2 x < −7 a3 − 5 ≥ −3 x − 20 > −35 b3 x >2 b4 1< x < 2 b5 −5≥ x >5 b6 ℜ b7 x >7 67 3 < 2x − 5 5 x +1 > x − 5 XIII. t h f h XIV. Y ] [ _ d ] ` f d k _ u g h Z\ f d a 3x −m ≤ n W X x <0 2<3 y c d d Z g h Z\ f ` d ] i h Zh v c d Zh X] d [ _ h [ Xb ] x y z n h f h a Xi _ Xd ] ` d 0 < x < 10 −4 6. x < 10 −3 d a d Z a<b R C D 2(-x ) < 3(− x ) , entonces, [ \ l \ XV. e _ h Z d a XVI. Y ] [ \ ] ` f h f d Z [ d ] ` f \ _ ] h c d Z x 2 < 10 −3 , entonces, Z (a − b ; a + b ) (− b; b ) X ] ` d f g h Z\ [ \ ] ^ _ ] ` \ k _ d 3x − 7 ≤ p − 3 2 d ] \ Z [ \ ] ^ _ ] ` \ f d n f d a d ] ` h [ Xb ] a \ Z_ [ Xb ] _ ] h Zh a Xi _ Xd ] ` d ` Xd ] d a \ Z_ [ Xb ] w c d Zh a k _ d 1. c d ] { l d f \ a f d h Zd a k _ d a h ` Xa | h [ d i f } | X[ h V (1 − 2δ;1 + 2δ ) w f d n f d a d ] ` d 2. 8 9 : ; ~ < 3. 4. ~ 5. ~ 6. ~ d m n f d a X\ ] d a ` h s Zh p 2/3 X ] ` d f g h Z\ X] d [ _ h [ Xb ] d 1 x 10 -4 < , entonces, X ] ` d f g h Z\ Y a -10/3 Q K @ a5 b1 - . / 0 1 O [ \ f f d a n \ ] c Xd ] ` d a r d ] a4 3 − 2x < 1 a5 K 4. b>0 e \ ] a1 a4 V a . a 3. F D G D & ( * % $ + % & " ( * ! , F K @ @ > F ? D N T M F K C U R C ? K x ≥x E B ) * 2 3 . 4 . 5 . 6 4 3 5 / / 3 5 1 , 7 / ~ ! " # $ % & ' ( XVII. 8 9: ; < 9 < = > ? @ A B ; B @ A ; < J K L M x − 3 < 0,5 ⇒ N K L M x <1 ⇒ 1 <1 2x − 3 O K L M P K L M - . / 0 1 ⇒ C ; D< ; < D; < x +2 ≥1 x2 + x +7 x2 +1 ≤ 15 2 3 . 4 . 5 . 6 4 3 5 / / 3 5 1 , 7 / & ( * % $ + % & " ( * ! , < 9: E 9@ > F @ < 5 x − 15 < 2,5 (x − 2) ∈ [− 3,−1] ⇒ x ≤2 = ) * ; C 9A G ; H 9= > @ < I ! " # $ % & ' ( 8 9 : ; < 8 < ; = C D E F G HI O N R N S \ X L N S X T O P VU TX Z [ X d e X Q d K T N O P N k Q ? @ A & ( * % $ + % & " ( * ! , ? : 8 @ ; > ? < B 8 < ; = > ? @ J K L M N L O P Q P f [ L TN S X L O X P N U N S V W TX S R X L g \ X P N L g \ X P N X l U P X S Vm L R VM _ N > ) * Z [ X U Q P X S R VM _ N X L O X P N X L O X P N S Y O Q TX S X S O ` X L O P X a b ] Z [ X TQ S [ \ Q R X [ L N R X X T TN S ] ^ [ L VR Q R X S ^ b c X L O X P N c S X P ` h a f i ^ j M N P P X S U N L R X X S O ` R X X L O P X a b ] Q n TQ S [ \ Q ^ b n S X R X W X R X [ L X L O X P N ] ^ [ L VR Q R X S \ X L N S Z [ X X T O P VU TX R X X S 34 < x + (3 x − 5 ) < 54 o Q P Q R Q P S N T[ M Vm L Q T U P N W TX \ Q P X S N Tp X P L X M [ Q M Vm L 34 < x + (3 x − 5 ) < 54 TQ VL X M [ Q M Vm L U TQ L O X Q R Q c U TQ L O X Q R Q c q P [ U Q M Vm L 34 < 4 x − 5 < 54 R X O t P \ VL N S S X \ X u Q L O X S c r s o P N U VX R Q R 34 + 5 < 4 x − 5 + 5 < 54 + 5 R X P [ U Q M Vm L 39 < 4 x < 59 N P R X L R X R X O t P \ TQ Q R VM Vm L c VL N S S X \ X u Q L O X S Y VL p X P S N Q R VO Vp N ] \ m R [ TN R X r s TQ Q R VM Vm L c o P N U VX R Q R 1 39 < 1 4 x < 1 59 4 4 4 R X o P N U VX R Q R 39 < x < 59 4 4 T P X U P X S X L O Q P X L TQ P X M O Q L [ \ t P VM Q X T N P R X L VL p X P S N R X \ V L O X P p Q TN TQ \ [ TO VU T V M Q M V m L c [ TO VU T V M Q O V p N S N T[ M Vm L R X ] TQ \ m R [ TN R X VL X M [ Q M Vm L TQ S X \ [ TO VU T V M Q M V m L c N W O VX L X v r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 w N \ N TN S L g \ x y Y U [ X S O N o Q P Q e V e V e V e V e V k N ] R Q P X P N S Z [ X TQ 1 2 3 4 W [ S M Q R N S 39 = 9,75 4 P X S U [ X S O Q Q v ] X T 5 6 R X W X L S X P \ X L O X P N Q ] N P X L M N L O P Q P ⇒ 3 x − 5 = 3(10 ) − 5 = 30 − 5 = 25 x = 11 ⇒ 3 x − 5 = 3(11) − 5 = 33 − 5 = 28 x = 12 ⇒ 3 x − 5 = 3 (12 ) − 5 = 36 − 5 = 31 x = 13 ⇒ 3 x − 5 = 3(13 ) − 5 = 39 − 5 = 34 x = 14 ⇒ 3 x − 5 = 3(14 ) − 5 = 42 − 5 = 37 a x { K S O Q S x a ] L N S a b { U X P \ x b S N T[ M VN L X S L g \ X P N S - . / 0 1 ] L N VO X M N L M T[ VP Z [ X 8 9 X L O X P N S O N R Q S x = 10 Q L O X P VN P 7 TN S O X L X \ U N S V W TX TQ S 10 R X N S S X P ` U N S V W TX S U Q P X S 11 12 Z [ X x b 13 X T ] Q X L O X P N S \ X L N P Z [ X U Q P X u Q S Z [ X 14 R X 15 X L O X P N U Q P Q f R X W X S X P X T z | { x z 59 = 14,75 4 X L O X P N S c M [ \ U TX L S N L v x y ] z ^ { x x ] a } O VX L X L P X U P X S X L O Q M Vm L X L X L O X P N S c 2 3 . 4 . 5 . 6 4 3 5 / / 3 5 1 , 7 / TQ P X M O Q L [ \ t P VM Q U [ X S O N Z [ X S N L U Q P X u Q S R X ! " # $ % & ' ( 8 9 : ; @ < => A B ) * ? C D E FC G D H I JD C FK L F I M E I FM I H L D H FN M C I Q P M JR C S D JR Q I C T R C F U JI C V I 4x − 8 O W V D V D Y X Q R T FI V D V V I R Q V I M V I JD [ L JE FT J F H D H F N M Y Z F[ 7 < 4x < 9 T J FG FH D H FN M V I I ] T Q I C FR M I C Y \ Q R T FI V D V 7 − 8 < 4x − 8 < 9 − 8 Z −1 < 4 x − 8 < 1 \ F[ ^ J Q I C L JE D V R F M E I Q S D JR H L P JI C 7<x<9 4 4 M I H L D H FN M 7<x<9 4 4 7 (4 ) < (4)x < (4 ) 9 4 4 D M E I Q FR Q M R C J JI S D D V I H R M H JL FQ I V Q R V I _ L I V I JD D V FH FN M Y I ] T Q I C FR M I C Y JD I ] T Q I C FN M 4x − 8 E I M V Q P S D JR Q I C Q I D JI C I M I J T FC R Y ^ J Y (−1 , 1 ) D E D _ L FS D Z R Q V I M T J FG FH D H FN M ` a 1. & ( * % $ + % & " ( * ! , V I U I [ R S I Q L M K Q D M ` b c d c d e f H D Q K D [ I M E R V I JFU Q R C V I J T Q F[ I Q R D J _ L FM E R Z JI E Q I Q R V I J D C H I M C R Q V FH I g h i D Q K D [ P ] F[ D j k k JFU Q D C l Y F H D V D H D m D V I JFU Q R C T I C D n k \ ^ M H L I M E Q I JFU Q D C Y I J M o [ I Q R V I H D m D C _ L I I V Q R D E D _ L FS D Z 2. ^ M I J I m I Q H FH FR C I T Q I C I M E D D q R Q D JD C FK L FI M E I T L I V I C FE L D H FN M Y H R JR H D Q I V Q R C I V I U I C L U FQ I M ^ J P Q I D D J D C H I M C R Q H R M JD C ^ M H L I M E Q I H D m D C Y I M D E D _ L FS D Z T R M I Q 3. p I J D C H I M C R Q Y Z I J M o [ T I C D p r k JFU Q D C H D m D C _ L I T L I V I s Z I Q R [ P ] F[ R V I I J D C H I M C R Q Y C L T I Q G FH FD J V I Q D V FR C F ^ M T I _ L I z R C I C D U I _ L I L M JD C F JR D JE L Q D H F Jt M V Q FH R E R [ D C FM E D T D C S D JR Q I C I C I M E Q I V I x s 15m y 2 Yu v L w S D JR Q I C T L I V I E R [ D Q I J [ I E Q R C W 4. L M M I K R H FR L M D G D [ F J FD I [ T JI D D V R C E Q D U D m D V R Q I C _ L I C R JR E Q D U D m D M L M D C q R Q D C O T R Q | C I [ D M D Y p x ~ T R Q { D H D M E FV D V C I [ D M D Y F E R E D J V I L M JR C C D JD Q F R C I [ T JI D V R K D M D | _ L I p n [ T D K D M P C D _ L I I C E R C I J I [ T JI D V R C R E Q R u H L P JI C K D M D V D C V I JD C | T R p } n D C F U JI C O \ H D M E FV D V I C S D Q tD C R M C I [ D M D J[ I M E I T R Q H D V D L M R V I I J JR C W 5. { D C D L E R Q D C V I J JFU Q R h Q I H P JH L JR M D L I S D FC FN M I C E F[ D M _ L I D J T L U JFH D Q C L JFU Q R JD Z I H L D H FN M I J V I M o [ I Q R T D Q D V I R U E I M I Q FM K Q I C R C JFU Q R C I C I = 6,42 x _ L I S I M V I M Y s JD I H L D H FN M ^ M H L I M E Q I I J V I H R C E R C M o [ I Q R I C V I C = 10.025 + 1,09 x JFU Q R C [ t M F[ R _ L I V R M V I B V I U I M S I M V I Q K D M D M H FD Y 6. 4 m. I _ L FI Q I G D U Q FH D Q L M D T L I Q E D H R [ R JD _ L I C I F JL C E Q D s _ L I O \ E I M K D L M P Q I D V I 10 m [ I E Q R C _ L w S D JR Q I C 2 Y F I J D M H q R B T L I V I E R [ D S D JR Q I C I M E Q I O \ E R [ D Q O W y x 1. 5. p p H D m D C p n n p - . / 0 1 I C O b ` f 2. JFU Q R C 6. j H D m D C 3. 4 3 m ≤ y ≤ 3m 2 3 . 4 . 5 . 6 4 3 5 / / 3 5 1 , 7 / ` f 3 15 ≤r≤ 2π 8π f 4. | y y s s | n } | ~ x N | r } s