UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA LABORATORIO 6: EQUILIBRIO DE UN CUERPO RÍGIDO I. OBJETIVO GENERAL Comprobar la primera y segunda ley del equilibrio estático para un cuerpo rígido. II. INTRODUCCION TEORICA Cuando un cuerpo está en equilibrio, debe de estar en reposo o en estado de movimiento rectilíneo uniforme. Si todas las fuerzas que actúan sobre un cuerpo tienen un solo punto de intersección y la suma vectorial es igual a cero, el sistema debe estar en equilibrio. Cuando sobre un cuerpo actúan fuerzas que no tienen un punto de intersección puede existir equilibrio traslacional pero no necesariamente equilibrio rotacional. Al estudiar el equilibrio debemos considerar no sólo la magnitud y dirección de cada una de las fuerzas que actúan sobre un cuerpo, sino también su punto de aplicación. La primera condición de equilibrio nos dice: Que las fuerzas verticales así como las horizontales están equilibradas. Por ello se dice que el sistema se encuentra en equilibrio traslacional. En tales casos la suma de todas las componentes en x es cero y la suma de todas las componentes en y es cero y se escribe como: F x 0 y F y 0 En la Fig. N° 1 se aplican dos fuerzas iguales pero opuestas se aplican hacia la derecha y hacia la izquierda Fig. N° 1 En la Fig. N° 2 el cuerpo gira aun cuando la suma vectorial de las fuerzas siga siendo igual a cero y las fuerzas F no tienen la misma línea de acción, no hay equilibrio Fig. N° 2 La línea de acción de una fuerza es una línea imaginaria extendida indefinidamente a lo largo del vector en ambas direcciones. Cuando las líneas de acción no se interceptan en un mismo punto, puede producirse rotación respecto a un punto llamado eje de rotación Brazo de palanca de una fuerza es la distancia perpendicular desde la línea de acción de la fuerza al eje de rotación Fig. N° 3 A B C F F F Fig. N° 3 = Fr sen Las unidades del momento de torsión son N.m La segunda condición de equilibrio nos dice: la suma algebraica de todos los momentos de torsión alrededor de cualquier eje de rotación debe ser igual a cero = 1 + 2 + 3 + 4 = 0 Existe equilibrio total cuando la primera y segunda condición se satisface. En tales casos pueden escribirse tres ecuaciones independientes. F x 0 F Y 0 0 III. TAREA PREVIA 1. 2. 3. 4. 5. ¿Cuáles son las condiciones que se cumplen para que exista el equilibrio traslacional? ¿Cuándo existe equilibrio total? ¿Qué es el centro de masas de un cuerpo? ¿Qué es el centro de gravedad de un cuerpo? ¿En todos los cuerpos el centro de masa y el centro de gravedad se ubican en el mismo punto? ____________ ¿Por qué? IV. MATERIAL Y EQUIPO Regla con agujeros Hilo de nylon Dinamómetro Balanza digital Base soporte con pivote Juego de pesas Cinta métrica Porta pesas V. PROCEDIMIENTO EXPERIMENTAL PARTE A: Pivote ubicado en el centro de masa de la regla 1. Determinar la masa de la regla. Anotar valores en la tabla N° 1 2. Localizar el centro de gravedad de la regla, seleccionar el agujero en el que coincide e introducir el pivote. 3. Suspender la masa m1 en un agujero de la regla a una distancia r del pivote. Como se muestra en la Fig. N° 4 y anotar resultados en la tabla N° 1 r2 r1 m1 m2 Fig. N° 4 4. En el otro extremo de la regla suspender un porta pesas y agregarle la masa necesaria hasta que se produzca equilibrio. Anotar resultados en la tabla N° 1. Tabla N° 1: Valor de masas y distancias Objetos m(kg) r (m) Regla Porta pesa 1 Porta pesa 2 5. Quitar la regla del pivote junto con las pesas suspendidas, medir con un dinamómetro la fuerza que el pivote ejerce sobre el sistema regla-pesas. Fuerza ejercida por el pivote__________ PARTE B: Pivote ubicado a una distancia r del centro de masa de la regla 6. Seleccionar un agujero a una distancia r del centro de masa e introducir el pivote y suspender la masa m1 en un agujero a una distancia r del pivote (Fig. N° 5) y anotar resultados en la tabla N° 2 Tabla N° 2: Valor de masas y distancias Objetos m(kg) r (m) Regla Porta pesas 1 Porta pesas 2 Pivote CG r2 r1 m2 r3 m1 Fig. N° 5 7. En el otro extremo de la regla suspender un porta pesas y agregarle la masa necesaria hasta que se produzca equilibrio. Anotar resultados en la tabla N° 2. VI. HOJA DE ANALISIS DE RESULTADOS 1. Encontrar el peso y el momento de torsión para cada objeto. Deje constancia de los cálculos realizados y complete la tabla N° 3 Tabla N° 3: Momento de torsión para diferentes objetos Objeto m (kg) R (m) W (N) (N.m) Regla Porta pesas 1 Porta pesas 2 ΣW_________ Fuerza ejercida por el pivote: ______________ 2. ¿Cómo es el valor de la fuerza ejercida por el pivote sobre el sistema regla – masas, comparada con la ΣW ? _________________ Explicar. 3. Para los datos de la tabla N° 3. Aplique la segunda condición de equilibrio 4. Encontrar el peso y el momento de torsión para cada objeto. Deje constancia de los cálculos realizados y complete la tabla N° 4 Tabla N° 4: Momento de torsión para diferentes objetos Objeto m (kg) R (m) W (N) (N.m) Regla Masa 1 Porta pesas 5. Para los datos de la tabla N° 4. Aplique la segunda condición de equilibrio 6. ¿Qué valor se esperaba para la Σ?______ Justifique 7. Si el valor de Σnoes como el esperado, ¿a qué puede atribuirse la diferencia? 8. ¿Por qué se ubica el centro de gravedad de la regla a la mitad de ella? 9. Escriba sus conclusiones y comentarios. Física técnica. Laboratorio Nº 6. Hoja de criterios de evaluación de los resultados experimentales Departamento: Ciencias Básicas Laboratorio: Física Asignatura: Física Técnica NOTA Equilibrio de un Cuerpo Rígido N° Apellidos Nombres Carnet Firma GT 1 2 3 4 5 Nombre y firma del Docente de Laboratorio: MESA: N° GL: Criterios a evaluar FECHA: % Asignado 1 Presentación y orden 5 2 Encontrar el peso y el momento de torsión para cada objeto. Deje constancia de los cálculos realizados y complete la tabla N° 3 15 ¿Cómo es el valor de la fuerza ejercida por el pivote sobre el sistema regla – masas, comparada con la ΣW? _________________ Explicar. 10 4 Para los datos de la tabla N° 3. Aplique la segunda condición de equilibrio 10 5 Encontrar el peso y el momento de torsión para cada objeto. Deje constancia de los cálculos realizados y complete la tabla N° 4 15 6 Para los datos de la tabla N° 4. Aplique la segunda condición de equilibrio 10 7 ¿Qué valor se esperaba para la Σ ?______ Justifique 5 8 Si el valor de Σ no es como el esperado, ¿a qué puede atribuirse la diferencia? 10 9 ¿Por qué se ubica el centro de gravedad de la regla a la mitad de ella? 10 3 10 Conclusiones y comentarios TOTAL DE PUNTOS 10 100 % Obtenido Observaciones