( ) ( .RD - Universidad de Magallanes

Anuncio
UNIVERSIDAD DE MAGALLANES
FACULTAD DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA EN CONSTRUCCIÓN
Ingeniero Constructor
Trabajo de Titulación
Proposición de una Metodología Particular
para obtener la Capacidad de Soporte
para Suelos Granulares sin Curva Proctor Definida.
Alumnos:
Arturo Rosendo Cárdenas Piucol.
Alex Eduardo Donoso Montero.
Profesor Guía:
José Cárcamo Romero.
Punta Arenas, Diciembre de 2008.
Agradecimientos
Queremos expresar nuestros sinceros agradecimientos a nuestro profesor
guía Don José Cárcamo Romero, Constructor Civil, por su gran disposición
en la entrega de sus conocimientos y experiencia en el tema estudiado.
Destacar la generosidad de Don Jóse Rojas Miranda, Laboratorista Vial
Clase A del Laboratorio Tekno – Vía, en el traspaso de material bibliográfico
y valiosas críticas al discutir los resultados obtenidos en este trabajo de título.
Nuestra gratitud hacia el personal del Laboratorio Austro – Umag, quienes
nos brindaron su ayuda desinteresada en el desarrollo de los múltiples
ensayos efectuados.
Por último, la mención más importante, destacar el apoyo incondicional e
irrestricto de nuestros padres en nuestra formación humana.
II
Índice
ÍTEM
Pág
Agradecimientos..………………………………………………………
II
Índice…..………………………………………………………….……...
III
Resumen………………………………………………………….……...
VIII
Abstract…………………………………………………………………..
IX
Introducción……………………………………………………………..
1
Objetivos del Estudio………………………………………………….
2
Objetivo General………………………………………………………..
2
Objetivo Específicos…………………………………………………...
2
Operacionalización de Conceptos………………………………….
2
Descripción Temática………………………………………………….
4
CAPITULO 1
“Justificación del Tema”
6
1.1.- Justificación…………….…………………………………………
7
1.3.- Ubicación del Estudio…………………………………………...
9
1.4.- Descripción General del Pozo “Los Pinos” y Cantera
de Áridos……………………………………………………………
10
CAPITULO 2
“Razón de Soporte de Suelos Compactados – Ensayo de C.B.R.”
12
2.1- Origen del Ensayo de C. B. R. (California Bearing Ratio)….
13
2.2- Generalidades……………………………………………………..
13
2.3- Condiciones del Ensayo…………………………………………
15
2.4- Tipos de Ensayos………………………………………………....
15
2.5- Preparación de Muestras………………………………………..
20
2.6- Curva de Tensión – Penetración (Nch 1852.Of81)…………..
22
2.7- Razón de Soporte (Nch 1852.Of81)…………………………….
23
III
CAPITULO 3
“Evaluación de la Relación 80% de la Densidad Relativa
26
equivalente al 95% del Proctor Modificado”
3.1- Muestreo de Suelo………………………………………………..
27
3.2- Cuarteo de las Muestra…………………………………………..
29
3.3- Determinación de la Granulometría…………………………..
29
3.4- Límites de Atterberg o de Consistencia. …………………….
32
3.5 Densidad de Partículas Sólidas………………………………...
34
3.6- Relación de Humedad – Densidad. (Proctor Modificado)….
35
3.7- Determinación de las Densidades Máxima y Mínima………
37
3.7.1- Densidad Mínima……………………………………………
38
3.7.2- Densidad Máxima……………………………………………
39
3.8 Determinación del Índice de Vacío de las Muestras…………
43
3.8.1 Índice de Vacío de la Muestra 1 de Suelo……………….
44
3.8.2 Índice de Vacío de la Muestra 2 de Suelo………………..
46
3.9- Razón de Soporte California…………………………………….
48
CAPITULO 4
“Metodología propuesta para obtener el C. B. R. a partir de la
53
Densidad Relativa”
4.1 Resumen…………………………………………………………….
54
4.2- Generalidades……………………………………………………..
54
4.3. Equipos y Aparatos Empleados………………………………..
54
4.4- Extracción de Muestras………………………………………….
57
4.5- Preparación de Muestras………………………………………..
58
4.6- Tamaño de la Muestra de Ensayo……………………..……….
58
4.7- Acondicionamiento de la Muestra de Ensayo……………….
58
4.8- Determinación de la Densidad Mínima………………………..
59
IV
4.9- Determinación de la Densidad a 57 Hz. durante 4 y 8
Minutos, respectivamente. Obteniendo de este modo dos
62
densidades más del suelo ensayado………………………….
4.10- Procedimiento de Penetración (Extraído de NCh
1852.Of81)……………………………………………………………
68
CAPITULO 5
“Expresión de Resultados C.B.R. a partir de la Densidad Relativa”
71
5.1- Resultados de los Suelos Granulares Ensayados………….
72
5.2- Propiedades Elementales de la Muestra 3 de Suelo………..
72
5.2.1- Gráficos de Razón de Soporte…………………………….
75
5.3- Propiedades Elementales de la Muestra 4 de Suelo………..
80
5.4- Propiedades Elementales de la Muestra 5 de Suelo………..
92
5.5- Determinar la Correlación de ambos Métodos………………
100
CAPITULO 6
“Conclusiones”
104
6.1- Análisis de Resultados…………………………………………………
105
6.1.1- Proponer un procedimiento metodológico particular que
determine valores de C.B.R. para materiales con un porcentaje
menor a 5% de finos o en aquellos que no tienen una curva de 105
humedad - densidad definidas, realizar ensayos y analizar sus
resultados………………………………………………………………………
6.1.1.1- Evaluar que una densidad al 95% del Proctor Modificado es
equivalente a decir Densidad Relativa al 80%......................................
108
6.2.3- Analizar a partir de los resultados obtenidos en suelos de
entre 5 y 12% de finos, la influencia del porcentaje de finos en los 109
métodos de compactación de suelos……………………………………..
BIBLIOGRAFÍA………………………………………………………………... 112
V
ÍNDICE ANEXOS
ANEXO I
Clasificación de Suelos según AASHTO y USCS….……
114
ANEXO II
Aparato C. B. R....................................................................
122
ANEXO III
Manual de Carreteras: Capítulo 8.100 – Suelos
Sección 8.101 Especificaciones para Suelos……………………………
124
ANEXO IV
130
Tablas de Ensayos Realizados........................................
Granulometría Muestra-1…………………………………. 131
Densidad de Partícula Sólidas Muestra-1……………... 132
Densidad de Máxima y Mínima Seca Muestra-1………
134
Proctor Modificado Muestra-1……………………………
135
C.B.R Muestra-1……………………………………………
137
Granulometría Muestra-2…………………………………. 140
Densidad de Partícula Sólidas Muestra-2………...…… 141
Densidad de Máxima y Mínima Seca Muestra-2………
143
Proctor Modificado Muestra-2……………………………
144
C.B.R Muestra-2……………………………………...........
146
Granulometría Muestra-3…………………………………. 149
Proctor Modificado Muestra-3……………………………
150
Proctor Modificado Muestra-3……………………………
152
C.B.R Muestra-3-1…………………………………………
154
C.B.R Muestra-3-2…………………………………………
156
Granulometría Muestra-4…………………………………. 158
Proctor Modificado Muestra-4……………………………
159
C.B.R Muestra-4-1………………………………...............
161
C.B.R Muestra-4-2…………………………………………
163
C.B.R Muestra-4-3…………………………………………
165
C.B.R Muestra-4-4…………………………………………
167
Granulometría Muestra-5…………………………………. 169
Proctor Modificado Muestra-5……………………………
170
VI
ANEXO V
C.B.R Muestra-5-1…………………………………………
172
C.B.R Muestra-5-2…………………………………………
174
C.B.R Muestra-5-3…………………………………………
176
Determinación de Correlación de Ambos Métodos…..
177
Certificados.........................................................................
181
VII
RESUMEN
El presente trabajo de titulación versó sobre el tema “Proposición de una
Metodología Particular para obtener la Capacidad de Soporte para Suelos
Granulares sin Curva Proctor Definida”; en suelos del pozo “Los Pinos” y la
cantera de áridos de “Concremag”, ambos de propiedad de la Empresa
Constructora Vilicic, cuyos materiales fueron analizados e interpretados a
través de múltiples ensayos ejecutados en el laboratorio Austro – Umag.
El estudio realizado se orientó al comportamiento de suelos granulares,
cuya capacidad de soporte no se puede determinar a través del método de
ensayo estándar C.B.R. (Razón de Soporte de California), pues no poseen
una curva Proctor definida que permita confeccionar probetas con la
humedad óptima encontrada a través de dicho ensayo. Es por ello, que se
propuso una metodología que se basara en las normas chilenas 1876.Of80 y
1852.Of81, que fuera aplicable a estos suelos no cohesivos con porcentaje
de finos menor al 5%.
Asimismo, se aborda en esta tesis la aseveración que establece el
Laboratorio Nacional de Vialidad, el cual señala la equivalencia entre el
Proctor Modificado al 95% con la Densidad Relativa al 80%.
VIII
ABSTRACT
The present thesis was about the theme “Proposition of a Specific
Methodology to obtain Bearing Ratio for Granulate Soils without Definite
Proctor Curve”, in soils of “Los Pinos well” and the aggregate quarry of
“Concremag”, both are property of the “Constructora Vilicic Enterprise”,
whose materials were analyzed and interpreted through multiple tests
executed in the Austro – Umag laboratory.
The study done was orientated on the granulate soils behavior, whose
bearing ratio can not be determinated through the standard test method of
C.B.R. (California Bearing Ratio), because does not have a definite Proctor
curve that let to make specimens with the optimum water content found
through the mentioned test. It is because of this, that it was proposed a
methodology that will be based in the Chilean Regulations 1876.Of80 and
1852.Of81, that would be applicable to these not cohesive soils with a fine
percentage minor to 5%.
Likewise, to consider in this thesis is the affirmation that establishes the
“National Laboratory of Vialidad”, which indicates the equivalence between
the Modified Proctor to the 95% with the Relative Density to 80%.
IX
Introducción
En el quehacer nacional, las obras viales han cumplido una fuente de
crecimiento como país, acercando a las personas con obras que van desde
caminos de carpeta de rodado a caminos pavimentados, pasando por las
diversas obras que conforman la infraestructura vial.
En virtud de las inversiones que se realizan anualmente tanto en la
conservación como en la construcción de obras viales, es que se hace
necesario aportar a la investigación orientada a la geotecnia vial. De ahí que
surge la necesidad de indagar sobre un área de la geotecnia vial que dice
relación sobre la determinación de la capacidad de soporte (C.B.R.) en
suelos granulares no cohesivos cuyo porcentaje de finos sea menor al 5% o
en aquellos suelos granulares cuya curva proctor sea indefinida.
Es preciso entender que el C. B. R. desarrollado por la división de
carreteras del Estado de California (E. E. U. U.) es un ensaye que sirve para
evaluar la calidad relativa del suelo para subbases, bases y subrasantes en
las cuales se establecen bandas granulométricas (Manual de Carretera
volumen N° 8); Sin embargo y para el caso de suelos cuya compactación no
produce una curva bien definida de relación humedad - densidad establece
como método la determinación de la densidad relativa.
Por lo anterior, es que este trabajo de tesis pretende abordar la
determinación de C.B.R. para los suelos antes descritos según lo descrito en
los objetivos que más adelante se plantean.
Para realizar esta investigación se extraerán muestras de suelos del pozo
“Los Pinos” y Cantera de Áridos “Concremag” de propiedad de la Empresa
1
Constructora Vilicic, los que posteriormente serán analizados en el
laboratorio Austro – Umag.
Objetivos del Estudio
Objetivo General
Proponer un procedimiento metodológico particular que determine valores
de C.B.R. para materiales con un porcentaje menor a 5% de finos o en
aquellos que no tienen una curva de humedad - densidad definidas, realizar
ensayos y analizar sus resultados.
Objetivos Específicos
¾ Evaluar que una densidad al 95% del Proctor Modificado es
equivalente a decir Densidad Relativa al 80%.
¾ Analizar a partir de los resultados obtenidos en suelos de entre 5 y
12% de finos, la influencia del porcentaje de finos en los métodos de
compactación de suelos.
Operacionalización de Conceptos
Cuarteo: Procedimiento empleado para reducir el tamaño original de una
muestra de suelo o agregado pétreo, cuya objetivo es obtener una muestra
representativa del material y de un tamaño acorde a los requerimientos del
ensaye a realizar.
Granulometría: Distribución porcentual en masa de los distintos tamaños de
partículas que constituyen un suelo.
2
Limite Líquido: Humedad expresada como porcentaje de la masa de suelo
seco en horno, de un suelo remoldeado en el límite entre los estados líquido
y plástico. Corresponde a la humedad necesaria para que una muestra de
suelo remoldeada, depositada en la taza de bronce de la máquina
Casagrande y dividida en dos porciones simétricas separadas 2 mm entre sí,
fluyan y entren en contacto en una longitud de 10 mm, aplicando 25 golpes.
Límite Plástico: Humedad expresada como porcentaje de la masa de suelo
seco en horno, de un suelo remoldeado en el límite entre los estados plástico
y semisólido. Corresponde a la humedad necesaria para que bastones
cilíndricos de suelo de 3 mm de diámetro se disgreguen en trozos de 0,5 a 1
cm de largo y no puedan ser reamasados ni reconstituidos.
Densidad de Partículas Sólidas: Cuociente entre la masa sólida de un suelo y
el volumen sólido del mismo, siendo el volumen sólido la diferencia entre el
volumen total y la suma de los volúmenes líquidos y gaseosos.
Densidad Neta: Densidad en que se considera el volumen macizo de las
partículas más el volumen de los poros inaccesibles.
Índice de Densidad (Densidad Relativa): Estado de compacidad de un suelo
con respecto a los estados más sueltos y más densos obtenidos mediante
los procedimientos de laboratorio descritos en este método.
Densidad Máxima: Densidad de un suelo en el estado más denso obtenible
según ensayo normal.
Densidad Mínima: Densidad de un suelo en el estado más suelto obtenible
según ensayo normal.
3
Método Proctor: Consiste en compactar el material pétreo dentro de un
molde cilíndrico metálico, en varias capas y por la caída de un pisón
metálico, para así obtener la máxima densidad a través de una humedad
óptima.
Humedad Óptima: Porcentaje de humedad para el cual un suelo sometido a
una energía de compactación determinada presenta su máxima densidad
(D.M.C.S.).
Densidad Máxima Compactada Seca: Corresponde a la mayor densidad que
puede alcanzar un suelo al ser compactado a la humedad óptima.
C.B.R.: El índice C.B.R. (Razón de Soporte de California) es la relación,
expresada en porcentaje, entre la presión necesaria para hacer penetra un
pistón de 50 mm. de diámetro en una masa de suelo compactada en un
molde cilíndrico de acero, a una velocidad de 1,27 mm/min, para producir
deformaciones de hasta 12,7 mm (1/2”) y la que se requiere para producir las
mismas deformaciones en un material chancado normalizado, al cual se le
asigna un valor de 100%.
Descripción Temática
El trabajo de título presenta en el capítulo 1, la justificación del tema
acerca de ¿Cómo obtener el C.B.R. en aquellos suelos cuya curva Proctor es
indefinida?, además de la ubicación del estudio y descripción General del
Pozo “Los Pinos” y Cantera de Áridos “Concremag”.
En el capítulo 2, se hace referencia al marco teórico disponible en la
actualidad de la Razón de Soporte de Suelos Compactados – Ensayo de
C.B.R., entre los temas destacados se hallan los orígenes, condiciones y
4
tipos de ensayos, preparación de muestras y expresión de resultados de
curvas tensión – penetración y razón de soporte según Nch 1852.Of81.
En el capítulo 3, se realiza la Metodología para determinar la Validez de
la relación 80% de la Densidad Relativa equivalente al 95% del Proctor
Modificado, a través de una serie de ensayos entre los cuales figuran la
Granulometría, Límites de Atterberg o de Consistencia, Densidad de
Partículas Sólidas, Relación de Humedad – Densidad. (Proctor Modificado),
Determinación de las Densidades Máxima y Mínima, y la Razón de Soporte
California.
El capítulo 4, comprende la Metodología Particular propuesta para
obtener el
C.B.R. a partir de la Densidad Relativa, la cual contiene los
equipos y aparatos empleados en el ensayo junto al procedimiento que se
realizó en laboratorio. Los resultados obtenidos a través del método
previamente mencionado se expresaron en el capítulo 5, en el cual se
encuentran las propiedades elementales de cada muestra ensayada contigua
a sus respectivos gráficos de razón de soporte.
Por último, en el capítulo 6 se analizan e interpretan las conclusiones
finales desarrolladas a partir de los resultados obtenidos.
5
Capítulo 1:
Justificación del Tema
6
1.1- Justificación
La práctica actual del análisis y diseño de pavimentos se basa en
métodos básicamente empíricos, en donde el diseño se respalda en
propiedades físicas de los materiales y en un índice de resistencia al corte
bajo condiciones de humedad y densidad controladas, denominado C. B. R.
(en castellano, Valor Relativo de Soporte), cuyo valor se puede obtener sólo
si existe una curva Proctor definida. Es en este punto en donde se genera el
cuestionamiento de ¿Cómo obtener el C. B. R. en aquellos suelos cuya curva
Proctor es indefinida?.
Para este estudio se ensayarán los materiales pétreos típicos o
característicos que se utilizan en la Empresa Constructora Vilicic S. A., de la
región de Magallanes en la ejecución de las obras de pavimentaciones, que
en general se le exigen que cumplan con los siguientes requerimientos:
¾ Para la subrasante terminada deberá cumplir con un CBR no inferior a
30% al 95% D.M.C.S. según LNV-95. Deberá cumplir además con la
compactación especificada, con las pendientes y dimensiones
establecidas en el proyecto.
¾ Para la subbase construida, el poder de soporte CBR, será 40%
mínimo medido al 95% de la densidad máxima compactada seca y a
0.2” de penetración, de acuerdo a la norma NCh 1534-II.
¾ Para la base construida, el poder de soporte CBR, será 60% mínimo.
Referencia E.E.T.T. extraídas de SERVIU, Proyecto Construcción Costanera
del Estrecho.
7
Asimismo y dentro de las especificaciones técnicas que dispone la
Dirección de Vialidad del Ministerio de Obras Públicas a nivel nacional se
encuentra la siguiente:
¾ Una compactación que se realizará hasta obtener una densidad mayor
o igual al 95% de la D. M. C. S. del Proctor Modificado, NCh 1534 II –
D, o al 80% de la Densidad Relativa, NCh 1726, según corresponda.
Luego, surge la incógnita respecto de la equivalencia entre un porcentaje
asignado a un ensayo Proctor Modificado versus un porcentaje asignado e
un ensayo de densidad relativa, en el sentido de si ambos arrojan un valor de
C.B.R. equivalente.
8
1.2- Ubicación del Estudio
El estudio se realizará en Punta Arenas una ciudad y puerto del extremo
austral de Chile y del continente americano. Capital de la Región de
Magallanes y Antártica Chilena. Está localizada a
53° 10′ 01″ S 70° 56′ 01″
O, en la Península de Brunswick y a orillas del Estrecho de Magallanes, en la
Patagonia y a pocos kilómetros del Cabo Froward, el punto más austral del
continente americano, lo que la convierte en la ciudad continental más
austral del mundo.
Fotografía 1.1: Ubicación Geográfica de la Región de Magallanes y la Antártica
Chilena.
Fuente: Biblioteca del Congreso Nacional de Chile.
9
1.3- Descripción General del Pozo “Los Pinos” y Cantera de Áridos
“Concremag”
La Empresa Constructora Vilicic S. A. propietaria del Pozo los Pinos y
cantera de áridos ubicada en el sector Loteo Varillas II, proporcionará los
suelos para dicho estudio, cuyo material entre sus múltiples usos se emplea
para la ejecución de las bases, subbases y subrasantes en obras de
pavimentaciones.
Ambos se sitúan en el sector de “Río Seco”, Ruta 9, Km. 8.5 Norte para el
Pozo “Los Pinos” y Km. 13 Norte para cantera de áridos de Concremag,
comuna de Punta Arenas.
La fotografía 1.2, nos muestra donde se ubican las instalaciones de Vilicic
en las inmediaciones de Punta Arenas.
10
Ruta Nº 9
Km. 13 Norte
Cantera de
Áridos de Vilicic
A Punta Arenas
Pozo “Los Pinos”
de Vilicic
Ruta Nº 9
Km. 8,5 Norte
Fotografía 1.2: Ubicación de Cantera de Áridos y Pozo “Los Pinos”.
Fuente: Google Earth.
11
Capítulo 2:
Razón de Soporte de Suelos Compactados – Ensayo de C.B.R.
12
2.1- Origen del Ensayo de C. B. R. (California Bearing Ratio)
El ensayo de relación de soporte de California fue propuesto en 1929 por
los ingenieros T. E. Stanton y O. J. Porter del departamento de carreteras de
California. Desde esa fecha tanto en Europa como en América, el método
C.B.R. se ha generalizado y es una forma de clasificación de un suelo para
ser utilizado como subrasante o material de base o sub – base en la
construcción de carreteras, como así también en la ejecución de terraplenes
y capas de rodadura granulares.
Durante la segunda guerra mundial, el cuerpo de ingenieros de los
Estados Unidos adoptó este ensayo para utilizarlo en la construcción de
aeropuertos.
2.2- Generalidades
El ensayo C.B.R. es una medida de la resistencia al esfuerzo cortante de
un suelo, bajo condiciones de densidad y humedad cuidadosamente
controladas. El ensayo permite obtener un número de la relación de soporte,
pero de la aseveración anterior es evidente que este número no es constante
para un suelo dado, sino que se aplica solo al estado en el cual se
encontraba el suelo durante el ensayo. El C.B.R. se expresa en porcentaje
como la razón de carga unitaria que se requiere para introducir un pistón
dentro de una muestra compactada de suelo a un contenido de humedad y
densidad dadas, con respecto a la carga unitaria patrón requerida para
introducir el mismo pistón a la misma profundidad en una muestra tipo de
material triturado. Su ecuación es la siguiente:
⎡ C arg a Unitaria del Ensayo⎤
C .B.R. = ⎢
⎥ × 100 (%)
C
arg
a
Unitaria
Patrón
⎣
⎦
Fórmula 2.1: Determinación de C. B. R.
13
De esta fórmula se puede observar que el C.B.R. es un porcentaje de la
carga unitaria patrón. En la práctica, el símbolo de porcentaje se quita y la
relación se presenta simplemente por un número entero.
Los valores de carga unitaria para las diferentes profundidades de
penetración dentro de la muestra patrón están determinados. El C.B.R. que
se usa para proyectar, es el valor que se obtiene para una penetración de
0,1” o de 0,2”. Se elige el que sea más grande de los dos. Para la mayoría de
los suelos el valor para la penetración de 0,1” da mayor C.B.R..
El ensayo de C.B.R. se utiliza para establecer una relación entre el
comportamiento de los suelos principalmente utilizados como bases y
subrasantes bajo el pavimento de carreteras y aeropistas, la siguiente tabla
da una clasificación típica:
C.B.R.
Clasificación
Usos
General
Sistema de Clasificación
Unificado
AASHTO
0-3
Muy Pobre
Subrasante
OH,CH,MH,OL
A5,A6,A7
3-7
Pobre a
Subrasante
OH,CH,MH,OL
A4,A5,A6,A7
Sub – base
OL,CL,ML,SC,
A2,A4,A6,A7
Regular
7 - 20
Regular
SM,SP
20 - 50
> 50
Bueno
Excelente
Base,
GM,GC,SW,SM,
A1b,A2-5,A3,
Sub – base
SP,GP
A2-6
Base
GW,GM
A1a,A2-4,A3
Tabla 2.1: Número de C. B. R. para Suelos Clasificados según USCS y AASHTO.
Fuente: Joseph E. Bowles (1981), Manual de Laboratorio de Suelos en Ingeniería Civil.
14
2.3- Condiciones del Ensayo
El C.B.R. de un suelo varía con su compactación, su contenido de
humedad al compactar y el contenido de humedad cuando se ensaya. Por
consiguiente, para repetir las condiciones de la obra, estos factores deben
ser cuidadosamente controlados al preparar las muestras.
A menos que sea seguro que el suelo no acumulará humedad después de
la construcción, los ensayos C.B.R. se llevan a cabo sobre muestras
saturadas.
Fotografía 2.1: Tipos de Ensayos.
Fuente: Crespo Villalaz, Mecánica de Suelos y Cimentaciones.
2.4- Tipos de Ensayos
Debido a que el comportamiento del suelo varía con su grado de
alteración, normalmente se distinguen los siguientes ensayos C.B.R.:
15
a) Determinación del C.B.R. de Suelos Perturbados y Remoldados.
Estos ensayos son ejecutados en laboratorio se pueden hacer sobre
muestras de suelo inalteradas o compactadas en laboratorio. Este método de
ensayo de C.B.R. se describe en Nch 1852.Of81.
1. C.B.R. de Suelos No Cohesivos.
2. C.B.R. de Suelos Cohesivos de Baja Plasticidad y Poco o Nada
Expansivos.
3. C.B.R. de Suelos Cohesivos y Expansivos.
Fotografía 2.2: Procediendo a Compactar Suelo para Ensayo C. B. R. en Laboratorio.
Fuente: ELE International, Soil Testing, Compaction and C. B. R.
b) Determinación del C.B.R. de Suelos Inalterados.
Mediante este método, se determina el C.B.R. de un suelo cohesivo en
estado natural. Se diferencia del anterior sólo en la toma de muestras, ya que
los pasos para determinar las propiedades expansivas y la resistencia a la
penetración son similares.
Se tomarán tres muestras inalteradas, empleando para ello moldes C.B.R.
armados en los extremos de su respectivo collarín. Para facilitar el
16
hinchamiento del molde, el collarín que se apoya sobre la superficie del
terreno tendrá sus bordes cortantes.
El procedimiento consiste en ir comprimiendo o hincando el molde contra
la superficie del terreno y al mismo tiempo retirando el suelo de alrededor del
molde, hasta que la muestra de suelo entre en el collarín superior por lo
menos 25 mm., cuidando reducir al mínimo las perturbaciones de la muestra.
Finalmente, se retira el molde realizando un movimiento como cortando el
suelo, se retira el collarín superior, se enrasan ambas caras de la muestra y
se les vierte parafina sólida derretida con el fin de evitar pérdidas de
humedad en el traslado al laboratorio. El peso unitario y la humedad deberán
ser determinados por medio del ensayo de densidad “in situ”, eligiendo un
lugar próximo a aquel desde donde se obtuvieron las muestras.
Fotografía 2.3: Molde para Muestra de Suelo Inalterada.
Fuente: ELE International, Soil Testing, In – Situ Sampling and Preparation.
c) Determinación del C.B.R. “In Situ”.
Es un método adecuado para determinar la capacidad de soporte de un
material en el lugar donde será sometido a las solicitaciones de la estructura
que soportará. Debería realizarse cuando se presenten materiales dudosos y
17
en movimientos de tierra importantes. Básicamente la fase de penetración de
este ensayo es similar a la descrita anteriormente.
Lo usual es determinar primero la densidad “in situ” del material en el lugar
de ensayo, el cual puede ser usado bajo cualquiera de las siguientes
condiciones:
¾ Cuando “in situ” la densidad y el contenido de agua son tal que el
grado de saturación es de un 80% o superior,
¾ Cuando el material es de granos gruesos y su cohesión es tal que no
se vea afectado por cambios en la humedad o
¾ Cuando el material ha estado en el lugar por varios años. En estos
casos La humedad no es constante pero fluctúa dentro de rangos
estrechos y el ensayo C.B.R. “in situ” se considera como un indicador
satisfactorio de la capacidad de soporte del suelo.
Por lo general, se elige un lugar donde no haya piedras mayores a 3/4",
deberá removerse el material suelto y nivelar la superficie, luego se coloca un
sistema de reacción montando “un gato”, con anillo dinamométrico y pistón,
en forma vertical, aplicando la reacción con un vehículo cargado u otro
sistema. En caso de que el pistón sea colocado en forma horizontal, la
reacción será dada por la pared contraria del pozo construido para este
efecto.
Se colocan los anillos de sobrecarga directamente al suelo y se carga el
pistón al suelo con una fuerza menor que 4,54 Kg. Se debe instalar un dial
comparador para registrar las lecturas de deformaciones, en un punto que
permanezca constante e inmóvil (por ejemplo una viga empotrada al suelo en
poyos de hormigón).
La penetración se realiza en forma similar al ensayo tradicional y el
ensayo se repite en otros dos puntos escogidos con anterioridad. La forma
de expresar los resultados también es idéntica al método de laboratorio, es
decir, trazando la curva tensión contra penetración, corrigiendo la curva si
18
fuese necesario y calculando el C.B.R. “in situ”, usando los valores de
penetración de 0,1" y 0,2".
Fotografía 2.4: Ensayo de C. B. R. In - Situ.
Fuente: ELE International, Soil Testing, Compaction and C.B.R.
En resumen, los ensayos C.B.R. pueden ser hechos en la obra o en
laboratorio, éstos últimos se llevarán a cabo tanto sobre muestras inalteradas
como en las compactadas en éste.
Los ensayos en el lugar se hacen solamente sobre el suelo con el
contenido de humedad existente, pero los ensayos de laboratorio se pueden
hacer sobre muestras saturadas o no saturadas. Siempre que sea posible, el
ensayo se hace en suelo inalterado. Cuando es con miras a proyectar, hay
que ensayar muestras compactadas en laboratorio, las cuales, pueden no
reproducir las condiciones de humedad y densidad obtenidas en la
compactación en obra. Por lo tanto, deben realizarse ensayos “in situ” o
ensayos sobre muestras inalteradas de suelos compactados en obra,
durante el período de construcción. Si los resultados no concordasen con los
datos preliminares que se usaron para proyectar, el proyecto debe ser
19
modificado o el procedimiento de compactación en obra cambiado, para
producir el C.B.R. requerido.
2.5- Preparación de Muestras
Han sido ideados distintos procedimientos para preparar muestras de
laboratorio de diferentes clases de suelos, con el fin de reproducir las
condiciones que verosímilmente se producirán durante y después de la
construcción.
Estos procedimientos se aplican cuando el contenido de humedad durante
la construcción va a ser el óptimo para obtener la máxima densidad seca
compactada (obtenida del Proctor Modificado) y además el suelo va a ser
compactado al menos al 95% de ésta. Si se usaran otros medios de controlar
la compactación, los procedimientos deberían ser modificados de acuerdo
con ellos.
a) C.B.R. de Suelos No Cohesivos
¾ Estos suelos en la clasificación unificada, corresponden a los
siguientes grupos: GW, GP, SW y SP.
¾ Son suelos generalmente de IP<2 y de compactación rápida en el
campo.
¾ En general, el C.B.R. casi no varía apreciablemente con los cambios
de humedad.
¾ El C.B.R. se puede determinar sin saturar la muestra.
¾ El C.B.R. que se adopte podrá ser el que corresponde a su máxima
densidad o si se sigue un criterio mas conservador, el menor de los
C.B.R. obtenidos.
¾ El C.B.R. de estos suelos granulares es generalmente mayor de 20%.
20
b) C.B.R. de Suelos Cohesivos, de Baja Plasticidad y Poco o Nada
Expansivos.
¾ Estos suelos son los más comunes y pertenecen a los siguientes
grupos de la clasificación unificada: GM, GC, SM, SC, CL, ML y OL.
¾ Les afecta considerablemente la humedad de compactación y la
densidad obtenida tanto si están saturados como si no lo están. Para
estos suelos, se compactan tres muestras a diferentes densidades con
el contenido de humedad óptimo, que se determina previamente por el
método Proctor Modificado. Se ensaya cada muestra después de
saturada y los resultados se trasladan a un gráfico donde se
determina el C.B.R. en el 95% de la máxima densidad seca.
c) C.B.R. de Suelos Cohesivos y Expansivos
¾ Estos suelos en la clasificación unificada, corresponden a los
siguientes grupos: MH, CH y OH.
¾ Se requieren estudios particulares para determinar el contenido de
humedad más satisfactorio, así como su método de compactación.
Una vez que estos factores están determinados, el ensayo se realiza
sobre una muestra que se compacta.
¾ No siempre la humedad óptima y la densidad máxima es la más
adecuada.
¾ Muchas veces el hinchamiento de estos suelos es menor cuando se
compacta a densidades y con humedades distintas a la densidad
máxima y humedad óptima.
¾ El C.B.R. a usar es aquel en que el suelo presente menor
hinchamiento.
¾ Para facilitar la selección del C.B.R. de diseño, es recomendable
representar gráficamente los % de hinchamiento vs. los contenidos de
humedad en los diferentes estados de compactación.
21
¾ La comparación de las curvas que relacionan los hinchamientos,
C.B.R. y densidades con las humedades de compactación, permitirá
establecer los límites de humedad y densidad apropiados, facilitando
así la selección del C.B.R. de diseño.
2.6- Curva de Tensión – Penetración
Calcular las tensiones de penetración en Mega Pascales (Kgf/cm2) y trazar
la curva en un gráfico de tensión-penetración. En algunos casos esta curva
puede tomar, inicialmente, la forma cóncava hacia arriba debido a
irregularidades de la superficie u otras causas. En dichos casos el punto cero
debe corregirse trazando una recta tangente a la mayor pendiente de la
curva y trasladando el origen al punto en que esta tangente corta a la
abscisa. (Nch 1852.Of81)
Gráfico 2.1: Corrección de Curvas Tensión – Penetración.
Fuente: NCh 1852.Of81.
22
2.7- Razón de Soporte
Empleando los valores de tensión corregidos tomados de la curva tensiónpenetración para 2,54 mm. y 5, 08 mm. de penetración, calcular las razones
de soporte para cada una de ellas, dividiendo las tensiones corregidas por
las tensiones normales 6,9 MPa (≈70 Kgf/cm2) y 10,3 MPa ( ≈ 105 Kgf/cm2).
Calcular también la razón de soporte para la carga máxima si la penetración
es menor que 5,08 mm., interpolando la tensión normal.
La razón de soporte es, normalmente, la correspondiente a 2,54 mm de
penetración.
Cuando la razón correspondiente a 5,08 mm. es mayor, confirmar el
resultado a través de la información obtenida en ensayos previos o, en su
defecto, repetir el ensayo. Si los ensayos previos o el ensayo de chequeo
entregan un resultado similar, emplear la razón de soporte correspondiente a
5,08 mm de penetración.
NOTA: Si se desea obtener los valores de la razón de soporte a
penetraciones de 7,62 mm., 10,16 mm. y 12,7 mm., los valores de tensión
corregidos para estas penetraciones deben dividirse por tensiones normales
de 13,1 MPa (≈133 Kgf/cm2), 15,8 MPa (≈162 Kgf/cm2) y 17,9 MPa ( ≈ 183
Kgf/cm2) respectivamente. (Nch 1852.Of81)
Penetración
Tensiones Normalizadas
MPa
Kgf./cm2
2.54
6.9
70
5.08
10.3
105
7.62
13.1
133
10.16
15.8
162
12.7
17.9
183
Tabla 2.2: Penetración – Tensiones Normalizadas.
Fuente: Elaboración Propia.
23
¾ Para los suelos del tipo A – 1; A – 2 – 4 y A – 2 – 6, se calcula la razón
de soporte sólo para 5 mm. de penetración.
¾ Para suelos del tipo A – 4; A – 5; A – 6 y A – 7, cuando el C. B. R. en
5 mm. de penetración es mayor que en 2,5 mm. de penetración, se
debe confirmar con información obtenida con ensayos previos, o bien
repetir el ensayo. Si los ensayos previos o el ensayo de chequeo
entregan un resultado similar, emplear la razón de soporte
corresponderá a 5 mm. de penetración.
¾ Para suelos del tipo A – 3; A – 2 – 5 y A – 2 – 7, el procedimiento a
aplicar (inmersión o no) debe quedar al criterio del ingeniero
responsable del estudio.
Con el resultado del C.B.R. se puede clasificar el suelo usando la tabla
siguiente:
C.B.R.
Clasificación
0–5
Subrasante muy mala
5 – 10
Subrasante mala
10 – 20
Subrasante regular a buena
20 – 30
Subrasante muy buena
30 – 50
Sub - base buena
50 – 80
Base buena
80 – 100
Base muy buena
Tabla 2.3: Clasificación del Suelo de acuerdo al C.B.R.
Fuente: Crespo Villalaz, Mecánica de Suelos y Cimentaciones.
Cuando se requiere conocer los efectos de preconsolidación natural,
estructura de suelo, cementación natural, estratificación, que son aspectos
que no pueden producirse con muestras remoldeadas de suelo, ni con
muestras supuestamente inalteradas que se ensayen en laboratorio, se
recomienda efectuar el ensayo C.B.R. en la obra, siempre que el terreno
natural esté en las condiciones mas criticas en le momento de efectuar la
24
prueba. El procedimiento que se sigue en esta prueba es similar al
establecido en los ítems anteriores, con la diferencia que en este caso, la
muestra no esta confinada en un molde.
Es condición que en el lugar que se realice el ensayo no existan partículas
superiores al tamiz 20 mm (3/4”). La preparación del terreno requiere enrasar
y nivelar un área de 30 cm de diámetro, para posteriormente colocar las
sobrecargas estipuladas.
25
Capítulo 3:
Evaluación de la Relación
80% de la Densidad Relativa equivalente al 95% del Proctor Modificado.
26
3.1- Muestreo de Suelo.
Las muestras fueron extraídas de los acopios de material del pozo “Los
Pinos” de propiedad de la Empresa Constructora Vilicic, donde se
identificaron dos acopios los cuales poseían un porcentaje de fino entre 5% y
12%. Con esta información se procedió a realizar un muestreo en dichos
acopios para averiguar con exactitud el material bajo malla N° 200.
Las muestras fueron extraídas sin importar su perturbación, es decir, son
muestras que retienen la composición integra del suelo, no así su estructura,
de esta manera los suelos extraídos fueron sometidos a ensayos de
granulometría, límites líquidos y plásticos, densidad de partículas sólidas,
densidad relativa, Proctor Modificado y C.B.R..
La primera etapa del muestreo consistió en extraer 8 sacos con material
representativo
de
ambos
acopios,
correspondiendo
4
muestras
al
denominado acopio 1, donde se identificaron las muestras con datos como el
nombre del muestreador, tipo de material, procedencia de material y fecha de
obtención de la muestra, asimismo se identificó las 4 muestras del acopio 2.
Cada muestra extraída tenía un tamaño aproximadamente a unos 50 kg.
que se extraen tres o más puntos diferentes del acopio, que otorguen
representatividad al material, ésta se efectuó con pala, previo rebaje de los
primeros 20 cm. de material de una superficie estimada de 1 m2
aproximadamente, y se procedió a llenar los sacos, para posteriormente ser
trasportado al laboratorio Austro – Umag para realizar los ensayos ya
descritos.
A continuación se presenta un esquema de la extracción de muestras
realizadas en la zona.
27
Suelos
Cantera de Áridos
“Concremag”
Pozo “Los Pinos”
Material Integral
(Acopio 1)
Muestra 1
(5,7% Finos)
Material Integral
(Acopio 2)
Muestra 3
Material Lavado
(1,8% Finos)
Gravas Rodadas
Lavadas
Muestra 2
(8,6% Finos)
Arenas Lavadas
Muestra 4
(Gravas y Arenas
Lavadas)
(1,3% Finos)
Muestra 5
(2,4% Finos)
Esquema 3.1: Extracción de Muestras.
Fuente: Elaboración Propia.
28
3.2- Cuarteo de las Muestra.
Para poder realizar los diferentes ensayos, en primer lugar al recibir una
muestra, es efectuar el cuarteo, que consiste en reducir el material a un
tamaño conveniente de acuerdo al ensayo que se va a realizar, esto se debe
efectuar de manera que otorgue validez a los ensayos ejecutados, las
diferentes proporciones de muestra que tomaremos para ensayar han de ser
representativa de la muestra original, es decir, estas deben poseer los
mismos rangos y proporciones granulométricos, ya que es de vital
importancia realizar un cuarteo correcto, sino el comportamiento sería
diferente en cada uno de los ensayos, y los resultados no serian coherentes
entre sí, cabe señalar que el material se cuarteo en estado húmedo.
Las muestras se agruparon de acuerdo a dos acopios distintos, donde se
identificó la muestra 1 y la muestra 2, a las cuales se les realizó los
siguientes ensayos: granulometría, límites de Atterberg o de consistencia,
densidad de partículas sólidas, Proctor modificado, densidad relativa y C.B.R.
3.3- Determinación de la Granulometría.
La granulometría de un suelo, es el estudio de las proporciones
porcentuales en peso en que se encuentran distribuidos los tamaños de las
partículas que componen un suelo, lo que se determina mediante tamizado a
través de varias mallas o tamices de diferentes aberturas, de esta forma se
puede determinar la curva granulométrica del material, con ella se puede
observar si el material esta bien o mal graduado y que tamaños son los que
predominan al interior de la muestra. Las curvas granulométricas se
acostumbra a dibujarlas en gráficos, en que las abcisas indican las aberturas
de
los
tamices
y
en
las
ordenadas
se
indican
los
porcentajes
correspondientes a cada tamaño.
29
Los tamices que se emplean en la granulometría de suelos van desde los
0,08 mm. a los 80 mm..
Tamaño Nominales de Abertura
(mm.)
ASTM
80
3”
63
2 ½”
50
2”
40
1 ½”
25
1
20
¾”
10
3/8”
5
N° 4
2
N° 10
0,5
N° 40
0,08
N° 200
Tabla 3.1: Serie de Tamices Elegidos.
Fuente: Manual de Carreteras, Volumen N° 8.
El análisis granulométrico del suelo ensayado fue realizado según el
Manual de Carreteras, Volumen N° 8, sección 8.102.1.
A
continuación,
se
pueden
observar
las
curvas
granulométricas
correspondientes a las muestras 1 y 2, respectivamente.
De ambas curvas se puede observar que son materiales pétreos bien
graduados y que presentan una granulometría continua, pues poseen una
buena distribución de partículas, constando con todos los tamaños.
30
Granulometría
120
100
% Que Pasa
80
60
40
20
0
0,01
0,1
1
10
100
Abertura del Tamiz (mm.)
Gráfico 3.1: Curva Granulométrica, Muestra 1.
Fuente: Elaboración Propia.
Granulometría
120
100
% Que Pasa
80
60
40
20
0
0,01
0,1
1
10
100
Abertura del Tamiz (mm.)
Gráfico 3.2: Curva Granulométrica, Muestra 2.
Fuente: Elaboración Propia.
31
3.4- Límites de Atterberg o de Consistencia.
El método usado para medir estos límites se conoce como el método de
Atterberg se basan en el concepto de que los suelos finos, presentes en la
naturaleza, pueden encontrarse en diferentes estados, dependiendo del
contenido de agua. Así un suelo se puede encontrar en un estado sólido,
semisólido, plástico, semilíquido y líquido.
Los límites de Atterberg entregan información sobre el estado de
consistencia o coherencia de las partículas de un suelo.
Para la determinación de éstos, se utiliza solamente la porción de suelo
que pasa por el tamiz de 0,5 mm. (N° 40 ASTM).
El límite líquido, se determina mediante el aparato de Casagrande. En el
fondo de la taza de bronce se pone una porción de suelo amasado con una
cierta cantidad de agua, formando un casquete esférico de 1 cm. de altura en
el punto de máximo espesor, que se divide en dos partes iguales con un
acanalador normalizado, formando un surco. Colocado el aparato sobre una
base firme, se gira la manivela levantando y dejando caer la taza a razón de
dos golpes por segundo, hasta que los bordes del surco en el fondo de la
cuchara se unan, y se cuenta el número de golpes para cada diferente
porcentaje de humedad. El porcentaje de humedad que corresponde a 25
golpes, es el límite líquido.
El límite plástico, corresponde a la menor humedad de un suelo que
permite realizar con él pequeños cilindros de 3 mm. de diámetro. Si los
cilindros se rompen con un diámetro superior a 3 mm, la humedad es inferior
al límite plástico y si se rompen con un diámetro inferior, la humedad del
suelo supera al límite plástico y si el cilindro pierde su estructura antes de
alcanzar los 3 mm. de diámetro, se dice que estamos en presencia de un
material no plástico.
32
Muestra 1
Límite Plástico
Límite Líquido
Ensaye N°
1
2
3
1
2
3
4
Cápsula N°
-
-
-
-
-
-
-
N° Golpes
-
-
-
1
2
2
3
No se puede
Tiende a ≈ 0
Determinar.
Índice Plástico
No Plástico
Tabla 3.2: Límites de Atterberg o de Consistencia.
Fuente: Elaboración Propia.
Muestra 1
Límite Plástico
Límite Líquido
Ensaye N°
1
2
3
1
2
3
4
Cápsula N°
-
-
-
-
-
-
-
N° Golpes
-
-
-
2
2
3
3
No se puede
Tiende a ≈ 0
Determinar.
Índice Plástico
No Plástico
Tabla 3.3: Límites de Atterberg o de Consistencia.
Fuente: Elaboración Propia.
Después de obtener el índice de plasticidad del suelo ensayado, podemos
encasillarlo según el sistema AASHTO y USCS, cuya clasificación resulto ser
A1 – b y SW – SM, respectivamente, para las muestras 1 y 2 de suelos.
33
3.5 Densidad de Partículas Sólidas.
Este ensayo establecido por la NCh1532.Of80, es un procedimiento para
determinar la densidad de partículas sólidas de suelos que se componen de
partículas menores que 5 mm, mediante un picnómetro.
Dado que las muestras de suelo 1 y 2 están compuestas por partículas
mayores a 5 mm. se deberá determinar la densidad neta de las gravas,
según NCh1117.Of77.
Por tanto, las partículas de ambos suelos, se separaron mediante el tamiz
5 mm. ensayándose las dos fracciones resultantes por separado, de manera
de obtener un resultado ponderado.
Muestra 1
Densidad de Partículas Sólidas Ponderada
Porcentaje de Partículas Menores a
0,7319 %
5 mm.:
Porcentaje de Partículas Mayores a
0,2681 %
5 mm.:
Densidad de Partículas Sólidas:
2770,22 Kg./m³
Densidad Neta:
2774,18 Kg./m³
Densidad Ponderada:
2771,28 Kg./m³
Tabla 3.4: Densidad de Partículas Sólidas.
Fuente: Elaboración Propia.
34
Muestra 2
Densidad de Partículas Sólidas Ponderada
Porcentaje de Partículas Menores a
0,6849 %
5 mm.:
Porcentaje de Partículas Mayores a
0,3151 %
5 mm.:
Densidad de Partículas Sólidas:
2645,87 Kg./m³
Densidad Neta:
2737,46 Kg./m³
Densidad Ponderada:
2674,73Kg./m³
Tabla 3.5: Densidad de Partículas Sólidas.
Fuente: Elaboración Propia.
3.6- Relación de Humedad – Densidad. (Proctor Modificado)
La compactación es un proceso mecánico cuyo objetivo es reordenar las
partículas del suelo para disminuir el volumen de poros y aumentar la
densidad. Consecuentemente se consigue mayor resistencia o capacidad de
soporte y menor permeabilidad. Es un proceso fundamental en la ejecución
de obras para terraplenes de caminos o carreteras, porque si los materiales
no se compactan adecuadamente la resistencia disminuye y existe mayor
probabilidad que se produzcan fallas.
En la actualidad, el método más conocido y utilizado para compactar en
laboratorio es el Proctor Modificado, el cual consiste básicamente en aplicar
un contenido de humedad creciente y una determinada energía de
compactación.
El agua actúa como lubricante entre las partículas de suelo, incrementado
la densidad del mismo, hasta cierto punto en el cual al seguir añadiendo
agua, la densidad empieza a decrecer, el agua ha dejado de desplazar aire y
como es incompresible, empieza a desplazar las partículas de suelo,
incrementando el volumen y disminuyendo la densidad. Para cada suelo
35
existe una humedad que proporciona la densidad máxima compactada seca.
Este contenido de humedad es conocido como el óptimo que se debe utilizar
en obra, cuando se va a compactar un suelo.
Los ensayos fueron realizados según NCh1534/2.Of79 y los resultados
obtenidos, se grafican a continuación en una curva densidad seca vs.
humedad, del cual se obtiene la humedad óptima para alcanzar la densidad
seca máxima en la compactación del suelo.
Curva Proctor
2,140
2,130
2,120
yd
2,110
2,100
2,090
2,080
2,070
2,060
0,0
2,0
4,0
6,0
8,0
10,0
w%
Gráfico 3.3: Curva Proctor Modificado, Muestra 1.
Fuente: Elaboración Propia.
A través del gráfico, se puede interpretar que la Densidad Seca Máxima es
2,131 grs./cm3 con una Humedad Óptima de 7,7%.
36
yd
Curva Proctor
2,210
2,200
2,190
2,180
2,170
2,160
2,150
2,140
2,130
2,120
2,110
2,100
2,090
2,080
0,0
2,0
4,0
6,0
8,0
10,0
w%
Gráfico 3.4: Curva Proctor Modificado, Muestra 2.
Fuente: Elaboración Propia.
A través del gráfico, se puede interpretar que la Densidad Seca Máxima es
2,197 grs./cm3 con una Humedad Óptima de 7,3%.
3.7- Determinación de las Densidades Máxima y Mínima.
Este ensayo se realizó según la ASTM D 4253 para obtener el Índice de
Densidad Máxima de Suelos usando una Mesa Vibratoria y según la ASTM D
4254 para obtener el Índice de Densidad Mínima de Suelos.
La densidad relativa, es el grado de compacidad de un suelo con respecto
al estado más suelto y más denso obtenido mediante los procedimientos de
laboratorio.
Ésta propiedad índice de los suelos, se utiliza normalmente en grava y
arena, es decir, en suelos que contienen casi exclusivamente partículas
mayores que 0,08 mm..
37
Hay que hacer notar que los suelos granulares, actualmente no permiten
la obtención de muestras inalteradas, por lo que algunas propiedades ingenie
riles de estos suelos resultan difíciles de determinar.
Es aplicable a cuyos suelos la compactación por impacto, no genera una
curva Proctor bien definida y en los cuales la densidad máxima por impacto
resulta, por lo general menor que la obtenida por métodos vibratorios.
D.R. =
γ máx × ( γ d − γ mín )
γ d × ( γ máx − γ mín )
Fórmula 3.1: Determinación de la Densidad Relativa.
3.7.1- Densidad Mínima.
Esta densidad se obtiene colocando el material lo más suelto posible en
un molde normalizado.
Muestra 1
N°
Densidad Mínima (gr./cm³)
1
1,675
2
1,689
3
1,699
4
1,696
5
1,697
Tabla 3.6: Densidad Minina.
Fuente: Elaboración Propia.
38
Muestra 2
N°
Densidad Mínima (gr./cm³)
1
1,660
2
1,654
3
1,663
4
1,657
5
1,654
Tabla 3.7: Densidad Minina.
Fuente: Elaboración Propia.
3.7.2- Densidad Máxima.
Esta densidad se obtiene colocando el material lo más denso posible en
un molde normalizado.
Cabe destacar que para obtener la densidad máxima existen dos métodos
uno seco y otro húmedo.
En los ensayos ejecutados en laboratorio se realizaron ambos métodos,
de manera de determinar con cuál de los dos, se logra la mayor densidad,
para ello efectuaremos tres densidades máximas con el método seco y una
con el método húmedo.
Muestra 1
N°
Método
Densidad Máxima
(gr./cm³)
1
Seco
2,236
2
Seco
2,224
3
Seco
2,240
4
Húmedo
2,256
Tabla 3.8: Densidad Máxima.
Fuente: Elaboración Propia.
39
Muestra 2
N°
Método
Densidad Máxima
(gr./cm³)
1
Seco
2,164
2
Seco
2,222
3
Seco
2,212
4
Húmedo
2,229
Tabla 3.9: Densidad Máxima.
Fuente: Elaboración Propia.
Ahora se puede evaluar la densidad relativa mediante la siguiente fórmula
para la muestra 1 de suelo:
D.R. =
γ máx × ( γ d − γ mín )
× 100
γ d × ( γ máx − γ mín )
Donde:
D .R .
= Índice de densidad, %.
γ max = Densidad seca máxima, gr./cm3.
γ min = Densidad seca mínima, gr./cm3.
γd
= Densidad del suelo en el terreno, gr./cm3.
Reemplazando con los valores conseguidos mediante ensayo:
40
0,8 =
2256 × ( γ d − 1691)
γ d × ( 2256 − 1691)
Finalmente, despejando la γ d al 80% se obtiene que:
γ d = 2115
kg
m3
Esta densidad se puede comparar con la obtenida en el Proctor
Modificado, la cual arrojó un valor al 95% de la D.M.C.S. de 2025 kg/m2.
Luego, se ingresa con el 95% D.M.C.S. en la
γ d , para comparar el
porcentaje de Densidad Relativa con el Proctor Modificado.
D.R. =
2256 × ( 2025 − 1691)
2025 × ( 2256 − 1691)
Resolviendo la fórmula anterior de densidad relativa, se obtiene que:
D.R. = 0,66
Mediante este ejercicio, podemos señalar que para el suelo estudiado no
sería equivalente decir una densidad relativa al 80% es igual al 95% de la
D.M.S.C., ya que encontramos una variación del 4% a favor de la densidad
relativa en este caso.
Del mismo modo, se analizó el comportamiento de la muestra 2 de suelo.
Reemplazando con los valores conseguidos mediante ensayo:
41
0,8 =
2229 × ( γ d − 1658 )
γ d × ( 2229 − 1658 )
Despejando la γ d al 80% se obtiene que:
γ d = 2085
kg
m3
Esta densidad se puede comparar con la obtenida en el Proctor
Modificado, la cual arrojó un valor al 95% de la D.M.C.S. de 2087 kg/m2.
Luego, se ingresa con el 95% D.M.C.S. en la γ d , para comparar el
porcentaje de Densidad Relativa con el Proctor Modificado.
D.R. =
2229 × ( 2087 − 1658 )
2087 × ( 2229 − 1658 )
Resolviendo la fórmula anterior de densidad relativa, se obtiene que:
D.R. = 0,80
Mediante este ejercicio, nuevamente podemos indicar que para el suelo
estudiado no sería equivalente decir una densidad relativa al 80% es igual al
95% de la D.M.S.C., ya que hallamos una variación del 0,4%, esta vez a
favor del Proctor Modificado.
42
3.8 Determinación del Índice de Vacío de las Muestras.
El suelo es un sistema multifásico con sólidos, líquidos y gases. Si el
suelo, se encuentra seco sólo tendrá dos fases, sólida y gaseosa,
respectivamente.
El índice de vacío, es la relación entre el volumen de vacíos y de sólidos
en la masa de un suelo y su valor oscila entre 0 y 1, cuya fórmula se expresa
de la siguiente manera:
e=
VV
VS
Fórmula 3.2: Determinación de Índices de Huecos en el Terreno.
Una vez obtenido el valor de densidad de partículas sólidas mediante
ensayo, junto a las densidades máximas secas del Proctor modificado y a la
densidad relativa, cuyos valores fueron señalados en los puntos anteriores,
se procedió a calcular el índice de vacío de las muestras 1 y 2 de suelos.
43
3.8.1 Índice de Vacío de la Muestra 1 de Suelo.
Conociendo el valor de la densidad de partículas sólidas se calculó el valor
del índice de vacíos del suelo, del siguiente modo:
AIRE
Va
Wa
e
AGUA
Vw
1+e
Ww
SÓLIDO
Vs
Ws = Gs = 2,77
Figura 3.1: Diagrama de Bloques de Masas y Volúmenes.
Fuente: Elaboración Propia.
G
S
=
WS
VS × γ 0
Fórmula 3.3: Determinación de Densidad de Partículas Sólidas.
Donde Vs = 1 m3 y γ ° = 1 ton/m3, por lo tanto:
G =W
S
S
V = V +V
T
S
V
Por lo tanto:
44
V =1 + e
T
Luego, la densidad total es:
γ
=
d
WS
VT
Finalmente, podemos obtener el índice de vacío despejando e, donde
γd
corresponde D.M.S.C. al 95% del Proctor Modificado.
γ
d
2 ,77
= W S ⇒ 2 ,025 =
1+ e
1+ e
e = 0 ,37
De la misma forma, conseguimos obtener el índice de vacío despejando e,
donde γd corresponde a la densidad relativa al 80%.
γ
d
2 ,77
= W S ⇒ 2 ,115 =
1+ e
1+ e
e = 0 ,31
45
3.8.2 Índice de Vacío de la Muestra 2 de Suelo.
AIRE
Va
Wa
e
1+e
AGUA
Vw
Ww
SÓLIDO
Vs
Ws = Gs = 2,67
Figura 3.2: Diagrama de Bloques de Masas y Volúmenes.
Fuente: Elaboración Propia.
Finalmente, podemos obtener el índice de vacío despejando e, donde
γd
corresponde D.M.S.C. al 95% del Proctor Modificado.
γ
d
2 ,67
= W S ⇒ 2 ,087 =
1+ e
1+ e
e = 0 ,28
De la misma forma, conseguimos obtener el índice de vacío despejando e,
donde γd corresponde a la densidad relativa al 80%.
46
γ
d
2 ,67
= W S ⇒ 2 ,085 =
1+ e
1+ e
e = 0 ,28
Podemos observar que en un suelo con partículas de características y de
forma granulométrica similar, con distintos índices de vacío implica
necesariamente diferentes compacidades. Debido a esto, la única forma de
obtener igual compacidad a distinto índice de vacío, es con materiales con
partículas de características granulométricas diferentes.
47
3.9- Razón de Soporte California.
Este ensayo se realiza principalmente para evaluar la calidad relativa de
suelos de subrasante, pero también es aplicable a materiales de sub – base
y algunos de base y se relaciona directamente con el diseño de pavimentos.
El método C.B.R., esta definido como la fuerza necesaria para hacer
penetrar un pistón normalizado penetre a una profundidad determinada.
En seguida, se presentan los gráficos obtenidos a partir de los ensayos
ejecutados, cabe señalar que los éstos en primera instancia fueron
graficados a mano, para de este modo corregir por pendiente los gráficos de
tensión – penetración, según correspondiese.
La variación existente entre las curvas y valores de C.B.R., se origina
dado que el material pétreo que fue ensayado es grueso, lo que implica que
en gran medida dichos valores dependan del acomodamiento de las
partículas, debido a que si un material grueso queda en la línea del pistón
nos arrojará un mayor valor de C.B.R..
48
Penetración
Tensión (Mpa)
(Pulgadas)
56 Golpes
25 Golpes
10 Golpes
0,025
0,2
0,3
0,1
0,050
0,4
0,8
0,4
0,075
0,7
1,5
0,9
0,100
1,2
2,3
1,3
0,125
1,8
3,1
1,8
0,150
2,5
3,7
2,2
0,175
3,4
3,9
2,7
0,200
4,5
4,7
3,1
0,225
5,4
5,1
3,5
0,250
6,3
5,5
3,9
0,275
7,2
5,8
4,2
Tabla 3.10: Curva Tensión – Penetración, Muestra 1.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
7,2
Tensión (Mpa)
7
Tensión M pa 56 G
6,3
5,5
6
4,7
5
3,1
3
2,3
1,5
2
0,8
1
0
0
0
0,3
0 0,2
0,4
0,1
0,7
0,4
0,05
1,2
0,9
2,5
1,8
1,3
0,1
3,4
2,7
Tensión M pa 25 G
5,45,1
Tensión M pa 10 G
3,9 4,5
3,7
4
5,8
3,1
3,5
3,9
4,2
P olinómica (Tensión
M pa 56 G)
P olinómica (Tensión
M pa 25 G)
2,2
P olinómica (Tensión
M pa 10 G)
1,8
0,15
0,2
0,25
0,3
Penetración (Plg.)
Gráfico 3.5: Curva Tensión – Penetración, Muestra 1.
Fuente: Elaboración Propia.
49
N° de Golpes
Densidad Seca
C.B.R. (%)
3
(Kg./m )
10
2020
34
25
2052
50
56
2121
70
Tabla 3.11: C.B.R. – Densidad Seca, Muestra 1.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
80
70,0
70
67
C.B.R. (% )
60
50,0
CBR %
50
40
34,0
36
30
95%
D.M.S.C.
20
80% D.R.
10
0
2000
0
2020
2040
2060
2080
2100
0
2120
2140
Densidad Seca (Kg./m³)
Gráfico 3.6: Curva C.B.R – Densidad Seca, Muestra 1.
Fuente: Elaboración Propia.
Al observar el gráfico 3.6, podemos señalar que al ser intersectado la
“Curva C.B.R. – Densidad Seca” mediante la Densidad Máxima Seca
Compactada al 95% obtenemos un C.B.R. del 36%, mientras que al ser
intersectado por la Densidad Relativa al 80% logramos un C.B.R. del 67%.
50
Penetración
Tensión (Mpa)
(Pulgadas)
56 Golpes
25 Golpes
10 Golpes
0,025
0,6
0,2
0,2
0,050
2,0
0,8
0,5
0,075
3,8
1,7
0,9
0,100
5,7
2,7
1,5
0,125
7,5
3,6
2,0
0,150
7,5
4,5
2,4
0,175
7,5
5,3
2,7
0,200
7,5
6,0
3,1
0,225
7,5
6,0
3,1
0,250
7,5
6,0
3,1
0,275
7,5
6,0
3,1
Tabla 3.12: Curva Tensión – Penetración, Muestra 2.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
7,5
7,5
7,5
7,5
7,5
7,5
7,5
Tensión (Mpa)
7
6,0
6
Tensión M pa 25 G
Tensión M pa 10 G
3,6
3,8
P olinómica (Tensión
M pa 56 G)
2,7
3
0
Tensión M pa 56 G
6,0
4,5
4
1
6,0
5,3
5,7
5
2
6,0
1,7
2,0
0,8
0,2
0 0,6
0,5
0,2
0
0
0,05
2,0
2,4
2,7
3,1
3,1
3,1
3,1
P olinómica (Tensión
M pa 25 G)
P olinómica (Tensión
M pa 10 G)
1,5
0,9
0,1
0,15
0,2
0,25
0,3
Penetración (Plg.)
Gráfico 3.7: Curva Tensión – Penetración, Muestra 2.
Fuente: Elaboración Propia.
51
N° de Golpes
Densidad Seca
C.B.R. (%)
3
(Kg./m )
10
1976
34
25
2049
59
56
2140
105
Tabla 3.13: C.B.R. – Densidad Seca, Muestra 2.
Fuente: Elaboración Propia.
C . B . R . (% )
C.B.R. - Densidad Seca
120
110
100
90
80
70
60
50
34,0
40
30
20
10
0
1960 1980
105,0
75
59,0
78
CBR %
95%
D.M.S.C.
80% D.R.
2000
2020
2040
2060
00
2080 2100
2120
2140
2160
Densidad Seca (Kg./m³)
Gráfico 3.8: Curva C.B.R – Densidad Seca, Muestra 2.
Fuente: Elaboración Propia.
Al observar el gráfico 3.8, podemos señalar que al ser intersectado la
“Curva C.B.R. – Densidad Seca” mediante la Densidad Máxima Seca
Compactada al 95% obtenemos un C.B.R. del 78%, mientras que al ser
intersectado por la Densidad Relativa al 80% logramos un C.B.R. del 75%.
52
Capítulo 4:
Metodología Particular Propuesta para obtener el
C. B. R. a partir de la Densidad Relativa
53
4.1- Resumen
Este capítulo, trata acerca de los equipos y aparatos empleados, sumado
al procedimiento que se constituyó, y que posteriormente realizó para
obtener el C.B.R. a partir de la Densidad Relativa.
Para ello, se modificó la placa base metálica del C.B.R. con el fin de que
ésta se adaptase a la mesa vibradora para la determinación de las
densidades a 4 y 8 minutos, respectivamente, en estado seco.
Cabe señalar que el procedimiento creado es una adaptación que se
basa en las normas chilenas 1726.Of80 y 1852.Of81.
4.2- Generalidades
4.2.1- Este ensayo propondrá un procedimiento para determinar la razón de
soporte de suelos granulares, compactados y ensayados en laboratorio,
comparando la carga de penetración en el suelo con la correspondiente a un
material normalizado.
4.2.2- Este procedimiento se aplica a la evaluación de la calidad relativa de
suelos de subrasante, pero también es aplicable a materiales de sub – base
y a algunos materiales de base.
4.2.3- Es aplicable a cuyos suelos contengan un porcentaje de fino inferior al
5%.
4.2.4- Su eficacia se probará en esta investigación.
4.3. Equipos y Aparatos Empleados
4.3.1- Mesa vibradora
De acero, con cubierta vibradora de aproximadamente 750 x 750 mm.,
apoyada
sobre
amortiguadores
y
accionada
por
un
vibrador
electromagnético. El vibrador debe ser semisilencioso y con una masa igual o
54
mayor que 45 kg. Debe tener una frecuencia de 3660 vibraciones/min. y una
amplitud de vibrado vertical entre 0,05 y 0,64 mm. bajo una carga de 1 112 N
(≈ 111,2 kgf).
4.3.2- Molde C.B.R.
Metálico, cilíndrico con un diámetro interno de 152, 4 ± 0,7 mm. y una altura
de 177, 8 ± 0,1 mm. Debe tener un collar de extensión metálico de 50,8 mm.
de altura y una placa base metálica de 9,5 mm. de espesor con
perforaciones de un diámetro igual o menor que 1,60 mm., junto a 4 orificios
en sus cuatros esquinas para fijarlo sobre la mesa vibradora.
4.3.3- Tubo guía
Metálico, ajustable al molde. Con un sistema de ajuste consistente en tres
juegos de tornillos, dos de los cuales deben tener tuercas de fijación.
4.3.4- Disco espaciador
Metálico, cilíndrico, con un diámetro de 150,8 mm. y una altura de 61,4 mm. y
otro de cartón con similares características.
4.3.5- Sobrecargas
La masa total de la sobrecarga debe ser equivalente a 14 kPa para el molde
en uso.
4.3.6- Manilla
Metálica, una para sobrecarga.
4.3.7- Aparatos de vaciado
Dependiendo del tamaño máximo nominal de las partículas pétreas, una
poruña o embudos de 12,5 mm. y 25 mm. de diámetro por 150 mm. de largo,
con descarga cilíndrica. La boca de carga debe tener los bordes pestañados
55
y contar con tarros de metal ajustables, de 150 mm. de diámetro por 300 mm.
de altura.
4.3.8- Balanzas
Una de 20 kg. de capacidad con una precisión de 1 g. y otra de 2 kg. de
capacidad con una precisión de 0,01 g
4.3.9- Prensa de ensayo
Con una capacidad mínima de 44 KN ( ≈4 400 Kgf), equipada con un cabezal
o base movible que se desplace a una velocidad uniforme y sin pulsaciones
de 1,25 mm./min. ( ≈0,05 pulgadas. Ver nota al párrafo 9.3), para presionar el
pisón de penetración en la probeta. El aparato debe estar equipado con un
dispositivo indicador de carga con lecturas de 50 N ( ≈5 Kgf) o menos.
4.3.10- Aparato para medir la expansión, compuesto por:
a) una placa metálica provista de un vástago ajustable de metal, con
perforaciones de un diámetro igual o menor que 1,6 mm.; y
b) un trípode metálico para sujetar el calibre comparador con indicador de
dial.
4.3.11- Cargas
Una carga metálica anular, y varias cargas metálicas ranuradas con una
masa de 2,27 Kg. cada una, de 149,2 mm. de diámetro, con una perforación
central de 54 mm. de diámetro.
4.3.12- Pistón de penetración, metálico, de 49,5 mm. de diámetro (19,35 cm2
de área) y no menor que 101 mm. de largo. Si desde un punto de vista
operacional resultara más ventajoso utilizar un pistón de mayor longitud, se
puede usar el pistón más largo.
56
4.3.13- Calibre
Dos deformómetros, comparadores con indicador de dial, con graduaciones
de 0,01 mm.
4.3.14- Tamices
De 20, 10 y 5 mm. de abertura nominal.
4.3.15- Herramientas y accesorios. Otros aparatos de uso general, tales
como tres bandejas para mezclas, una regla metálica, horno, papel filtro,
recipientes metálicos, una brocha, un contador de tiempo o cronómetro que
indique minutos y segundos, y vaselina sólida.
Fotografía 4.1: Instrumentos y aparatos utilizados.
Fuente: Elaboración Propia.
4.4- Extracción de Muestras
4.4.1- Las muestras se deben obtener de acuerdo con lo indicado por la
especificación técnica correspondiente en el caso de controles de obra, o lo
indicado por el profesional responsable en el caso de una prospección.
57
4.5- Preparación de Muestras
4.5.1- Secar la muestra al aire o en horno a una temperatura menor que 60º
C hasta que se vuelva desmenuzable. Disgregar entonces los terrones
evitando reducir el tamaño natural de las partículas.
4.5.2- Pasar por el tamiz de 20 mm. para éste método. Descartar el material
retenido.
NOTA: En este método al utilizar el molde de 150 mm., es conveniente
mantener el porcentaje de material grueso (que pasa por el tamiz de 50 mm.
y retenido en el tamiz de 5 mm.) del material original, proceder como sigue:
- Determinar por tamizado el porcentaje de material que pasa por el tamiz de
50 mm. y retenido en el tamiz de 20 mm.
- Reemplazar dicho material por una masa igual de material que pasa por el
tamiz de 20 mm. y retenido en 5 mm., tomada de la porción no utilizada del
material original.
4.6- Tamaño de la Muestra de Ensayo
Del material preparado obtener una masa de muestra mínima de ensayo de
21 kg., con una masa de fracción de muestra para cada determinación de 7
kg.
4.7- Acondicionamiento de la Muestra de Ensayo
4.7.1- Homogeneizar el material de la muestra de ensayo y separar en tres
fracciones de acuerdo a reemplazo obtenido.
58
4.8- Determinación de la Densidad Mínima
4.8.1- Seleccionar el aparato de llenado según tabla 1, de acuerdo con el
tamaño máximo nominal de partículas.
Tamaño Máximo Nominal de
Aparato de Llenado para Densidad
Partículas (mm.)
Mínima
50
Poruña
20
Poruña
10
Embudo de 25 mm.
5
Embudo de 12,5 mm.
Tabla 4.1: Aparato de llenado.
Fuente: Norma Chilena.
4.8.2- Colocar la placa base metálica junto al molde C.B.R. con su collar de
extensión, sobre una superficie firme, plana y horizontal, luego ubicar los
cartones circulares al interior de éste hasta alcanzar la altura del disco
espaciador y sobre su superficie situar un papel fieltro. Llenar el molde con
material de la muestra acondicionada y enrasar mediante uno de los
procedimientos siguientes, según el tamaño máximo nominal de partículas
del suelo en estudio, y evitando golpear y/o vibrar el molde.
59
Fotografía 4.2: Molde C.B.R., collar de
extensión y dos placas base metálicas.
Fuente: Elaboración Propia.
Fotografía 4.3: Molde C.B.R. con
cartones circulares en su interior de
una altura análoga al disco espaciador.
Fuente: Elaboración Propia.
4.8.2.1- Tamaño Máximo Nominal Igual o Menor que 10 mm.:
a) Colocar el material en el molde tan suelto como sea posible, vaciándolo en
un flujo constante y ajustando la altura de la descarga de modo que la caída
libre del suelo sea de 25 mm. Simultáneamente mover el embudo en espiral
desde la pared del molde hacia el centro, a fin de formar una capa de
espesor uniforme sin segregación. Llenar hasta aproximadamente 25 mm.
por sobre el borde del collar de extensión.
b) Enseguida retirar éste y enrasar el material excedente mediante una
pasada continua con la regla de acero procurando no compactar el material.
Si no se remueve todo el material excedente debe efectuarse una pasada
adicional.
4.8.2.2- Tamaño Máximo Nominal Mayor que 10 mm.:
a) Colocar el material en el molde de modo que se deslice, en lugar de caer,
sobre el fondo del molde o el material previamente colocado. Al efecto,
colocar el aparato de llenado tan cerca como sea posible y, si es necesario,
sujetar con la mano las partículas mayores para impedir que rueden fuera.
60
Llenar hasta aproximadamente 25 mm. por sobre el borde del collar de
extensión.
b) Enseguida retirar éste y enrasar el material excedente efectuando una
pasada continua con la regla de acero (y ayudándose con los dedos, cuando
sea necesario) de modo que cualquier leve proyección de las partículas
mayores por sobre el borde del molde compense aproximadamente los
huecos superficiales mayores.
Fotografía 4.4: Molde C.B.R. con
suelo, recién retirado el collar
de extensión.
Fuente: Elaboración Propia.
Fotografía 4.5: Enrasado de suelo
en molde C.B.R. con regla metálica.
Fuente: Elaboración Propia.
c) Posteriormente colocar sobre la superficie enrasada un papel filtro,
instalando sobre el molde C.B.R. otra placa base a fin de invertir el molde,
para así retirar los cartones circulares previamente instalados.
61
Fotografía 4.6: Inversión del
molde C.B.R.
Fuente: Elaboración Propia.
Fotografía 4.7: Extracción de
cartones circulares.
Fuente: Elaboración Propia.
4.8.3- Pesar el molde con el suelo y la placa base, determinar y registrar la
masa seca del suelo que llena el molde (ms) aproximando a 1 g.
Determinar la densidad seca de la muestra dividiendo la masa del suelo
compactado por la capacidad volumétrica del molde:
ρ
⎡m ⎤
=⎢ S⎥
S
⎣V ⎦
Fórmula 4.1: Determinación de la densidad seca de la muestra.
Registrar aproximando a 0,01 g/cm3 (0,01 Kg/l).
4.9- Determinación de la Densidad a 57 Hz. durante 4 y 8 Minutos,
respectivamente. Obteniendo de este modo dos densidades más del
suelo ensayado.
a) Mezclar el material de la muestra acondicionada para obtener una
distribución homogénea de las partículas con la menor segregación posible.
62
Fotografía 4.8: Homogeneización del reemplazo de suelo.
Fuente: Elaboración Propia.
b) Fijar la placa base acondicionada a través de 4 pernos a la mesa
vibradora y luego colocar el disco espaciador sobre ésta, rodeándolo con
vaselina sólida, de modo que ésta selle la luz que queda entre él y el molde
C.B.R., con el fin de que los finos se conserven al interior del molde y no
obstaculicen posteriormente la salida del disco espaciador, situando sobre
éste último un papel fieltro.
Fotografía 4.9: Colocando
vaselina alrededor del disco
espaciador.
Fuente: Elaboración Propia.
Fotografía 4.10: Ubicando papel
filtro sobre disco espaciador.
Fuente: Elaboración Propia.
63
c) Ubicar el tubo guía sobre el borde del molde C.B.R. y ajustar el sistema de
fijación de modo que la pared interna del tubo quede alineada con la pared
interna del molde.
Fotografía 4.11: Ajustando
tubo guía sobre el molde C.B.R.
Fuente: Elaboración Propia.
Fotografía 4.12: Depositando el
suelo al interior del molde C.B.R.
Fuente: Elaboración Propia.
d) Llenar el molde por el procedimiento establecido en 4.8.2.1 ó 4.8.2.2
según corresponda.
e) Dejar material 5 cm. por sobre los límites del borde del molde C.B.R., para
luego disponer de éste para enrasar, colocar la sobrecarga encima
empleando la manilla.
f) Colocar el control del vibrador a 57 Hz., y vibrar el molde cargado durante
un período de 8 y 4 minutos, respectivamente. Retirar la sobrecarga y el tubo
guía.
64
Fotografía 4.13: Molde C.B.R. con tubo guía y sobrecarga,
fijados a la mesa vibradora a través de la placa base.
Fuente: Elaboración Propia.
g) Sacar el material excedente del molde C.B.R. efectuando una pasada
continua con la regla de acero y ayudándose con la malla N° 4 para rellenar
con material los huecos superficiales producto de ésta enrasada, luego
efectuar una pasada adicional.
h) Posteriormente colocar sobre la superficie enrasada un papel filtro,
instalando sobre el molde C.B.R. otra placa base a fin de invertir el molde,
para así retirar el disco espaciador previamente instalado, mediante una
manilla.
i) Pesar el molde con el suelo y la placa base, determinar y registrar la masa
seca del suelo que llena el molde (ms) aproximando a 1 g.
Determinar la densidad seca de la muestra dividiendo la masa del suelo
compactado por la capacidad volumétrica del molde.
Registrar aproximando a 0,01 g/cm3 (0,01 Kg/l).
65
Fotografía 4.14: Retirando disco
espaciador.
Fuente: Elaboración Propia.
Fotografía 4.15: Pesando el molde C.B.R.
con la placa base metálica y el suelo
Fuente: Elaboración Propia.
j) Colocar el vástago ajustable y la placa sobre la probeta de suelo
compactado y aplicar cargas hasta producir una sobrecarga igual a la
ejercida por el material de base y el pavimento, redondeando a los múltiplos
de 2,27 Kg, y en ningún caso debe ser menor que 4,54 Kg.
k) Como el estudio es dirigido a la región de Magallanes, la muestra debe ser
sometida a inmersión, colocar el molde con las cargas en agua, permitiendo
el libre acceso del agua a la parte superior e inferior de la probeta. Tomar
mediciones iniciales para el asentamiento o expansión y dejar la probeta en
remojo durante 48 horas, ya que absorben humedad fácilmente.
Mantener la muestra sumergida a un nivel de agua constante durante este
período.
66
Fotografía 4.16: Molde C.B.R.
con el vástago ajustable y
las cargas.
Fuente: Elaboración Propia.
Fotografía 4.17: Molde C. B. R.
junto a aparato para medir
la expansión.
Fuente: Elaboración Propia.
l) Al término del período de inmersión tomar las mediciones finales del
asentamiento o expansión. Cabe señalar que las deformaciones fueron
despreciables.
m) Sacar el agua libre dejando drenar la probeta a través de las
perforaciones de la placa base durante 15 min. Cuidar de no alterar la
superficie de la probeta mientras se saca el agua. Puede ser necesario
inclinar la probeta para sacar el agua superficial.
n) Retirar las cargas. Pesar el molde con el suelo y la placa base metálica y
registrar aproximando a 1 g.
ñ) Determinar la densidad de la muestra después de la inmersión dividiendo
la masa del suelo compactado por la capacidad volumétrica del molde:
ρ = ⎡⎢⎣ V ⎤⎥⎦
mi
i
Fórmula 4.2: Determinación de la densidad después de la inmersión de la muestra.
67
Registrar aproximando a 0,01 g/cm3 (0,01 Kg/l).
4.10- Procedimiento de Penetración
4.10.1- Colocar sobre la probeta la cantidad suficiente de cargas para
producir una sobrecarga igual a la ejercida por el material de base y el
pavimento, redondeando a múltiplos de 2,27 Kg., y que en ningún caso debe
ser menor que 4,54 Kg. Como la probeta ha sido previamente sumergida, la
sobrecarga debe ser igual a la aplicada durante el período de inmersión.
Para evitar el solevantamiento del suelo en la cavidad de las cargas
ranuradas se coloca en primer lugar la carga anular sobre la superficie del
suelo, antes de apoyar el pistón de penetración, y después se colocan las
cargas restantes.
4.10.2- Apoyar el pistón de penetración con la carga más pequeña posible, la
cual no debe exceder en ningún caso de 45 N (≈ 4,5Kgf). Colocar los calibres
de tensión y deformación en cero. Esta carga inicial se necesita para
asegurar un apoyo satisfactorio del pistón y debe considerarse como carga
cero para la determinación de la relación carga – penetración.
NOTA: En el caso de emplear anillos deformables, el calibre medidor de
profundidad debe estar adosado directamente al pistón de penetración y
apoyado en el borde del cilindro. (Nch 1852.Of81)
68
Fotografía 4.18: Prensa de ensayo para C. B. R. con
los calibres de tensión y deformación en cero.
Fuente: Elaboración Propia.
4.10.3- Aplicar la carga en el pistón de penetración de manera que la
velocidad de la penetración sea de 1,25 mm. por minuto.
NOTA: Se puede aplicar alternativamente, una velocidad de 1 mm./min. en
aquellos tipos de suelo en que se demuestre, a través de ensayos
comparativos, que el cambio de velocidad no altera los resultados del
ensayo, y dejando expresa constancia en el informe.
4.10.4- Anotar las lecturas de la carga a intervalos regulares de penetración.
Al aplicar la velocidad de 1,25 mm. por minuto, registrar la carga en
penetraciones de:
0,63 - 1,25 - 1,9 - 2,5 - 3,1 - 3,75 - 4,4 - 5 - 7,5 - 10,0 - 12,5 milímetros.
NOTAS:
1) Para equipos con diales en pulgadas estos intervalos corresponden
aproximadamente a:
0,025 - 0,050 - 0,075 - 0,100 - 0,125 - 0,150 - 0,175 - 0,200 - 0,300 - 0,400 y
0,500 pulgadas.
2) Al aplicar la velocidad de 1 mm./minuto, es recomendable registrar la
carga en penetraciones de:
0,5 - 1,0 - 1,5 - 2,0 - 2,5 - 3,0 - 3,5 - 4 - 4,5 - 5 - 7,5-10,0 y 12,0 milímetros.
69
3) Con dispositivos de carga operados manualmente puede ser necesario
tomar las lecturas de la carga a intervalos breves (por ejemplo cada 0,5 mm.)
a fin de controlar la velocidad de penetración.
4.10.5- Anota la carga y penetración máxima si esto se produce para una
penetración menor que 12,7 mm.
NOTA: Las lecturas de carga a penetraciones de 10,16 mm. y 12,7 mm.
pueden omitirse.
70
Capítulo 5:
Expresión de Resultados
C.B.R. a partir de la Densidad Relativa
71
5.1- Resultados de los Suelos Granulares Ensayados
En este capítulo, se presenta un breve resumen de los resultados
obtenidos en la metodología propuesta anteriormente, adjuntándose los
gráficos de Tensión – Penetración y Razón de Soporte obtenidos en cada
una de las experiencias.
5.2- Propiedades Elementales de la Muestra 3 de Suelo
Este suelo de procedencia del pozo Los Pinos de Vilicic, presenta un 5,7%
de material fino bajo malla N° 200, tras ser lavado fue posible reducir esta
cantidad a un porcentaje de fino equivalente a un 1,8%, cuyo tamaño
máximo nominal correspondió a 50 mm..
Dicho suelo, en base a su granulometría, límite líquido y plástico, se
clasificó según el sistema de clasificación AASHTO, el cual está orientado en
particular a las carreteras, como un suelo A – 1a, mientras que en el sistema
USCS dirigido a aeropuertos correspondió a un SP. El gráfico 5.1, muestra la
curva granulométrica de este suelo.
72
Granulometría
120
100
% Que Pasa
80
60
40
20
0
0,01
0,1
1
10
100
Abertura del Tamiz (mm.)
Gráfico 5.1: Curva Granulométrica, Muestra 3.
Fuente: Elaboración Propia.
Dado el bajo porcentaje de fino en la muestra previamente clasificada, no
fue posible determinar su curva Proctor la que se realizó en dos
oportunidades; que es lo que se esperaba producto del lavado de finos, de
esta forma no fue posible determinar la humedad óptima para encontrar la
densidad máxima seca de compactación del suelo. Los gráficos 5.2 y 5.3,
muestran las curvas densidad – humedad obtenidas en laboratorio.
73
Curva Proctor
2,100
2,090
yd
2,080
2,070
2,060
2,050
2,040
0,0
2,0
4,0
6,0
8,0
10,0
8,0
10,0
w%
Gráfico 5.2: Proctor Modificado, Muestra 3 – 1.
Fuente: Elaboración Propia.
Curva Proctor
2,110
2,100
yd
2,090
2,080
2,070
2,060
2,050
0,0
2,0
4,0
6,0
w%
Gráfico 5.3: Proctor Modificado, Muestra 3 – 2.
Fuente: Elaboración Propia.
74
Posteriormente al ensayo de granulometría y Proctor Modificado, se
procedió a llevar a cabo la metodología propuesta para determinar la
capacidad de soporte en suelos granulares.
Hay que hacer notar que cuando hablamos de suelos granulares, nos
referimos a suelos sin cohesión o permeables, condición que lo inhabilita
para retener el agua siendo un material libremente drenante.
5.2.1- Gráficos de Razón de Soporte
Los siguientes gráficos pertenecen a dos muestras del mismo suelo,
ensayadas en el laboratorio Austro – Umag con la metodología propuesta
para la obtención del C.B.R. a partir de la Densidad Relativa, donde a
diferencia de la determinación de la razón de soporte de suelos compactados
en laboratorio (Nch1852.Of81) la cual establece tres moldes con diferentes
energías de compactación correspondientes a 10, 25 y 56 golpes,
respectivamente, en este método se efectuarán tres mediciones, una
densidad suelta equivalente a la densidad mínima de la determinación de las
densidades máxima y mínima y cálculo de la densidad relativa en suelos no
cohesivos (Nch1726.Of80) y dos densidades en la mesa vibradora a 4 y 8
minutos, todas éstas al interior de moldes C.B.R. normalizados y adaptados
para este ensayo. Los gráficos 5.4, 5.5, 5.6 y 5.7, muestran las curvas
Tensión – Penetración y C.B.R. - Densidad Seca, derivados de la
metodología propuesta para obtener C.B.R. a partir de la Densidad Relativa.
Los resultados se analizarán y comentarán en el capítulo 6.
75
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,1
0,3
0,1
0,050
0,3
1,0
0,2
0,075
0,6
1,8
0,3
0,100
1,3
3,0
0,4
0,125
2,3
4,3
0,6
0,150
3,4
5,6
0,8
0,175
4,4
6,8
1,0
0,200
5,8
8,2
1,3
0,225
6,9
9,5
1,4
0,250
7,7
9,5
1,7
0,275
7,7
9,5
1,8
Tabla 5.1: Curvas Tensión – Penetración, Muestra 3 – 1.
Fuente: Elaboración Propia.
Tensión - Penetración 9,5
10
9
9,5
8,2
8
7,7
6,8
7
Tensión (Mpa)
9,5
7,7
6,9
5,6
6
5
Tensión M pa 8 M IN
5,8
Tensión M pa 4 M IN
Tensión M pa 10 M IN
4,3
4,4
P olinómica (Tensión
M pa 8 M IN)
4
3,0
3,4
P olinómica (Tensión
M pa 4 M IN)
3
1,8
1,0
1
0
0,3
0 0,1
0
0
0,3
0,1
0,6
0,2
0,05
P olinómica (Tensión
M pa 10 M IN)
2,3
2
1,3
0,3
0,4
0,1
0,6
0,8
0,15
1,0
1,3
1,4
0,2
1,7
0,25
1,8
0,3
Penetración (Plg.)
Gráfico 5.4: Curvas Tensión – Penetración, Muestra 3 – 1.
Fuente: Elaboración Propia.
76
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1935
12
4
2115
80
8
2088
77
Tabla 5.2: C.B.R. – Densidad Seca, Muestra 3 – 1.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
90
77,0
80
C.B .R. (% )
A
B
70
80,0
60
50
CBR %
40
30
20
12,0
10
0
1900
1950
2000
2050
2100
2150
Densidad Seca (Kg./m³)
Gráfico 5.5: C.B.R. – Densidad Seca, Muestra 3 – 1.
Fuente: Elaboración Propia.
77
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,4
0,1
0,2
0,050
1,4
0,3
0,3
0,075
3,0
0,9
0,5
0,100
4,6
1,7
0,7
0,125
6,3
2,8
0,9
0,150
7,6
3,8
1,1
0,175
8,7
5,8
1,4
0,200
8,7
7,9
1,6
0,225
8,7
9,6
1,8
0,250
8,7
9,6
2,0
0,275
8,7
9,6
2,2
Tabla 5.3: Curvas Tensión – Penetración, Muestra 3 – 2.
Fuente: Elaboración Propia.
Tensión - Penetración 9,6
10
9
8,7
8,7
8,7
7,9
9,6
8,7
9,6
8,7
8
7,6
Tensión (Mpa)
7
Tensión M pa 8 M IN
5,8
6,3
6
Tensión M pa 4 M IN
5
Tensión M pa 10 M IN
4,6
3,8
4
3,0
3
P olinómica (Tensión
M pa 4 M IN)
1,7
2
1
P olinómica (Tensión
M pa 8 M IN)
2,8
1,4
0,3
0 0,40,1
0,3
0,2
0 0
0
0,05
0,9
0,5
0,7
0,1
0,9
1,1
0,15
1,4
1,6
1,8
0,2
2,0
0,25
P olinómica (Tensión
M pa 10 M IN)
2,2
0,3
Penetración (Plg.)
Gráfico 5.6: Curvas Tensión – Penetración, Muestra 3 – 2.
Fuente: Elaboración Propia.
78
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1936
16
4
2076
99
8
2059
96
Tabla 5.4: C.B.R. – Densidad Seca, Muestra 3 – 2.
Fuente: Elaboración Propia.
C.B .R. (% )
C.B.R. - Densidad Seca
110
100
90
80
70
60
50
40
30
20
10
0
1920
96,0
99,0
A
B
CBR %
16,0
1940
1960
1980
2000
2020
2040
2060
2080
2100
Densidad Seca (Kg./m³)
Gráfico 5.7: C.B.R. – Densidad Seca, Muestra 3 – 2.
Fuente: Elaboración Propia.
79
5.3- Propiedades Elementales de la Muestra 4 de Suelo
Esta muestra de suelo se obtuvo de la cantera de áridos de Vilicic ubicada
en el conjunto de parcelas del Loteo Varillas II en el sector de Río Seco, en
este lugar se adquirieron arenas y gravas rodadas lavadas por separado.
En el laboratorio Austro – Umag se determinó la granulometría de esta
arena en la cual se pudo observar un porcentaje de fino igual al 2,4%, luego
se creó una nueva, en la cual se mezclaron el material antes mencionado y
grava rodada, debiendo ésta enmarcarse en una banda granulométrica
empleada en la región de Magallanes, seleccionándose la TM50 – b (Manual
de Carreteras, Volumen N° 8, sección 8.101). El gráfico 5.8, muestra la forma
de la curva granulométrica al interior de la banda previamente especificada.
Granulometría TM50 - b
120
100
% Que Pasa
80
Granulometría TM50 - b
B. G. Superior
60
B. G. Inferior
40
20
0
0,01
0,1
1
10
100
Abertura del Tamiz (mm.)
Gráfico 5.8: Curva Granulométrica, Muestra 4.
Fuente: Elaboración Propia.
80
El suelo se clasificó según el sistema de clasificación AASHTO como un
suelo A – 1a, mientras que en el sistema USCS correspondió a un suelo SP,
cuyo tamaño máximo nominal fue de 40 mm..
Posteriormente, se realizó el reemplazo del Proctor Modificado y no se
pudo definir su curva, dado la baja cohesión que presentaban las partículas
de dicho suelo, cuyo material bajo abertura 0,08 mm. fue de un 1,3% al ser
mezclado en la nueva granulometría junto a la grava rodada. El gráfico 5.9,
muestra la forma de la curva humedad – densidad, la cual no tiene una forma
definida.
Curva Proctor
2,010
yd
2,000
1,990
1,980
1,970
0,0
2,0
4,0
6,0
8,0
10,0
w%
Gráfico 5.9: Proctor Modificado, Muestra 4.
Fuente: Elaboración Propia.
81
Ejecutados los ensayos previamente descritos, se procedió a llevar a cabo
la metodología propuesta para determinar la capacidad de soporte en suelos
granulares, cuyos resultados de las curvas Tensión – Penetración y C.B.R. Densidad Seca, se grafican en una serie de 3 ensayos con tres puntos y un
ensayo con 5 puntos, los cuales se presentan en los siguientes gráficos 5.10,
5.11, 5.12, 5.13, 5.14, 5.15, 5.16 y 5.17.
82
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,4
0,1
0,1
0,050
0,9
0,3
0,3
0,075
1,5
0,8
0,5
0,100
2,1
1,4
0,7
0,125
2,8
2,3
0,9
0,150
3,5
3,2
1,2
0,175
4,2
4,2
1,4
0,200
4,7
5,1
1,6
0,225
5,4
5,8
1,9
0,250
6,0
6,4
2,1
0,275
6,6
7,0
2,3
Tabla 5.5: Curvas Tensión – Penetración, Muestra 4 – 1.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
7,0
Tensión (Mpa)
7
6,4
5,8
6
5,1
5
Tensión M pa 4 M IN
5,4
Tensión M pa 10 M IN
4,2 4,7
4,2
4
P olinómica (Tensión
M pa 8 M IN)
3,2
3,5
3
P olinómica (Tensión
M pa 4 M IN)
2,82,3
2,1
1,4
2
1
Tensión M pa 8 M IN
6,6
6,0
1,5
0,8
0,90,3
0 0,40,1
0,3
0,1
0 0
0
0,05
0,5
0,7
0,1
0,9
1,2
0,15
1,4
1,6
1,9
0,2
2,1
0,25
P olinómica (Tensión
M pa 10 M IN)
2,3
0,3
Penetración (Plg.)
Gráfico 5.10: Curvas Tensión – Penetración, Muestra 4 – 1.
Fuente: Elaboración Propia.
83
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1873
16
4
1977
68
8
1942
47
Tabla 5.6: C.B.R. – Densidad Seca, Muestra 4 – 1.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
80
68,0
70
C.B .R. (% )
60
47,0
50
40
CBR %
30
20
16,0
10
0
1850
1900
1950
2000
2050
2100
Densidad Seca (Kg./m³)
Gráfico 5.11: C.B.R. – Densidad Seca, Muestra 4 – 1.
Fuente: Elaboración Propia.
84
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,1
0,1
0,1
0,050
0,1
0,5
0,2
0,075
0,3
1,2
0,3
0,100
0,4
2,3
0,5
0,125
0,7
3,7
0,7
0,150
1,0
5,1
0,9
0,175
1,4
6,3
1,2
0,200
1,8
7,3
1,5
0,225
2,3
8,3
1,8
0,250
2,5
8,3
2,0
0,275
2,9
8,3
2,2
Tabla 5.7: Curvas Tensión – Penetración, Muestra 4 – 2.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8,3
8
8,3
7,3
7
Tensión (Mpa)
8,3
6,3
6
Tensión M pa 8 M IN
Tensión M pa 4 M IN
5,1
5
Tensión M pa 10 M IN
3,7
4
3
P olinómica (Tensión
M pa 8 M IN)
2,3
2
1,8
1,2
0,5
1
0
0,1
0 0,1
0
0
0,1
0,1
0,3
0,2
0,05
0,4
0,3
0,7
0,5
0,1
P olinómica (Tensión
M pa 4 M IN)
2,9
2,3
1,0
0,7
1,4
0,9
0,15
1,2
1,5
2,5
1,8
0,2
2,0
0,25
P olinómica (Tensión
M pa 10 M IN)
2,2
0,3
Penetración (Plg.)
Gráfico 5.12: Curvas Tensión – Penetración, Muestra 4 – 2.
Fuente: Elaboración Propia.
85
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1834
15
4
1999
91
8
1960
27
Tabla 5.8: C.B.R. – Densidad Seca, Muestra 4 – 2.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
100
91,0
90
80
C.B .R. (% )
70
60
50
CBR %
40
30
20
27,0
15,0
10
0
1800
1850
1900
1950
2000
2050
2100
Densidad Seca (Kg./cm³)
Gráfico 5.13: C.B.R. – Densidad Seca, Muestra 4 – 2.
Fuente: Elaboración Propia.
86
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,2
0,5
0,1
0,050
0,6
1,4
0,1
0,075
1,4
2,5
0,2
0,100
2,4
4,0
0,4
0,125
3,7
5,2
0,6
0,150
4,8
6,3
0,8
0,175
5,8
7,0
1,0
0,200
6,8
8,2
1,3
0,225
7,5
9,0
1,5
0,250
7,5
9,0
1,5
0,275
7,5
9,0
1,5
Tabla 5.9: Curvas Tensión – Penetración, Muestra 4 – 3.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9,0
9
9,0
9,0
8,2
8
7,0
Tensión (Mpa)
7
6,3
6
7,5
7,5
6,8
Tensión M pa 8 M IN
5,8
5,2
5
7,5
Tensión M pa 4 M IN
Tensión M pa 10 M IN
4,8
4,0
P olinómica (Tensión
M pa 8 M IN)
4
3,7
3
P olinómica (Tensión
M pa 4 M IN)
2,5
2,4
2
P olinómica (Tensión
M pa 10 M IN)
1,4
1,4
0,5
1
0,6
0
0
0
0
0,2
0,1
0,1
0,05
0,2
0,4
0,1
0,6
0,8
0,15
1,0
1,3
1,5
0,2
1,5
0,25
1,5
0,3
Penetración (Plg.)
Gráfico 5.14: Curvas Tensión – Penetración, Muestra 4 – 3.
Fuente: Elaboración Propia.
87
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1897
12
4
2011
85
8
1991
75
Tabla 5.10: C.B.R. – Densidad Seca, Muestra 4 – 3.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
100
85,0
90
75,0
80
C.B .R. (% )
70
60
50
CBR %
40
30
20
12,0
10
0
1880
1900
1920
1940
1960
1980
2000
2020
Densidad Seca (Kg./cm³)
Gráfico 5.15: C.B.R. – Densidad Seca, Muestra 4 – 3.
Fuente: Elaboración Propia.
88
Penetración
Tensión (Mpa)
(Pulgadas)
8 Min
6 Min
4 Min
2 Min
0 Min
0,025
0,4
0,0
0,1
0,1
0,1
0,050
0,9
0,1
0,3
0,4
0,3
0,075
1,5
0,4
0,8
0,9
0,5
0,100
2,1
0,8
0,6
1,6
0,7
0,125
2,8
1,5
2,3
2,5
0,9
0,150
3,5
2,3
3,2
3,4
1,1
0,175
4,2
3,2
4,2
4,2
1,4
0,200
4,7
4,1
5,1
4,9
1,6
0,225
5,4
4,9
5,8
5,6
1,9
0,250
6,0
5,6
6,4
6,0
2,1
0,275
6,6
6,3
7,0
6,5
2,3
Tabla 5.11: Curvas Tensión – Penetración, Muestra 4 – 4.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
Tensión Mpa 8
MIN
Tensión (Mpa)
7,0
7
6,4
5,8
6
4
Tensión Mpa 6
MIN
6,3
4,9
4,2 4,7
4,2
6,3
5,6
5,1 5,4
5
6,6
6,0
Tensión Mpa 4
MIN
4,1
3,53,2
Tensión Mpa 2
MIN
3,2
3
2,82,3
2,3
2,1
2
1,5
0,8
1
0,90,3
0,40,1
0,3
0,1
0,1
0,0
0 0
0
0,05
0
0,5
0,4
1,5
0,6
0,8
0,7
0,1
0,9
1,1
1,4
0,15
1,6
0,2
1,9
2,1
2,3
0,25
Tensión Mpa 0
MIN
0,3
0,35
Penetración (Plg.)
Gráfico 5.16: Curvas Tensión – Penetración, Muestra 4 – 4.
Fuente: Elaboración Propia.
89
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1873
16
2
1976
60
4
1977
68
6
1954
62
8
1942
47
Tabla 5.12: C.B.R. – Densidad Seca, Muestra 4 – 4.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
80
68,0
70
62,0
60,0
C.B .R. (% )
60
47,0
50
40
CBR %
30
20
16,0
10
0
1850
1900
1950
2000
2050
2100
Densidad Seca (Kg./m³)
Gráfico 5.17: C.B.R. – Densidad Seca, Muestra 4 – 4.
Fuente: Elaboración Propia.
90
En el gráfico 5.17, se muestra los resultados obtenidos a partir del mismo
ensayo propuesto en la metodología planteada en el capítulo anterior, pero
esta vez considerando dos puntos intermedios en 2 y 6 minutos,
respectivamente, los cuales permiten visualizar de manera más precisa el
comportamiento del suelo.
De este gráfico, se observa que a los 4 minutos se alcanza la mayor
densidad que corresponde a 1977 Kg./cm3, en tanto, en los minutos 6 y 8 la
curva comienza a decaer y el valor C.B.R. junto con las densidades secas
comienzan a disminuir, por lo que, se puede concluir que la densidad mayor
se puede alcanzar dentro de un rango entre 4 a 5 minutos.
91
5.4- Propiedades Elementales de la Muestra 5 de Suelo
Esta muestra de suelo es básicamente la misma arena que provino de la
cantera de áridos de Vilicic, cuyo tamaño varía entre 2 mm. y 0,08 mm.
Como se mencionó previamente en la granulometría de este material, se
determinó un porcentaje de fino igual al 2,4% y en base a ésta y tanto a su
límite líquido como plástico, se clasificó según el sistema de clasificación
AASHTO como un suelo A – 1b, mientras que en el sistema USCS
correspondió a un suelo SP. El gráfico 5.18, muestra la forma de la curva
granulométrica de la arena.
Granulometría de Arena
120
100
% Que Pasa
80
60
40
20
0
0,01
0,1
1
10
Abertura del Tamiz (mm.)
Gráfico 5.18: Curva Granulométrica, Muestra 5.
Fuente: Elaboración Propia.
92
A continuación, se realizó en éste material bajo 5 mm. el ensayo del
Proctor Modificado, el cual no se pudo determinar dado la baja cohesión que
presentaban dichas partículas de suelo, esto se puede apreciar en el gráfico
5.19.
Curva Proctor
1,920
1,910
1,900
yd
1,890
1,880
1,870
1,860
1,850
1,840
0,0
2,0
4,0
6,0
8,0
10,0
w%
Gráfico 5.19: Proctor Modificado, Muestra 5.
Fuente: Elaboración Propia.
Finalmente, se procedió a llevar a cabo la metodología propuesta para
determinar la capacidad de soporte en suelos granulares con una serie de
tres ensayos, gráficos 5.20, 5.21, 5.22, 5.23, 5.24 y 5.25, respectivamente.
Los resultados se analizarán y comentarán en el capítulo 6.
93
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,2
0,1
0,1
0,050
0,5
0,4
0,1
0,075
0,9
1,0
0,2
0,100
1,4
1,8
0,4
0,125
1,9
2,7
0,5
0,150
2,5
3,5
0,7
0,175
3,0
4,2
0,8
0,200
3,6
4,9
0,9
0,225
4,1
5,6
1,0
0,250
4,5
6,1
1,0
0,275
4,9
6,1
1,1
Tabla 5.13: Curvas Tensión – Penetración, Muestra 5 – 1.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
Tensión (Mpa)
7
6,1
Tensión M pa 8 M IN
6,1
5,6
6
Tensión M pa 4 M IN
4,9
5
4
Tensión M pa 10 M IN
4,9
4,2
4,5
4,1
3,5
P olinómica (Tensión
M pa 8 M IN)
3,6
2,7
3
2
P olinómica (Tensión
M pa 4 M IN)
3,0
2,5
1,8
P olinómica (Tensión
M pa 10 M IN)
1,9
1,0 1,4
0,4 0,9
0,1
0
0,5
0,4
0,2
0,2 0,1
0,1
0 0
0
0,05
0,1
1
0,5
0,7
0,15
0,8
0,9
1,0
0,2
1,0
0,25
1,1
0,3
Penetración (Plg.)
Gráfico 5.20: Curvas Tensión – Penetración, Muestra 5 – 1.
Fuente: Elaboración Propia.
94
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1714
9
4
1890
59
8
1883
43
Tabla 5.14: C.B.R. – Densidad Seca, Muestra 5 – 1.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
70
59,0
60
C.B .R. (% )
50
A
43,0
40
B
CBR %
30
20
9,0
10
0
1650
1700
1750
1800
1850
1900
1950
2000
2050
Densidad Seca (Kg./cm³)
Gráfico 5.21: C.B.R. – Densidad Seca, Muestra 5 – 1.
Fuente: Elaboración Propia.
95
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,2
0,2
0,1
0,050
0,7
0,6
0,1
0,075
1,3
1,2
0,2
0,100
2,1
2,0
0,3
0,125
3,0
3,0
0,4
0,150
3,9
3,9
0,6
0,175
4,6
4,8
0,7
0,200
5,3
5,4
0,8
0,225
5,9
6,1
0,9
0,250
6,5
6,8
1,0
0,275
6,8
7,2
1,1
Tabla 5.15: Curvas Tensión – Penetración, Muestra 5 – 2.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
7,2
6,8
Tensión (Mpa)
7
6,8
6,1 6,5
6
Tensión M pa 8 M IN
5,4 5,9
Tensión M pa 4 M IN
4,8 5,3
5
Tensión M pa 10 M IN
3,9 4,6
4
3
2
P olinómica (Tensión
M pa 8 M IN)
3,9
3,0
3,0
P olinómica (Tensión
M pa 4 M IN)
2,0
2,1
1,2
1,3
0,6
1
0,2 0,7
0
0,3
0,2
0,2 0,1
0,1
0 0
0
0,05
0,1
P olinómica (Tensión
M pa 10 M IN)
0,4
0,6
0,15
0,7
0,8
0,9
0,2
1,0
0,25
1,1
0,3
Penetración (Plg.)
Gráfico 5.22: Curvas Tensión – Penetración, Muestra 5 – 2.
Fuente: Elaboración Propia.
96
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1823
9
4
1897
64
8
1888
62
Tabla 5.16: C.B.R. – Densidad Seca, Muestra 5 – 2.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
64,0
62,0
70
60
C.B .R. (% )
50
40
CBR %
30
20
9,0
10
0
1800
1850
1900
1950
2000
2050
Densidad Seca (Kg./cm²)
Gráfico 5.23: C.B.R. – Densidad Seca, Muestra 5 – 2.
Fuente: Elaboración Propia.
97
Penetración
Tensión (Mpa)
(Pulgadas)
8 Minutos
4 Minutos
0 Minutos
0,025
0,1
0,2
0,1
0,050
0,3
0,6
0,2
0,075
0,7
1,3
0,3
0,100
1,3
2,4
0,5
0,125
2,1
3,1
0,6
0,150
2,9
4,0
0,8
0,175
3,7
4,9
0,9
0,200
4,4
5,6
1,1
0,225
5,1
6,3
1,2
0,250
5,7
7,0
1,3
0,275
5,7
7,0
1,3
Tabla 5.17: Curvas Tensión – Penetración, Muestra 5 – 3.
Fuente: Elaboración Propia.
Tensión - Penetración
10
9
8
7,0
Tensión (Mpa)
7
7,0
6,3
Tensión M pa 8 M IN
5,6
6
5,7
4,9
5,1
5
4,0
4
3,1
3
2,4
2
0,6
0
0,2
0 0,1
0
0
0,3
0,1
0,7
0,2
0,05
Tensión M pa 10 M IN
4,4
P olinómica (Tensión
M pa 8 M IN)
3,7
P olinómica (Tensión
M pa 4 M IN)
2,9
P olinómica (Tensión
M pa 10 M IN)
2,1
1,3
1
Tensión M pa 4 M IN
5,7
1,3
0,3
0,5
0,1
0,6
0,8
0,15
0,9
1,1
1,2
0,2
1,3
0,25
1,3
0,3
Penetración (Plg.)
Gráfico 5.24: Curvas Tensión – Penetración, Muestra 5 – 3.
Fuente: Elaboración Propia.
98
Tiempo (Minutos)
Densidad Seca
C.B.R. (%)
3
(Kg./m )
0
1740
11
4
1899
57
8
1880
66
Tabla 5.18: C.B.R. – Densidad Seca, Muestra 5 – 3.
Fuente: Elaboración Propia.
C.B.R. - Densidad Seca
66,0
70
57,0
60
C.B .R. (% )
50
A
B
40
CBR %
30
20
11,0
10
0
1700
1750
1800
1850
1900
1950
2000
2050
Densidad Seca (Kg./cm³)
Gráfico 5.25: C.B.R. – Densidad Seca, Muestra 5 – 3.
Fuente: Elaboración Propia.
99
5.5- Determinar la Correlación de ambos Métodos.
Para verificar en cierta medida la correlación entre el método de
“determinación de las densidades máximas y mínimas y cálculo de la
Densidad Relativa en suelos no cohesivos” que establece la Nch1726.Of80 y
la “Metodología Particular propuesta para obtener el C.B.R. a partir de la
Densidad Relativa”, se ejecutaron ambos ensayos con el suelo de la muestra
2, de modo que el material tuviera un porcentaje de fino entre 5 y 12%.
De esta forma se obtuvieron los siguientes resultados:
Tiempo
Densidad Seca
Densidad Relativa
(min.)
(gr./cm3)
(%)
0
1,657
0
4
2,168
93
6
2,190
96
8
2,216
100
Tabla 5.19: Densidad Relativa – Densidad Seca, Nch1726.Of80.
Fuente: Elaboración Propia.
100
Densidad Relativa - Densidad Seca
y = 180,1x - 298,36
120
D. R. (%)
100
80
60
40
20
0
0
0,5
1
1,5
2
2,5
Densidad Seca (gr./m³)
Gráfico 5.26: Densidad Relativa – Densidad Seca, Nch1726.Of80.
Fuente: Elaboración Propia.
El gráfico 5.26, muestra densidades secas conseguidas a partir del molde
normalizado, vibradas a 4, 6, 8 minutos respectivamente, sumada a una
densidad mínima, la cual equivaldría a 0 minutos en la mesa de vibrado.
Tiempo
Densidad Seca
Densidad Relativa
3
(min.)
(gr./cm )
(%)
0
1,682
0
4
2,162
99
6
2,166
100
Tabla 5.20: Densidad Relativa – Densidad Seca, Metodología Particular propuesta para
obtener el C.B.R. a partir de la Densidad Relativa.
Fuente: Elaboración Propia.
101
Densidad Relativa - Densidad Seca
y = 206,43x - 347,22
120
D. R. (%)
100
80
60
40
20
0
0
0,5
1
1,5
2
2,5
Densidad Seca (gr./m³)
Gráfico 5.27: Densidad Relativa – Densidad Seca, Metodología Particular propuesta
para obtener el C.B.R. a partir de la Densidad Relativa.
Fuente: Elaboración Propia.
El gráfico 5.27, muestra densidades secas conseguidas a partir del molde
refaccionado, vibradas a 4 y 6 minutos respectivamente, sumada a una
densidad mínima, la cual equivaldría a 0 minutos en la mesa de vibrado.
Respecto a los dos gráficos se puede deducir que a pesar de haber sido
vibrados con distintos métodos, logramos obtener una pendiente de recta
muy similar, dado que al calcular el arco tangente de ambas se obtienen
ángulos análogos. En las siguientes fórmulas se advierte su valor.
tan−1( α ) = 108,10
α = 89,47°
Fórmula 5.1: Ángulo de Inclinación de la Pendiente de la Recta, Nch1726.Of80.
Fuente: Elaboración Propia.
102
tan−1( α ) = 206,43
α = 89,72°
Fórmula 5.2: Ángulo de Inclinación de la Pendiente de la Recta, Metodología Particular
propuesta para obtener el C.B.R. a partir de la Densidad Relativa.
Fuente: Elaboración Propia.
Por lo tanto, queda demostrado que el método de vibrado propuesto, es
válido para obtener densidades, cabe señalar que parar lograr una mayor
certeza debería ser mas estudiado este método particular propuesto.
Además, independiente del método de vibrado y el tiempo empleado, si el
suelo tiene el mismo porcentaje de finos, la pendiente es única, o dicho de
otra manera, un suelo con la misma relación de tamaño de granos, no
importa como se ordene, su relación de densificación va a ser la misma, y
estará representada por una recta única.
103
Capítulo 6:
Conclusiones
104
6.1- Análisis de Resultados
Los resultados de los diferentes ensayos realizados en conjunto con la
información obtenida en los capítulos anteriores nos permiten realizar un
análisis de la respuesta de los suelos granulares debido al contenido de finos
cuando son sometidos a vibración y a compactación por impacto, y conocer
con un método particular experimental, la capacidad soportante como
material de subbase, base y subrasante.
A continuación daremos a conocer las conclusiones conseguidas a partir
de los resultados obtenidos.
6.1.1-
Proponer
un
procedimiento
metodológico
particular
que
determine valores de C.B.R. para materiales con un porcentaje menor a
5% de finos o en aquellos que no tienen una curva de humedad densidad definidas, realizar ensayos y analizar sus resultados.
Respecto a la capacidad de soporte de suelos granulares, se puede
señalar que si bien la metodología particular propuesta, no entregó
resultados certeros y categóricos, esta puede mejorarse y estar sometida a
algunas modificaciones, para que de esta forma se pueda determinar el
C.B.R. en
suelos que no posean una curva Proctor definida con menor
dispersión.
Tras la ejecución de esta metodología, se obtuvo una densidad mayor
entre los 4 a 5 minutos de vibrado en comparación con la que se obtiene
vibrando por un período de 8 minutos. Esto no coincide con lo indicado en la
Nch1726.Of80 la cual señala que en un lapso de 8 minutos de vibrado a una
frecuencia de 3660 vibraciones/min (57 Hz. aprox.) se obtendrá la mayor
densidad del suelo. Esta dispersión puede tener explicación en los
implementos utilizados en ambos métodos, ya que la metodología planteada
en este ensayo ocupa moldes C.B.R. adaptados para la mesa vibradora,
105
teniendo incorporado un disco espaciador que ejercería una fuerza de
compactación por debajo del suelo transmitiendo a éste un movimiento
amplificado que acelera la densificación, el cual es necesario instalar, pues
permite posteriormente la colocación de la sobrecarga y la penetración.
Asimismo, pasado los 4 a 5 minutos de vibrado, el comportamiento del
suelo apreciado en la curva del gráfico razón de soporte pierde su linealidad,
por lo que, los primeros 5 minutos el material sigue una trayectoria que
representa la transición de un suelo suelto a uno denso, para luego a partir
de los 5 minutos pasa de ser un suelo denso a uno suelto tratando de
recuperar su C.B.R. original.
Al analizar los gráficos 5.5 y 5.7 se observa que el C.B.R. del material
vibrado durante 8 minutos disminuye con relación al C.B.R. del material
vibrado a 4 minutos, es decir, se pasa del punto A al B en los gráficos. Esto
se debe a que el sobrevibrado suelta el material llevando el C.B.R. a valores
similares a los obtenidos con material más suelto.
La degradación del C.B.R. producto del sobrevibrado es más acentuada
en los materiales con graduación más fina, debido a que se acercan más a
un comportamiento no drenado con carga rápida de un suelo suelto, ya que
el drenaje es más dificultoso. Esto se observa en los gráficos 5.21 y 5.25,
donde el punto B tiene un descenso de mayor magnitud que en los casos
anteriores. Además, se puede deducir a través de los gráficos previamente
mencionados que la curva tiende a seguir una trayectoria por debajo de la
misma, ya que al encontrarse saturada la resistencia al corte disminuye.
Cabe señalar que con la experiencia adquirida a causa de los múltiples
ensayos C.B.R. con materiales no heladizos ejecutados en el laboratorio
Austro – Umag, indicar que al revisar el ordenamiento interno de la estructura
granular de las partículas al interior del molde C.B.R., se observó que no
existe una distribución homogénea de las partículas pétreas luego de vibrado
el material, pues el suelo tendió a segregarse por tamaño de partículas al no
poseer material fino que le otorgara la cohesión necesaria para su unión.
106
Fotografía 6.1: Segregación
del suelo, luego del vibrado.
8 minutos en estado seco.
Fuente: Elaboración Propia.
Fotografía 6.2: Segregación
del suelo, luego de ser
sometida a inmesión.
Fuente: Elaboración Propia.
Esta distribución no homogénea de las partículas de suelo producto del
vibrado se incrementa a mayor tamaño de las partículas, lo que se traduce
en valores de C.B.R. con dispersiones de hasta un 25% para un mismo
suelo. Además, pudo apreciarse que probetas de un mismo suelo con menor
densidad obtenían valores de C.B.R. más elevados, producto del
ordenamiento irregular de las partículas, las que al coincidir con la trayectoria
del pistón aumentaban su capacidad de soporte.
Por lo tanto, se puede concluir que la metodología planteada para
determinar el valor C.B.R. en suelos granulares con curva Proctor no
definida, tiene validez con algunas limitancias que debieran abordarse en
futuras investigaciones. En términos generales, para la aplicación de este
método se debe tener en consideración los siguientes puntos:
1. Se requiere de un equipamiento especial acondicionado para este
método, que permita obtener la densidad máxima en la mesa vibradora y a la
vez permita la penetración posterior en la prensa C.B.R..
2. La curva C.B.R. debe confeccionarse a partir de 3 puntos: Densidad
mínima, Densidad a 1 minuto de vibrado y Densidad a 4 minutos.
107
3. El C.B.R. final, se obtiene interpolando en la curva C.B.R. – Densidad
Seca, el valor del 80% de la Densidad Relativa calculada con el método
normado.
4. Se requiere realizar un número mayor de ensayos para establecer con
mayor precisión el tiempo de vibrado necesario para lograr la densidad
máxima.
5. El método propuesto entrega resultados con menor variación en suelos
de menor tamaño.
Sin embargo, aún con todas estas limitantes y considerando la falta de
una metodología normada, este método puede tomarse a modo referencial y
tener en consideración que tiene un porcentaje de desviación aún por
determinar y que se requiere de un número mayor de ensayos para
conocerla.
Por último, es importante destacar que el valor C.B.R. es utilizado para
correlacionar parámetros de ingeniería, tales como la constante de balasto y
el módulo de resiliente, por lo que, se hacen necesarios ensayos adicionales
para verificar que estas correlaciones se siguen manteniendo.
6.1.1.1- Evaluar que una densidad al 95% del Proctor Modificado es
equivalente a decir Densidad Relativa al 80%.
Podemos decir que efectivamente existe una relación entre densidades
obtenidas al 80% de la Densidad Relativa y al 95% del Proctor Modificado en
los suelos ensayados, pero presenta una dispersión que depende en gran
medida del porcentaje de finos del suelo, pues se pudo observar que cuando
la densidad de la muestra obtenida al 80% de la Densidad Relativa es mayor
que la densidad de una muestra similar al 95% del Proctor Modificado, se
trata de una muestra con granulometría más gruesa, es decir, con un
108
porcentaje de finos pequeño , a diferencia de lo que ocurre con porcentajes
de finos mayores, esta relación de densidades de las muestras se invierte.
Se pudo verificar a través del ejercicio que se plantea en el punto 3.7 del
capítulo 3, que para el suelo de la muestra 1, la variación entre la densidad
obtenida al 80% de la Densidad Relativa, y la densidad al 95% de la
D.M.S.C., es del 4% a favor de la primera, teniendo ambas un porcentaje de
finos de 5,7%. Sin embargo, en el ejercicio desarrollado para la muestra 2,
se pudo establecer que para dicho suelo la variación fue del 0,4% esta vez a
favor de la densidad obtenida al 95% de la D.M.S.C.. A través de ambos
ejercicios, se establece que para dicha muestra existe un “porcentaje de
finos de equilibrio” para el cual ambas densidades son iguales, cuyo valor es
2085 kg/m2. Este valor podría sufrir variaciones para otro suelos con
granulometrías diferentes, por lo que, lo más correcto es hablar de un “rango”
de humedad de equilibrio cuyo valor es posible determinar, a partir de
ensayos adicionales desarrollados en futuros trabajos.
6.1.1.2- Analizar a partir de los resultados obtenidos en suelos de entre
5 y 12% de finos, la influencia del porcentaje de finos en los métodos de
compactación de suelos.
En el gráfico 6.1 a partir de las muestras 1 y 2, se muestran las tendencias
de las densidades obtenidas a un 80% de Densidad Relativa y al 95% de la
D.M.S.C. variando el porcentaje de finos. Se puede apreciar que a menor
porcentaje de finos, las densidades obtenidas al 80% de la Densidad
Relativa crecen, situación inversa en las densidades obtenidas al 95% de la
D.M.S.C..
El punto A representa la intersección de ambas rectas, y por lo tanto,
representa el porcentaje de finos con el cual se logra coincidir la densidad al
80% de Densidad Relativa con la densidad al 95% de la D.M.S.C..
109
80% D.R. y 95% D.M.C.S. - % Finos
80% D.R. y 95% D.M.C.S.
y = -0,0103x + 2,1736
y = 0,0212x + 1,904
2,12
80% D.R.
2,1
2,08
95% D.M.C.S.
A
2,06
Lineal (80% D.R.)
2,04
2,02
4
5
6
7
8
9
Lineal (95%
D.M.C.S.)
% de Finos
Gráfico 6.1: 80% D. R. y 95% D. M. S. C. – % de Finos.
Fuente: Elaboración Propia.
Por lo tanto, podemos concluir que para el suelo estudiado es posible
señalar que densidades al 80% de la Densidad Relativa coincide con
densidades al 95% de la D.M.S.C. sólo con un determinado valor de
porcentaje de finos, al cual hemos denominado, “porcentaje de finos de
equilibrio”.
Este gráfico, además puede explicar fenómenos que ocurren en ciertas
ocasiones en faenas de compactación en terreno, por ejemplo, cuando se
determina la densidad patrón a partir del valor Proctor Modificado obtenido
en el laboratorio con un suelo que posee un porcentaje de fino menor al de
equilibrio, se obtienen en obra densidades mayores al 100% de ésta, debido
a que el vibrado en el terreno que producen los equipos de compactación se
acerca más a la metodología de vibrado con la cual se determina el valor de
densidad máxima en laboratorio (Densidad Relativa). Su justificación es que
el porcentaje de equilibrio se encuentra más a la izquierda de la curva
Densidad Relativa – Proctor Modificado lo que lleva a pensar que sería
110
recomendable utilizar la Densidad Relativa para controlar en terreno este tipo
de casos.
Al variar este porcentaje de finos, las densidades al 80% Densidad
Relativa y 95% de la D.M.S.C. varían del orden del 3 al 5%.
Por último, podemos concluir en este caso en particular, a modo de
ejemplo, que para este tipo de suelo, el “porcentaje de finos de equilibrio” se
obtiene con un valor de 8,55% de finos, correspondiente al valor en el eje de
las abcisas del punto A, pero no es posible generalizar, no obstante, sería
importante establecer un rango de valores.
111
Bibliografía
1. Manual de Carreteras, Volumen N° 8, Diciembre 2003.
2. NCh1117.Of77 Áridos para morteros y hormigones – Determinación de las
densidades real y neta y la absorción de agua de las gravas.
3. NCh1517/1.Of79 Mecánica de Suelos – Límites de consistencia – Parte 1:
Determinación del límite líquido.
4. NCh1517/2.Of79 Mecánica de Suelos – Límites de consistencia – Parte 2:
Determinación del límite plástico.
5. NCh1532.Of80 Mecánica de suelos – Determinación de la densidad de
partículas sólidas.
6. NCh1534/2.Of79 Mecánica de suelos – Relaciones humedad/densidad –
Parte 2: Métodos de compactación con pisón de 4.5 kg y 460 mm de caída.
7. NCh1726.Of80 Mecánica de suelos – Determinación de las densidades
máxima y mínima y cálculo de la densidad relativa en suelos no cohesivos.
8. NCh1852.Of81 Mecánica de suelos – Determinación de la razón de
soporte de suelos compactados en laboratorio.
9. Ministerio de Obras Públicas, Laboratorio Nacional de Vialidad, “Curso
Laboratorista Vial, Volumen I, Geotecnia”, 1985.
10. ASTM D 4253 - 00 “Métodos de Ensayo para Índice de Densidad Máxima
y Unidades de Peso de Suelos Usando una Mesa Vibratoria”.
112
11. ASTM D 4254 - 00 “Métodos de Ensayo para Índice de Densidad Mínimo
y Unidades de Peso de Suelos y Cálculo de la Densidad Relativa”.
12. Manual de Laboratorio de Suelos en Ingeniería Civil, Joshep E. Bowles,
Editorial McGraw Hill Interamericana S.A., 1980.
13. Mecánica de Suelos y Cimentaciones, Carlos Crespo Villalaz.
14. Mecánica de Suelos y Estudios Geotécnicos en Obras de Ingeniería,
“Master en Ingeniería del Agua Sostenible”, José Javier Márquez, Mayo
2006.
15. Manual del Constructor, Grupo Polpaico.
113
Anexo I:
Clasificación de Suelos según AASHTO y USCS
114
Clasificación de Suelos
La clasificación nos proporciona información cualitativa de las propiedades
mecánicas y comportamiento de un suelo. Existen diversos sistemas de
clasificación pero nos centraremos en los dos siguientes:
¾ AASHTO (Asociación Estadounidense de Carreteras Estatales y
Oficiales del Transporte).
¾ USCS (Sistema Unificado de Clasificación de Suelos).
115
Sistema de Clasificación AASHTO.
Clasificación de los Suelos de Textura Fina. (ASTM D 3282 – 93)
116
Símbolo del Grupo
Nombres Típicos
Principalmente gravas con o sin
A–1–a
partículas finas de granulometrías
bien definidas.
A–1–b
Arena con o sin partículas finas de
granulometrías bien definidas.
A–2–4
Materiales granulares con partículas
finas limosas.
A–2–5
Intermedio.
A–2–6
Materiales granulares con partículas
finas arcillosas.
A–2–7
Intermedio.
Arena de granulometría deficiente
A–3
que casi no contiene partículas finas,
ni gravas.
A–4
Principalmente partículas finas
limosas.
Tipos de suelos poco frecuentes que
A–5
contienen partículas finas limosas,
generalmente elásticos y difíciles de
compactar.
A–6
Contienen partículas finas limosas o
arcillosas con un límite liquido bajo.
A–7–5
Las arcillas y limos más plásticos.
A–7–6
Las arcillas y limos más plásticos.
Tabla A1.1: Nonbre de Suelo según Sistema de Clasificación AASHTO.
Fuente: José Javier Márquez, Mecánica de Suelos y Estudios Geotécnicos en Obras
de Ingeniería.
117
Sistema de Clasificación USCS.
118
Carta de Plasticidad de Casagrande. (ASTM D 2487 – 00)
119
Símbolo del Grupo
Nombres Típicos
Gravas bien graduadas, mezcla de
GW
grava y arena con pocos finos o sin
ellos.
Gravas mal graduadas, mezcla de
GP
arena y grava con pocos finos o sin
ellos.
GM
Gravas limosas, mezclas mal
graduadas de grava, arena y limo.
GC
Gravas arcillosas, mezclas mal
graduadas de grava, arena y arcilla.
SW
Arenas bien graduadas, arenas con
gravas, con finos o sin ellos.
SP
Arenas mal graduadas, arena con
grava, con pocos finos o sin ellos.
SM
Arenas limosas, mezclas de arenas y
limos mal graduados.
SC
Arenas arcillosas, mezclas mal
graduadas de arenas y arcillas
Limos orgánicos y arenas muy finas,
ML
polvo de roca, arenas finas limosas o
arcillosas con ligera plasticidad.
Arcillas inorgánicas de plasticidad
CL
baja a media, arcillas con grava,
arcillas arenosos, arcillas limosas,
arcillas.
120
OL
Limos orgánicos y arcillas limosas
orgánicas de baja plasticidad.
Limos orgánicos, suelos limosos o
MH
arenosos finos micáceos o con
distoméas, limos elásticos.
CH
Arcillas inorgánicas de plasticidad
elevada, arcillas grasas.
OH
Arcillas orgánicas de plasticidad
media o alta.
Pt
Turba y otros suelos altamente
orgánicos.
Tabla A1.2: Nombre de Suelo según Sistema de Clasificación USCS.
Fuente: Manual del Constructor, Grupo Polpaico.
121
Anexo II:
Aparato C. B. R.
122
Fotografía: Aparato C. B. R.
Fuente: Manual de Carreteras, Volumen N° 8.
123
Anexo III:
Manual de Carreteras: Capítulo 8.100 – Suelos
Sección 8.101 Especificaciones para Suelos
124
CAPÍTULO 8.100 – SUELOS
SECCION 8.101 ESPECIFICACIONES PARA SUELOS.
8.101.1 SUELOS: ESPECIFICACIONES PARA SUBBASES, BASES Y
CAPAS DE RODADURA (LNV 102)
1.- Alcances y Campo de Aplicación. Estas especificaciones definen las
calidades y graduaciones de mezclas de arena - arcillas; gravas o escorias
seleccionadas; arenas o material triturado proveniente de pétreos o escorias
o cualquier combinación de estos materiales, para ser utilizados como
subbases, bases y capas de rodadura. Estos requerimientos son aplicables
únicamente a materiales que tienen densidades netas entre 2.000 y 3.000
kg/m3 y absorciones y graduaciones características.
2.- Requerimientos Generales.
2.1 Los agregados gruesos, retenidos sobre tamiz 5 mm (N° 4), deben ser
partículas resistentes, durables, constituidas de fragmentos de roca, grava o
escorias. Materiales que se quiebran con los ciclos alternados de hielo deshielo y humedad – sequedad, no deben ser usados.
2.2 Los agregados finos, que pasan por tamiz 5 mm (N° 4), deben estar
constituidos por arenas naturales o trituradas y por partículas minerales que
pasan por tamiz 0,08 mm (N° 200).
Las fracciones que pasan por tamiz 0,08 mm (N° 200) no deberán ser
mayores que los dos tercios de la fracción que pasa por tamiz 0,5 mm (N°
40). Los límites de consistencia de la fracción que pasa por tamiz 0,5 mm
estarán conformes a lo indicado en Tabla 8.101.1.A.
125
2.3 Todo el material deberá estar libre de materias orgánicas y terrones de
arcillas. La graduación de los materiales deberá estar conforme con los
requerimientos de la Tabla 8.101.1.B.
TABLA 8.101.1.A
LIMITES DE CONSISTENCIA O DE ATTERBERG
Límite Líquido
Índice de Plasticidad
Subbase
Máx. 35
Máx. 8
Base Estabilizada
Máx. 25
Máx. 6 (Ver 4.1)
- Regiones I a III
Máx. 35
5 – 10
- Regiones IV a VI
Máx. 35
4–9
- Regiones VII a X
Máx. 35
3–8
- Regiones XI a XII
Máx. 35
Máx. 7
Carpeta de Rodadura
3.- Materiales para Subbase.
3.1 Los materiales para subbase deberán cumplir con los requerimientos
estipulados en 2 y en 3.2 y con la graduación TM-50a de la Tabla 8.101.1.B.
3.2 En cuanto a las propiedades mecánicas, el material deberá tener un
soporte CBR mayor o igual a 40% y la fracción gruesa deberá tener una
resistencia al desgaste, medida por el ensaye de Los Ángeles, Método
8.202.11, de no más de 40%.
Nota 1: En zonas heladas se deben reconsiderar los límites de Atterberg y el
material bajo 0,08 mm, previo estudio de las condiciones locales.
126
4.- Materiales para Base Granular.
4.1 Los materiales para base granular (estabilización hidráulica) cumplirán
con los requerimientos indicados en 2 y 4.2. Las granulometrías deberán
ajustarse a una de las siguientes bandas: TM 50b, TM-50c o TM-25 de la
Tabla 8.101.1.B; el porcentaje de chancado, determinado según Método
8.202.6, no deberá ser menor que 50%. Cuando el material se use como
base para tratamiento superficial doble el contenido mínimo de chancado
será de 70%, su tamaño máximo absoluto será de 40 mm. y su Indice de
Plasticidad máximo será de 4%, salvo que el proyecto estipule otro valor,
debidamente justificado, el que en ningún caso podrá exceder el 6 %.
4.2 En cuanto a las propiedades mecánicas, el material deberá tener un
soporte CBR ≥ 80%; la fracción gruesa deberá tener una resistencia al
desgaste, medida por el ensaye de Los Ángeles, de no más de 35%.
En caso de tratamiento superficial doble, el soporte deberá ser CBR ≥ 100%.
Ver Nota 1.
Nota 2: Cuando se emplea como subbase de pavimento de hormigón, el
soporte deberá ser CBR ≥ 50%.
5.- Materiales para Carpeta de Rodadura.
5.1 Cuando se prevea que la carpeta de rodadura va a quedar expuesta por
varios años, sin una protección asfáltica, el material deberá cumplir con los
requerimientos de 2 y 5.2, con un contenido mínimo de chancado de 50 % y
con una de las siguientes bandas granulométricas:
- Zona Norte. Desde la I a VI Regiones, ambas inclusive, se empleará la
banda TM-40c.
- Zona Sur. Desde la VII a XII Regiones, ambas inclusive, se empleará la
banda TM-40b.
127
Nota 3: De acuerdo a circunstancias locales, previo estudio, se podrán variar
el fino bajo 0,08 mm y los límites de consistencia.
5.2 En cuanto a propiedades mecánicas, el material deberá tener un soporte
CBR ≥ 60%. En zonas donde se permite efectuar el ensaye sin inmersión,
este valor deberá ser del 80%. La fracción gruesa deberá tener una
resistencia al desgaste, medida por el ensaye de Los Ángeles, de no más de
30%.
6.- Base Granular Tratada con Cemento (GTC). Los materiales para GTC
deberán cumplir con los requerimientos de 4 y con una de las siguientes
bandas granulométricas: TM-50c con tamaño máximo absoluto de 40 mm o
TM-25. Los materiales podrán ser sólo seleccionados, siempre que cumplan
con una resistencia característica a la compresión a 7 días de 2,5 MPa.
7.- Base Tratada con Cemento (BTC). Los materiales para BTC deberán
cumplir con lo establecido en 6, a excepción de las partículas chancadas,
cuyo porcentaje deberá ser mayor que 50% y de la resistencia a la
compresión, que debe ser de 4,5 MPa, con una dosis mínima de 5% de
cemento.
8.- Base Abierta Ligada (BAL). Los materiales deberán cumplir con los
requisitos del punto 2 y con la banda granulométrica TM-40a. Las partículas
deben ser 100% chancadas y tener una resistencia al desgaste, medida por
el ensaye de Los Ángeles, no mayor que 35%.
9.- Contenido de Humedad. Todos los materiales contendrán una humedad
igual o ligeramente mayor que la óptima, necesaria para asegurar la
densidad de diseño requerida.
128
TABLA 8.101.1.B
BANDAS GRANULOMETRICAS PARA SUBBASE, BASES Y CAPAS DE
RODADURA
Tamiz
TM-50a TM-50b TM-50c TM-40a TM-40b TM-40c
TM-25
(mm.)
50
100
100
100
40
-
70–100
-
100
100
100
25
55–100
55–85
70–100
70–100
80–100
80-100
100
20
-
45 - 75
60 - 90
50 - 80
-
-
70–100
10
30 - 75
35 - 65
40 - 75
25 - 50
50 - 80
50 - 80
50 - 80
5
20 - 65
25 - 55
30 - 60
10 - 30
35 - 65
35 - 65
35 - 65
2.5
-
-
-
5 - 15
-
-
-
2
10 - 50
15 - 45
15 - 45
-
25 - 50
25 - 50
25 - 50
0.5
5 - 30
5 - 25
10 - 30
0-5
10 - 30
15 - 30
10 - 30
0.08
0 - 20
0 - 10
0 - 15
0-3
5 - 15
5 - 20
0 - 15
129
Determinación de la C.B.R.
(NCh1852.Of81)
Fecha: 3 de Octubre 2008.
Muestra: 1.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 647 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1230 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 5123 grs. será de material que pasa N° 4.
1. Datos de Confección
Tipo Proctor: Modificado.
Método Proctor: D.
Humedad Óptima: 7,7%
Densidad Máxima Seca: 2,131 (gr./cm³)
N° de Capas: 5.
2. Antes de Inmersión
Molde N°
N° de Golpes
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo (gr.)
Peso Suelo (gr.)
Densidad Húmeda (gr./cm³)
Humedad Antes de Compactar (%)
Humedad Después de Compactar (%)
Densidad Seca (gr./cm³)
14
56
4771
2123
9630
4859
2,289
8,53
7,92
2,121
10
25
4740
2123
9467
4727
2,227
8,29
8,50
2,052
15
10
4630
2123
9243
4613
2,173
8,03
7,57
2,020
9659
4888
8,51
9500
4760
8,58
9389
4759
7,71
3. Después de Inmersión
Peso Molde y Suelo (gr.)
Peso Suelo (gr.)
Humedad 25 mm. Superior (%)
137
4. Datos de Ensayo
Molde N°: 14
Molde N°: 10
Molde N°: 15
Tiempo Penetración
N° de Golpes: 56
N° de Golpes: 25
N° de Golpes: 10
(seg.)
(plg.)
Lectura
C. C.
Lectura
C. C.
Lectura
C. C.
Dial
(kgf./cm²)
Dial
(kgf./cm²)
Dial
(kgf./cm²)
30
0,025
8
2
14
3
7
2
60
0,050
23
4
43
8
22
4
90
0,075
41
8
85
16
51
9
120
0,100
69
13
130
24
75
14
150
0,125
100
18
175
32
101
18
180
0,150
140
25
212
38
127
23
210
0,175
195
35
220
40
154
28
240
0,200
255
46
267
48
176
32
270
0,225
310
56
289
52
199
36
300
0,250
363
65
313
56
221
40
330
0,275
413
74
329
59
241
44
360
0,300
390
0,325
420
0,350
138
5.1. Humedad Antes de Compactación
Molde N°
N° de Golpes
Peso Recipiente (gr.)
Peso Recipiente + Suelo Húmedo (gr.)
Peso Recipiente + Suelo Seco (gr.)
Peso Agua (gr.)
Peso Suelo Seco (gr.)
Contenido de Humedad (w%)
14
56
361,27
1091,11
1033,74
57,37
672,47
8,53
6
25
345,21
1121,16
1061,77
59,39
716,56
8,29
1
10
361,30
1250,80
1184,72
66,08
823,42
8,03
5
56
334,49
1329,79
1256,77
73,02
922,28
7,92
13
25
358,84
1169,07
1105,63
63,44
746,79
8,50
7
10
355,35
1121,09
1067,23
53,86
711,88
7,57
8
56
358,67
1290,66
1217,58
73,08
858,91
8,51
15
25
352,52
1429,10
1344,06
85,04
991,54
8,58
14
10
361,27
1461,36
1382,57
78,79
1021,3
7,71
5.2. Humedad Después de Compactación
Molde N°
N° de Golpes
Peso Recipiente (gr.)
Peso Recipiente + Suelo Húmedo (gr.)
Peso Recipiente + Suelo Seco (gr.)
Peso Agua (gr.)
Peso Suelo Seco (gr.)
Contenido de Humedad (w%)
5.3. Humedad Después de Inmersión
Molde N°
N° de Golpes
Peso Recipiente (gr.)
Peso Recipiente + Suelo Húmedo (gr.)
Peso Recipiente + Suelo Seco (gr.)
Peso Agua (gr.)
Peso Suelo Seco (gr.)
Contenido de Humedad (w%)
139
Determinación de la Densidad de Partículas Sólidas
(NCh1532.Of80)
Fecha: 4 de Octubre 2008.
Muestra: 1.
A. Partículas Menores a 5 mm.
1. Calibración Picnómetro
N°
Peso Picnómetro + Agua
(grs.)
704,18
704,11
704,30
704,18
704,11
1
2
3
4
5
Temperatura Agua ti (°C)
16,2
15,9
15,7
15,7
15,6
2. Material Bajo Tamiz 5 mm.
¾ Primera Determinación.
Masa Picnómetro Vacío:
Masa Picnómetro + Agua (Ma):
Masa Muestra Seca (Ms):
Muestra + Picnómetro + Agua (Mm):
Temperatura Agua:
Densidad del Agua a T° especif. (ρw):
Densidad de Partículas Sólidas:
204,87 grs.
704,18 grs.
42,61 grs.
731,67 grs.
10,6 °C
0,9997 grs./cm³
2,818 grs./cm³
¾ Segunda Determinación.
Masa Picnómetro Vacío:
Masa Picnómetro + Agua (Ma):
Masa Muestra Seca (Ms):
Muestra + Picnómetro + Agua (Mm):
Temperatura Agua:
Densidad del Agua a T° especif. (ρw):
Densidad de Partículas Sólidas:
ρ
204,87 grs.
704,18 grs.
47,32 grs.
734,13 grs.
15 °C
0,9991 grs./cm³
2,722 grs./cm³
⎡
⎤
Ms
=⎢
⎥ × ρw
s
⎣ (Ms + Ma) − Mm⎦
132
Áridos para Morteros y Hormigones – Determinación de las Densidades Real y
Neta y la Absorción de Agua de las Gravas
(NCh1117.Of77)
B. Partículas Mayores a 5 mm.
Masa del Pétreo Sumergido (A):
Masa del Pétreo Seco (C):
Densidad Neta (ρn):
ρ
3,999 Kg.
6,253 Kg.
2774,18 Kg./m³
(
⎡ C ⎤
=⎢
× 1000 Kg / m 3
⎥
n
⎣C − A⎦
)
C. Densidad de Partículas Sólidas Ponderada
Porcentaje de Partículas Menores a 5 mm.:
Porcentaje de Partículas Mayores a 5 mm.:
Densidad de Partículas Sólidas:
Densidad Neta:
Densidad Ponderada:
0,7319 %
0,2681 %
2770,22 Kg./m³
2774,18 Kg./m³
2771,28 Kg./m³
133
Determinación de la Densidad Máxima y Mínima Seca
(NCh1726.Of80)
Fecha: 2 de Octubre 2008.
Muestra: 1.
Volumen del Molde: 2830 cm³.
Peso del Molde: 8319 gr.
1. Densidad Mínima
N°
1
2
3
4
5
Peso Molde + Suelo (gr.)
13058
13098
13127
13119
13121
Peso Suelo (gr.)
4739
4779
4808
4800
4802
Densidad Mínima (gr./cm³)
1,675
1,689
1,699
1,696
1,697
2. Densidad Máxima
Altura del Molde: 15,15 cm.
Área de Molde: 181,45 cm².
Espesor Placa: 1,24 cm.
Descenso de Placa (cm.)
N°
1
2
3
4
Dh1
Dh2
Dh3
Dh4
Dh
Promedio
(cm.)
2,35
2,01
1,51
1,96
2,35
2,01
1,41
1,91
2,38
2,01
1,42
1,98
2,36
2,03
1,51
1,91
2,36
2,02
1,46
1,94
Método
Seco
Seco
Seco
Húmedo
Altura
Final
(cm.)
Volumen
Final
(cm.)
11,55
11,90
12,45
11,97
2095,75
2158,35
2258,60
2172,08
Peso
Seco
Final +
Molde
(gr.)
13006
13119
13378
-
Peso
Seco
Final
(gr.)
Densidad
Máxima
(gr./cm³)
4687
4800
5059
4900
2,236
2,224
2,240
2,256
134
135
Anexo IV:
Tablas de Ensayos Realizados
130
Granulometría
(Manual de Carreteras, Volumen N° 8, Sección 8.102.1)
Fecha: 26 de Septiembre 2008.
Muestra: 1.
Peso Total de la Muestra: 11.071 gr.
Tamaño Máximo Absoluto de la Muestra: 50 mm.
Peso Sobretamaño: No hay.
Porcentaje Sobretamaño: No hay.
Granulometría - Fracción Mayor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material mayor a 5 mm.:
Peso Seco Inicial Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm. (Tamizado):
Porcentaje de diferencia arrojada:
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
N° 4
Abertura
(mm.)
80
63
50
40
25
20
10
5
Residuos
Peso
Retenido (g. )
230
390
276
714
1358
26
0,5 %
3.003
2.995
2.994
0,03%
% Retenido
% Que Pasa
0
0
0
2,08
3,52
2,49
6,45
12,27
0,23
100
100
100
98
94
92
86
73
Granulometría - Fracción Menor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material menor a 5 mm.:
Peso Seco Inicial Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm.:
Peso Seco Cuarteo Lavado Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm. (Tamizado):
Factor de Corrección:
Porcentaje de diferencia arrojada:
Tamiz N°
Abertura
(mm.)
N° 10
2
N° 40
0,5
N° 200
0,08
Residuos
Peso
Retenido (g. )
142,1
301,3
79,6
1,7
3%
8.068
564,8
525,3
524,7
0,129
0,10%
% Retenido
% Que Pasa
18,34
38,88
10,27
0,21
54,9
15,9
5,7
131
132
Determinación de la Compactación del Proctor Modificado
(NCh1726.Of80)
Fecha: 1 de Octubre 2008.
Muestra: 1.
Preparación de Muestras (Reemplazo)
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
4
Abertura (mm.)
80
63
50
40
25
20
10
5
% Que Pasa
100
98
94
92
85
73
Factor de Corrección
100% Que Pasa - % Que Pasa N° 4 =
3/4" - % Que Pasa N° 4 =
F.C. =
26,81
18,72
1,432
Se llenarán 5 recipientes con 6 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 554 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1054 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 4391 grs. será de material que pasa N° 4.
Determinación de la Densidad Húmeda del Suelo Compactado
Peso de Muestra de Ensayo: 6 kgs.
Peso de Molde Proctor: 2834 grs.
Volumen de Molde Proctor: 2128 cm³
Molde (N°)
Humedad
Preparación
(w%)
Cantidad
de Agua
(cm³)
1
1
1
1
1
4
6
8
10
12
240
360
480
600
720
Peso
Recip. +
Suelo
Húmedo
(gr.)
7399
7577
7717
7745
7773
Suelo
Húmedo
(gr.)
Densidad
Húmeda
(gr./cm³)
4565
4743
4883
4911
4939
2,145
2,229
2,295
2,308
2,321
135
Tabla Relación de Humedad / Densidad - Ensayo Proctor Modificado
Peso
Peso
Peso de
Recipiente
Humedad
Peso
Recipiente + Recipiente
Suelo
(N°)
Preparación Recipiente
Suelo
+ Suelo
Húmedo
(w%)
(gr.)
Húmedo(gr.) Seco (gr.)
(gr.)
2
11
5
13
18
25
17
6
20
10
4
4
6
6
8
8
10
10
12
12
342,63
349,17
334,51
358,83
356,80
371,84
348,75
344,98
355,73
348,21
⎡
⎤
γ H = ⎢W H ⎥
⎢⎣ V M ⎥⎦
1176,53
1082,30
973,61
1230,52
1241,16
1033,71
1220,64
1148,30
1077,56
1274,19
1143,90
1056,30
939,23
1181,78
1179,39
985,28
1151,63
1084,26
1019,35
1185,90
⎡ γ
⎤
H
γ D = ⎢⎢ (1 + W %)⎥⎥
⎣
⎦
833,90
733,13
639,10
871,69
884,36
661,87
871,89
803,32
721,83
925,98
Peso
de
Suelo
Seco
(gr.)
801,27
707,13
604,72
822,95
822,59
613,44
802,88
739,28
663,62
837,69
Peso
Densidad
de
w%
w%
Seca
Agua Real
Real
Real
(gr.)
Ponderada (gr./cm³)
32,63
26,00
34,38
48,74
61,77
48,43
69,01
64,04
58,21
88,29
4,1
3,7
5,7
5,9
7,5
7,9
8,6
8,7
8,8
10,5
3,9
2,065
5,8
2,107
7,7
2,131
8,6
2,124
9,7
2,117
⎡
⎤
W % = ⎢W W ⎥
⎢⎣W S ⎥⎦
γH: Densidad Suelo Húmeda.
γD: Densidad Suelo Seca.
WH: Peso Suelo Húmedo.
WS: Peso Suelo Seco.
WW: Peso de Agua.
VM: Volumen de Molde Proctor.
W%: Contenido de Agua o Humedad.
136
137
Determinación de la C.B.R.
(NCh1852.Of81)
Fecha: 13 de Octubre 2008.
Muestra: 2.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1035 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1171 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 4794 grs. será de material que pasa N° 4.
1. Datos de Confección
Tipo Proctor: Modificado.
Método Proctor: D.
Humedad Óptima: 7,3%
Densidad Máxima Seca: 2,197 (gr./cm³)
N° de Capas: 5.
2. Antes de Inmersión
Molde N°
N° de Golpes
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo (gr.)
Peso Suelo (gr.)
Densidad Húmeda (gr./cm³)
Humedad Antes de Compactar (%)
Humedad Después de Compactar (%)
Densidad Seca (gr./cm³)
14
56
4771
2123
9667
4896
2,306
8,03
7,79
2,140
15
25
4630
2123
9308
4678
2,203
7,41
7,53
2,049
16
10
4745
2118
9264
4519
2,134
8,00
7,99
1,976
9669
4898
7,86
9324
4694
8,16
13180
8435
9,00
3. Después de Inmersión
Peso Molde y Suelo (gr.)
Peso Suelo (gr.)
Humedad 25 mm. Superior (%)
146
4. Datos de Ensayo
Molde N°: 14
Molde N°: 15
Molde N°: 16
Tiempo Penetración
N° de Golpes: 56
N° de Golpes: 25
N° de Golpes: 10
(seg.)
(plg.)
Lectura
C. C.
Lectura
C. C.
Lectura
C. C.
Dial
(kgf./cm²)
Dial
(kgf./cm²)
Dial
(kgf./cm²)
30
0,025
31
6
10
2
9
2
60
0,050
115
21
43
8
26
5
90
0,075
215
39
96
18
52
10
120
0,100
325
59
153
28
83
15
150
0,125
428
77
208
38
111
20
180
0,150
256
46
134
24
210
0,175
304
55
155
28
240
0,200
342
62
178
32
270
0,225
300
0,250
330
0,275
360
0,300
390
0,325
420
0,350
147
5.1. Humedad Antes de Compactación
Molde N°
N° de Golpes
Peso Recipiente (gr.)
Peso Recipiente + Suelo Húmedo (gr.)
Peso Recipiente + Suelo Seco (gr.)
Peso Agua (gr.)
Peso Suelo Seco (gr.)
Contenido de Humedad (w%)
25
56
371,76
1108,03
1053,32
54,71
681,56
8,03
8
25
358,65
1141,32
1086,34
53,98
728,69
7,41
22
10
366,49
1032,23
982,93
49,3
616,44
8
11
56
349,10
1040,70
990,73
49,97
641,63
7,79
4
25
350,64
1112,43
1059,08
53,35
708,44
7,53
10
10
348,03
1164,87
1104,44
60,43
756,41
7,99
22
56
366,41
1181,43
1122,07
59,36
755,66
7,86
4
25
350,61
1135,22
1076,02
59,2
725,41
8,16
11
10
349,07
1183,78
1114,83
68,95
765,76
9,00
5.2. Humedad Después de Compactación
Molde N°
N° de Golpes
Peso Recipiente (gr.)
Peso Recipiente + Suelo Húmedo (gr.)
Peso Recipiente + Suelo Seco (gr.)
Peso Agua (gr.)
Peso Suelo Seco (gr.)
Contenido de Humedad (w%)
5.3. Humedad Después de Inmersión
Molde N°
N° de Golpes
Peso Recipiente (gr.)
Peso Recipiente + Suelo Húmedo (gr.)
Peso Recipiente + Suelo Seco (gr.)
Peso Agua (gr.)
Peso Suelo Seco (gr.)
Contenido de Humedad (w%)
148
Determinación de la Densidad de Partículas Sólidas
(NCh1532.Of80)
Fecha: 11 de Octubre 2008.
Muestra: 2.
A. Partículas Menores a 5 mm.
1. Calibración Picnómetro
N°
Peso Picnómetro + Agua
(grs.)
704,18
704,11
704,30
704,18
704,11
1
2
3
4
5
Temperatura Agua ti (°C)
16,2
15,9
15,7
15,7
15,6
2. Material Bajo Tamiz 5 mm.
¾ Primera Determinación.
Masa Picnómetro Vacío:
Masa Picnómetro + Agua (Ma):
Masa Muestra Seca (Ms):
Muestra + Picnómetro + Agua (Mm):
Temperatura Agua:
Densidad del Agua a T° especif. (ρw):
Densidad de Partículas Sólidas:
204,87 grs.
704,18 grs.
41,97 grs.
730,38 grs.
16 °C
0,99909 grs./cm³
2,6596 grs./cm³
¾ Segunda Determinación.
Masa Picnómetro Vacío:
Masa Picnómetro + Agua (Ma):
Masa Muestra Seca (Ms):
Muestra + Picnómetro + Agua (Mm):
Temperatura Agua:
Densidad del Agua a T° especif. (ρw):
Densidad de Partículas Sólidas:
ρ
204,87 grs.
704,18 grs.
41,72 grs.
730,06 grs.
15 ,8°C
0,99909 grs./cm³
2,6321 grs./cm³
⎡
⎤
Ms
=⎢
⎥ × ρw
s
⎣ (Ms + Ma) − Mm⎦
141
Áridos para Morteros y Hormigones – Determinación de las Densidades Real y
Neta y la Absorción de Agua de las Gravas
(NCh1117.Of77)
B. Partículas Mayores a 5 mm.
Masa del Pétreo Sumergido (A):
Masa del Pétreo Seco (C):
Densidad Neta (ρn):
ρ
4573 Kg.
7205 Kg.
2737,46 Kg./m³
(
⎡ C ⎤
=⎢
× 1000 Kg / m 3
⎥
n
⎣C − A⎦
)
C. Densidad de Partículas Sólidas Ponderada
Porcentaje de Partículas Menores a 5 mm.:
Porcentaje de Partículas Mayores a 5 mm.:
Densidad de Partículas Sólidas:
Densidad Neta:
Densidad Ponderada:
0,6849 %
0,3151 %
2645,87 Kg./m³
2737,46 Kg./m³
2674,73 Kg./m³
142
Determinación de la Densidad Máxima y Mínima Seca
(NCh1726.Of80)
Fecha: 26 de Septiembre 2008.
Muestra: 2.
Volumen del Molde: 2830 cm³.
Peso del Molde: 8319 gr.
1. Densidad Mínima
N°
1
2
3
4
5
Peso Molde + Suelo (gr.)
13017
12999
13024
13007
13000
Peso Suelo (gr.)
4698
4680
4705
4688
4681
Densidad Mínima (gr./cm³)
1,660
1,654
1,663
1,657
1,654
2. Densidad Máxima
Altura del Molde: 15,15 cm.
Área de Molde: 181,45 cm².
Espesor Placa: 1,24 cm.
Descenso de Placa (cm.)
N°
1
2
3
4
Dh1
Dh2
Dh3
Dh4
Dh
Promedio
(cm.)
2,38
3,32
3,15
2,51
2,06
3,37
3,12
2,52
2,14
3,31
3,21
2,56
2,14
3,32
3,21
2,53
2,18
3,33
3,17
2,53
Método
Seco
Seco
Seco
Húmedo
Altura
Final
(cm.)
Volumen
Final
(cm.)
11,73
10,58
10,74
11,38
2128,41
1919,74
1948,32
2065,01
Peso
Seco
Final +
Molde
(gr.)
12925
12584
12628
-
Peso
Seco
Final
(gr.)
Densidad
Máxima
(gr./cm³)
4606
4265
4309
4602
2,164
2,222
2,212
2,229
143
144
Granulometría
(Manual de Carreteras, Volumen N° 8, Sección 8.102.1)
Fecha: 23 de Septiembre del 2008.
Muestra: 2.
Peso Total de la Muestra: 16.106 gr.
Tamaño Máximo Absoluto de la Muestra: 40 mm.
Peso Sobretamaño: No hay.
Porcentaje Sobretamaño: No hay.
Granulometría - Fracción Mayor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material mayor a 5 mm.:
Peso Seco Inicial Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm. (Tamizado):
Porcentaje de diferencia arrojada:
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
N° 4
Abertura
(mm.)
80
63
50
40
25
20
10
5
Residuos
Peso
Retenido (g. )
890
555
1680
1901
26
0,5 %
5.061
5.053
5.052
0,02%
% Retenido
% Que Pasa
0
0
0
0
5,6
3,5
10,5
11,9
0,2
100
100
100
100
94
91
80
69
Granulometría - Fracción Menor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material menor a 5 mm.:
Peso Seco Inicial Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm.:
Peso Seco Cuarteo Lavado Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm. (Tamizado):
Factor de Corrección:
Porcentaje de diferencia arrojada:
Tamiz N°
Abertura
(mm.)
N° 10
2
N° 40
0,5
N° 200
0,08
Residuos
Peso
Retenido (g. )
109,0
251,8
119,2
5,0
3%
10.888
542,0
485,2
485,1
0,125
0,02%
% Retenido
% Que Pasa
13,6
31,4
14,9
0,63
54,9
23,5
8,6
140
141
Determinación de la Compactación del Proctor Modificado
(NCh1726.Of80)
Fecha: 25 de Septiembre 2008.
Muestra: 2.
Preparación de Muestras (Reemplazo)
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
4
Abertura (mm.)
80
63
50
40
25
20
10
5
% Que Pasa
100
94
91
80
69
Factor de Corrección
100% Que Pasa - % Que Pasa N° 4 =
3/4" - % Que Pasa N° 4 =
F.C. =
31,51
22,45
1,404
Se llenarán 5 recipientes con 6 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 887 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1004 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 4109 grs. será de material que pasa N° 4.
Determinación de la Densidad Húmeda del Suelo Compactado
Peso de Muestra de Ensayo: 6 kgs.
Peso de Molde Proctor: 2834 grs.
Volumen de Molde Proctor: 2128 cm³
Molde (N°)
Humedad
Preparación
(w%)
Cantidad
de Agua
(cm³)
1
1
1
1
1
4
6
8
10
12
240
360
480
600
720
Peso
Recip. +
Suelo
Húmedo
(gr.)
7367
7545
7758
7851
7826
Suelo
Húmedo
(gr.)
Densidad
Húmeda
(gr./cm³)
4533
4711
4924
5017
4992
2,130
2,214
2,314
2,358
2,346
144
Tabla Relación de Humedad / Densidad - Ensayo Proctor Modificado
Peso
Peso
Peso de
Recipiente
Humedad
Peso
Recipiente + Recipiente
Suelo
(N°)
Preparación Recipiente
Suelo
+ Suelo
Húmedo
(w%)
(gr.)
Húmedo(gr.) Seco (gr.)
(gr.)
2
11
5
13
18
25
17
6
20
10
4
4
6
6
8
8
10
10
12
12
349,15
356,84
371,75
366,52
355,26
345,10
348,88
366,94
342,64
326,23
⎡
⎤
γ H = ⎢W H ⎥
⎢⎣ V M ⎥⎦
904,75
931,24
1063,48
1025,54
1040,00
1058,44
1073,97
1035,56
1062,87
1064,72
893,95
919,95
1037,76
1001,51
1003,30
1019,59
1026,22
988,66
1006,47
1006,33
⎡ γ
⎤
H
γ D = ⎢⎢ (1 + W %)⎥⎥
⎣
⎦
555,6
574,4
691,73
659,02
684,74
713,34
725,09
668,62
720,24
738,49
Peso
de
Suelo
Seco
(gr.)
544,8
563,11
666,01
634,29
648,04
674,49
677,34
621,72
663,84
680,1
Peso
Densidad
de
w%
w%
Seca
Agua Real
Real
Real
(gr.)
Ponderada (gr./cm³)
10,8
11,29
25,72
24,03
36,7
38,85
47,75
46,9
56,4
58,39
2,0
2,0
3,9
3,8
5,7
5,8
7,0
7,5
8,5
8,6
2,0
2,089
3,8
2,132
5,7
2,189
7,3
2,197
8,5
2,161
⎡
⎤
W % = ⎢W W ⎥
⎢⎣W S ⎥⎦
γH: Densidad Suelo Húmeda.
γD: Densidad Suelo Seca.
WH: Peso Suelo Húmedo.
WS: Peso Suelo Seco.
WW: Peso de Agua.
VM: Volumen de Molde Proctor.
W%: Contenido de Agua o Humedad.
145
146
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 18 de Octubre 2008.
Muestra: 3 – 1.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1488 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1549 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3963 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
16
8
4745
2118
13047
4422
3880
2,088
2,28
13
4
4707
2123
13039
4447
3885
2,115
2,29
12
0
4705
2123
11593
4108
2780
1,935
2,13
13444
4819
13408
4816
12005
4520
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
154
3. Datos de Ensayo
Molde N°: 16
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
4
1
60
0,050
16
3
90
0,075
34
6
120
0,100
73
13
150
0,125
128
23
180
0,150
195
35
210
0,175
253
46
240
0,200
334
60
270
0,225
397
71
300
0,250
440
79
330
0,275
360
0,300
390
0,325
420
0,350
Molde N°: 13
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
16
3
54
10
104
19
173
31
246
44
323
58
392
71
469
84
543
Molde N°: 12
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
4
1
9
2
15
3
23
4
33
6
46
8
57
11
73
13
80
15
94
17
104
19
119
22
130
24
155
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 19 de Octubre 2008.
Muestra: 3 – 2.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1488 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1549 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3963 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
11
8
4740
2123
12988
4372
3876
2,059
2,26
17
4
4746
2123
12992
4408
3838
2,076
2,26
10
0
4740
2123
12696
4110
3846
1,936
2,14
13408
4792
13392
4808
13122
4536
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
156
3. Datos de Ensayo
Molde N°: 11
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
24
5
60
0,050
80
15
90
0,075
173
31
120
0,100
264
48
150
0,125
361
65
180
0,150
437
79
210
0,175
499
90
240
0,200
270
0,225
300
0,250
330
0,275
360
0,300
390
0,325
420
0,350
Molde N°: 17
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
6
1
18
4
53
10
94
17
161
29
215
39
332
60
450
81
551
99
Molde N°: 10
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
8
2
17
3
28
5
39
7
51
9
63
12
78
14
91
17
104
19
116
21
125
23
157
Granulometría
(Manual de Carreteras, Volumen N° 8, Sección 8.102.1)
Fecha: 14 de Octubre del 2008.
Muestra: 3.
Peso Total de la Muestra: 13.459 gr.
Tamaño Máximo Absoluto de la Muestra: 50 mm.
Peso Sobretamaño: No hay.
Porcentaje Sobretamaño: No hay.
Granulometría - Fracción Mayor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material mayor a 5 mm.:
Peso Seco Inicial Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm. (Tamizado):
Porcentaje de diferencia arrojada:
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
N° 4
Abertura
(mm.)
80
63
50
40
25
20
10
5
Residuos
Peso
Retenido (g. )
274,3
402,6
597,5
2235
2327,9
35,9
0,5 %
5.878
5.874
5.873
0,01%
% Retenido
% Que Pasa
0
0
0
2
3
4,4
16,6
17,3
0,27
100
100
100
98
95
91
74
57
Granulometría - Fracción Menor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material menor a 5 mm.:
Peso Seco Inicial Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm.:
Peso Seco Cuarteo Lavado Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm. (Tamizado):
Factor de Corrección:
Porcentaje de diferencia arrojada:
Tamiz N°
Abertura
(mm.)
N° 10
2
N° 40
0,5
N° 200
0,08
Residuos
Peso
Retenido (g. )
107,8
290,4
139,4
0,8
3%
7.575
551,9
539,1
538,5
0,1
0,12%
% Retenido
% Que Pasa
10,9
29,6
14,2
0,09
45,6
16,0
1,8
149
150
Determinación de la Compactación del Proctor Modificado
(NCh1726.Of80)
Fecha: 16 de Octubre 2008.
Muestra: 3.
Preparación de Muestras (Reemplazo)
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
4
Abertura (mm.)
80
63
50
40
25
20
10
5
% Que Pasa
100
98
95
91
74
57
Factor de Corrección
100% Que Pasa - % Que Pasa N° 4 =
3/4" - % Que Pasa N° 4 =
F.C. =
43,39
33,92
1,279
Se llenarán 5 recipientes con 6 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1276 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1328 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3397 grs. será de material que pasa N° 4.
Determinación de la Densidad Húmeda del Suelo Compactado
Peso de Muestra de Ensayo: 6 kgs.
Peso de Molde Proctor: 2834 grs.
Volumen de Molde Proctor: 2128 cm³
Molde (N°)
Humedad
Preparación
(w%)
Cantidad
de Agua
(cm³)
1
1
1
1
1
4
6
8
10
12
240
360
480
600
720
Peso
Recip. +
Suelo
Húmedo
(gr.)
7385
7484
7565
7622
7517
Suelo
Húmedo
(gr.)
Densidad
Húmeda
(gr./cm³)
4551
4650
4731
4788
4683
2,139
2,185
2,223
2,250
2,201
150
Tabla Relación de Humedad / Densidad - Ensayo Proctor Modificado
Peso
Peso
Peso de
Recipiente
Humedad
Peso
Recipiente + Recipiente
Suelo
(N°)
Preparación Recipiente
Suelo
+ Suelo
Húmedo
(w%)
(gr.)
Húmedo(gr.) Seco (gr.)
(gr.)
5
17
12
19
9
25
2
18
14
13
4
4
6
6
8
8
10
10
12
12
334,36
348,67
355,24
325,73
361,69
371,74
342,47
356,35
361,22
258,58
⎡
⎤
γ H = ⎢W H ⎥
⎢⎣ V M ⎥⎦
992,97
1018,36
957,93
1119,92
1177,58
1134,01
1136,72
1350,74
1243,61
1007,05
970,50
996,48
928,45
1079,23
1122,88
1083,05
1079,13
1282,15
1182,40
953,14
⎡ γ
⎤
H
γ D = ⎢⎢ (1 + W %)⎥⎥
⎣
⎦
658,61
669,69
602,69
794,19
815,89
762,27
794,25
994,39
882,39
748,47
Peso
de
Suelo
Seco
(gr.)
636,14
647,81
573,21
753,50
761,19
711,31
736,66
925,80
821,18
694,56
Peso
Densidad
de
w%
w%
Seca
Agua Real
Real
Real
(gr.)
Ponderada (gr./cm³)
22,47
21,88
29,48
40,69
54,70
50,96
57,59
68,59
61,21
53,91
3,5
3,4
5,1
5,4
7,2
7,2
7,8
7,4
7,5
7,8
3,5
2,067
5,3
2,076
7,2
2,074
7,6
2,091
7,6
2,045
⎡
⎤
W % = ⎢W W ⎥
⎢⎣W S ⎥⎦
γH: Densidad Suelo Húmeda.
γD: Densidad Suelo Seca.
WH: Peso Suelo Húmedo.
WS: Peso Suelo Seco.
WW: Peso de Agua.
VM: Volumen de Molde Proctor.
W%: Contenido de Agua o Humedad.
151
152
Determinación de la Compactación del Proctor Modificado
(NCh1726.Of80)
Fecha: 17 de Octubre 2008.
Muestra: 3.
Preparación de Muestras (Reemplazo)
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
4
Abertura (mm.)
80
63
50
40
25
20
10
5
% Que Pasa
100
98
95
91
74
57
Factor de Corrección
100% Que Pasa - % Que Pasa N° 4 =
3/4" - % Que Pasa N° 4 =
F.C. =
43,39
33,92
1,279
Se llenarán 5 recipientes con 6 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1276 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1328 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3397 grs. será de material que pasa N° 4.
Determinación de la Densidad Húmeda del Suelo Compactado
Peso de Muestra de Ensayo: 6 kgs.
Peso de Molde Proctor: 2834 grs.
Volumen de Molde Proctor: 2128 cm³
Molde (N°)
Humedad
Preparación
(w%)
Cantidad
de Agua
(cm³)
1
1
1
1
1
4
6
8
10
12
240
360
480
600
720
Peso
Recip. +
Suelo
Húmedo
(gr.)
7396
7488
7615
7642
7660
Suelo
Húmedo
(gr.)
Densidad
Húmeda
(gr./cm³)
4562
4654
4781
4808
4826
2,144
2,187
2,247
2,259
2,268
152
Tabla Relación de Humedad / Densidad - Ensayo Proctor Modificado
Peso
Peso
Peso de
Recipiente
Humedad
Peso
Recipiente + Recipiente
Suelo
(N°)
Preparación Recipiente
Suelo
+ Suelo
Húmedo
(w%)
(gr.)
Húmedo(gr.) Seco (gr.)
(gr.)
6
20
12
4
25
13
14
17
22
15
4
4
6
6
8
8
10
10
12
12
344,8
355,37
355,2
350,6
371,72
358,53
361,19
348,61
366,41
352,27
⎡
⎤
γ H = ⎢W H ⎥
⎢⎣ V M ⎥⎦
1191,44
1003,25
1162,80
1344,93
1319,49
1144,65
1128,49
1326,29
1170,49
1172,40
1160,85
979,94
1115,75
1288,54
1256,94
1091,90
1074,45
1260,58
1109,76
1112,56
⎡ γ
⎤
H
γ D = ⎢⎢ (1 + W %)⎥⎥
⎣
⎦
846,64
647,88
807,60
994,33
947,77
786,12
767,30
977,68
804,08
820,13
Peso
de
Suelo
Seco
(gr.)
816,05
624,57
760,55
937,94
885,22
733,37
713,26
911,97
743,35
760,29
Peso
Densidad
de
w%
w%
Seca
Agua Real
Real
Real
(gr.)
Ponderada (gr./cm³)
30,59
23,31
47,05
56,39
62,55
52,75
54,04
65,71
60,73
59,84
3,7
3,7
6,2
6,0
7,1
7,2
7,6
7,2
8,2
7,9
3,7
2,067
6,1
2,061
7,1
2,097
7,4
2,104
8,0
2,099
⎡
⎤
W % = ⎢W W ⎥
⎢⎣W S ⎥⎦
γH: Densidad Suelo Húmeda.
γD: Densidad Suelo Seca.
WH: Peso Suelo Húmedo.
WS: Peso Suelo Seco.
WW: Peso de Agua.
VM: Volumen de Molde Proctor.
W%: Contenido de Agua o Humedad.
153
154
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 14 de Noviembre 2008.
Muestra: 4 – 1.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1515 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1705 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3780 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
17
8
4746
2123
12706
4122
3838
1,942
2,10
16
4
4745
2118
12813
4188
3880
1,977
2,15
12
0
4705
2123
11459
3977
2777
1,873
2,03
13041
4457
13173
4548
11799
4317
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
161
3. Datos de Ensayo
Molde N°: 17
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
24
5
60
0,050
53
10
90
0,075
86
16
120
0,100
122
22
150
0,125
159
29
180
0,150
202
37
210
0,175
239
43
240
0,200
271
49
270
0,225
310
56
300
0,250
344
62
330
0,275
380
68
360
0,300
390
0,325
420
0,350
Molde N°: 16
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
5
1
17
3
42
8
81
15
133
24
183
33
240
43
290
52
330
59
365
66
400
72
Molde N°: 12
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
6
1
14
3
26
5
37
7
52
10
66
12
79
14
92
17
107
19
120
22
131
24
139
25
162
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 14 de Noviembre 2008.
Muestra: 4 – 2.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1515 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1705 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3780 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
10
8
4740
2123
12739
4161
3838
1,960
2,12
11
4
4740
2123
12860
4244
3876
1,999
2,14
18
0
4735
2128
12549
3903
3911
1,834
1,99
13089
4511
13164
4548
12874
4228
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
163
3. Datos de Ensayo
Molde N°: 10
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
2
1
60
0,050
7
2
90
0,075
14
3
120
0,100
23
4
150
0,125
38
7
180
0,150
57
11
210
0,175
79
14
240
0,200
102
19
270
0,225
128
23
300
0,250
145
26
330
0,275
168
30
360
0,300
190
34
390
0,325
213
38
420
0,350
236
43
Molde N°: 11
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
7
2
28
5
67
12
133
24
214
39
292
53
358
64
418
75
477
86
Molde N°: 18
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
4
1
9
2
15
3
26
5
39
7
53
10
69
13
87
16
100
18
111
20
125
23
139
25
164
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 17 de Noviembre 2008.
Muestra: 4 – 3.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1515 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1705 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3780 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
17
8
4746
2123
12811
4227
3838
1,991
2,14
16
4
4745
2118
12885
4280
3860
2,011
2,15
12
0
4705
2123
12612
4027
3880
1,897
1,99
13119
4535
13176
4571
12820
4235
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
165
3. Datos de Ensayo
Molde N°: 17
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
10
2
60
0,050
34
6
90
0,075
77
14
120
0,100
139
25
150
0,125
209
38
180
0,150
273
49
210
0,175
333
60
240
0,200
387
70
270
0,225
427
77
300
0,250
330
0,275
360
0,300
390
0,325
420
0,350
Molde N°: 16
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
29
5
77
14
140
25
228
41
298
54
361
65
403
73
467
84
514
92
Molde N°: 12
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
2
1
5
1
13
3
23
4
35
7
46
9
57
11
71
13
84
15
166
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 17 de noviembre 2008.
Muestra: 4 – 4.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1515 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1705 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3780 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa
Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
17
8
4746
2123
12706
11
6
4740
2123
12765
16
4
4745
2118
12813
10
2
4740
2123
12774
12
0
4705
2123
11459
4122
3838
1,942
2,10
4149
3876
1,954
2,11
4188
3880
1,977
2,15
4196
3838
1,976
2,13
3977
2777
1,873
2,03
13041
13091
13173
13091
11799
4457
4475
4548
4513
4317
2. Después de Inmersión
Peso Molde y Suelo y Placa Base
(gr.)
Peso Suelo Húmedo (gr.)
167
3. Datos de Ensayo
Molde N°: 17
Molde N°: 11
Molde N°: 16
Molde N°: 10
Molde N°: 12
Tiempo Penetración
Tiempo (min.): 8
Tiempo (min.): 6
Tiempo (min.): 4
Tiempo (min.): 2
Tiempo (min.): 0
(seg.)
(plg.)
Lectura
C. C.
Lectura
C. C.
Lectura
C. C.
Lectura
C. C.
Lectura
C. C.
Dial
(kgf./cm²)
Dial
(kgf./cm²)
Dial
(kgf./cm²)
Dial
(kgf./cm²)
Dial
(kgf./cm²)
30
0,025
24
5
1
1
5
1
6
1
6
1
60
0,050
53
10
7
2
17
3
20
4
14
3
90
0,075
86
16
21
4
42
8
49
9
26
5
120
0,100
122
22
46
9
81
15
89
16
37
7
150
0,125
159
29
83
15
133
24
144
26
52
10
180
0,150
202
37
132
24
183
33
195
35
66
12
210
0,175
239
43
183
33
240
43
240
43
79
14
240
0,200
271
49
233
42
290
52
281
51
92
17
270
0,225
310
56
279
50
330
59
320
58
107
19
300
0,250
344
62
321
58
365
65
345
62
120
22
330
0,275
380
68
358
64
400
72
370
67
131
24
168
Granulometría
(Manual de Carreteras, Volumen N° 8, Sección 8.102.1)
Fecha: 12 de Noviembre del 2008.
Muestra: 4.
Peso Total de la Muestra: 16.000 gr.
Tamaño Máximo Absoluto de la Muestra: 40 mm.
Peso Sobretamaño: No hay.
Porcentaje Sobretamaño: No hay.
Granulometría - Fracción Mayor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material mayor a 5 mm.:
Peso Seco Inicial Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm.:
Peso Seco Lavado Retenido en 5 mm. (Tamizado):
Porcentaje de diferencia arrojada:
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
N° 4
Abertura
(mm.)
80
63
50
40
25
20
10
5
Residuos
Peso
Retenido (g. )
2560
2080
1280
1440
0,5 %
7.360
7.360
7.360
0,01%
% Retenido
% Que Pasa
0
0
0
0
16
13
8
9
100
100
100
100
84
71
63
54
Granulometría - Fracción Menor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material menor a 5 mm.:
Peso Seco Inicial Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm.:
Peso Seco Cuarteo Lavado Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm. (Tamizado):
Factor de Corrección:
Porcentaje de diferencia arrojada:
Tamiz N°
Abertura
(mm.)
N° 10
2
N° 40
0,5
N° 200
0,08
Residuos
Peso
Retenido (g. )
231,3
331,4
38,2
3%
8.640
615,3
604,2
600
0,088
0,7%
% Retenido
% Que Pasa
20,3
29,1
3,4
33,7
4,6
1,3
158
159
Determinación de la Compactación del Proctor Modificado
(NCh1726.Of80)
Fecha: 13 de Noviembre 2008.
Muestra: 4.
Preparación de Muestras (Reemplazo)
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
4
Abertura (mm.)
80
63
50
40
25
20
10
5
% Que Pasa
100
84
71
63
54
Factor de Corrección
100% Que Pasa - % Que Pasa N° 4 =
3/4" - % Que Pasa N° 4 =
F.C. =
46
17
2,706
Se llenarán 5 recipientes con 6 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 1299 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 1461 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 3240 grs. será de material que pasa N° 4.
Determinación de la Densidad Húmeda del Suelo Compactado
Peso de Muestra de Ensayo: 6 kgs.
Peso de Molde Proctor: 2834 grs.
Volumen de Molde Proctor: 2128 cm³
Molde (N°)
Humedad
Preparación
(w%)
Cantidad
de Agua
(cm³)
1
1
1
1
1
4
6
8
10
12
240
360
480
600
720
Peso
Recip. +
Suelo
Húmedo
(gr.)
10959
11007
11095
11080
11108
Suelo
Húmedo
(gr.)
Densidad
Húmeda
(gr./cm³)
4388
4436
4524
4509
4537
2,062
2,085
2,126
2,119
2,132
159
Tabla Relación de Humedad / Densidad - Ensayo Proctor Modificado
Peso
Peso
Peso de
Recipiente
Humedad
Peso
Recipiente + Recipiente
Suelo
(N°)
Preparación Recipiente
Suelo
+ Suelo
Húmedo
(w%)
(gr.)
Húmedo(gr.) Seco (gr.)
(gr.)
22
23
8
4
24
12
15
17
9
14
4
4
6
6
8
8
10
10
12
12
366,38
366,25
358,5
350,46
376,1
354,79
351,87
348,62
361,56
360,88
⎡
⎤
γ H = ⎢W H ⎥
⎢⎣ V M ⎥⎦
1357,5
1467,72
1639,36
1529,63
1512,26
1501,37
1349,8
1421,03
1639
1672,21
1321,19
1429,07
1573,65
1463,05
1439,07
1440,85
1297,49
1345,97
1540,64
1591,12
⎡ γ
⎤
H
γ D = ⎢⎢ (1 + W %)⎥⎥
⎣
⎦
991,12
1101,47
1280,86
1179,17
1136,16
1146,58
997,93
1072,41
1277,44
1311,33
Peso
de
Suelo
Seco
(gr.)
954,81
1062,82
1215,15
1112,59
1062,97
1086,06
945,62
997,35
1179,08
1230,24
Peso
Densidad
de
w%
w%
Seca
Agua Real
Real
Real
(gr.)
Ponderada (gr./cm³)
36,31
38,65
65,71
66,58
73,19
60,52
52,31
75,06
98,36
81,09
3,8
3,6
5,4
6,0
6,9
5,6
5,5
7,5
8,3
6,6
3,7
1,988
5,7
1,972
6,2
2,001
6,5
1,989
7,5
1,984
⎡
⎤
W % = ⎢W W ⎥
⎢⎣W S ⎥⎦
γH: Densidad Suelo Húmeda.
γD: Densidad Suelo Seca.
WH: Peso Suelo Húmedo.
WS: Peso Suelo Seco.
WW: Peso de Agua.
VM: Volumen de Molde Proctor.
W%: Contenido de Agua o Humedad.
160
161
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 20 de Noviembre 2008.
Muestra: 5 – 1.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 0 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 0 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 7000 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
16
8
4745
2118
12613
3988
3880
1,883
2,106
17
4
4746
2123
12597
4013
3838
1,890
2,098
12
0
4705
2123
12203
3638
3860
1,714
1,94
13086
4461
13038
4454
12684
4119
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
172
3. Datos de Ensayo
Molde N°: 16
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
11
2
60
0,050
26
5
90
0,075
49
9
120
0,100
77
14
150
0,125
108
20
180
0,150
141
26
210
0,175
171
31
240
0,200
206
37
270
0,225
235
42
300
0,250
257
46
330
0,275
279
50
360
0,300
300
54
390
0,325
420
0,350
Molde N°: 17
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
6
1
23
4
54
10
101
18
151
27
197
36
242
44
281
51
319
57
351
63
Molde N°: 12
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
3
1
7
2
13
3
21
4
28
5
36
7
43
8
50
9
54
10
58
11
62
11
65
12
173
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 20 de Noviembre 2008.
Muestra: 5 – 2.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 0 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 0 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 7000 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
11
8
4740
2123
12624
4008
3876
1,888
2,09
10
4
4740
2123
12606
4028
3838
1,897
2,11
18
0
4735
2118
11374
3862
2777
1,823
2,06
13050
4434
13060
4482
11867
4355
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
174
3. Datos de Ensayo
Molde N°: 11
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
10
2
60
0,050
37
7
90
0,075
72
13
120
0,100
118
21
150
0,125
171
31
180
0,150
221
40
210
0,175
263
47
240
0,200
305
55
270
0,225
340
61
300
0,250
373
67
330
0,275
392
71
360
0,300
410
74
390
0,325
420
0,350
Molde N°: 10
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
10
2
33
6
69
13
116
21
169
31
223
40
272
49
311
56
349
63
387
70
413
74
441
79
Molde N°: 18
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
2
1
6
1
12
2
18
4
24
5
31
6
38
7
44
8
50
9
55
10
59
11
64
12
175
Metodología Propuesta para obtener el C. B. R. a partir de la Densidad Relativa
Fecha: 23 de Noviembre 2008.
Muestra: 5 – 3.
Preparación de Muestras (Reemplazo)
Se llenarán 3 recipientes con 7 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 0 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 0 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 7000 grs. será de material que pasa N° 4.
1. Antes de Inmersión
Molde N°
Tiempo (Minutos)
Peso Molde (gr.)
Volumen Molde (cm³)
Peso Molde y Suelo Seco y Placa Base (gr.)
Peso Suelo Seco (gr.)
Peso Placa Base (gr.)
Densidad Seca (gr./cm³)
Densidad Húmeda (gr./cm³)
11
8
4740
2123
12608
3992
3876
1,88
2,09
18
4
4735
2118
12669
4023
3911
1,899
2,10
10
0
4740
2123
12271
3693
3838
1,74
1,95
13045
4429
13103
4457
12723
4145
2. Después de Inmersión
Peso Molde y Suelo y Placa Base (gr.)
Peso Suelo Húmedo (gr.)
176
3. Datos de Ensayo
Molde N°: 11
Tiempo Penetración Tiempo (min.): 8
(seg.)
(plg.)
Lectura C. C.
Dial
(kgf./cm²)
30
0,025
4
1
60
0,050
15
3
90
0,075
39
7
120
0,100
76
14
150
0,125
121
22
180
0,150
166
30
210
0,175
210
38
240
0,200
254
46
270
0,225
293
53
300
0,250
326
59
330
0,275
360
0,300
390
0,325
420
0,350
Molde N°: 18
Tiempo (min.): 4
Lectura C. C.
Dial
(kgf./cm²)
10
2
34
6
75
14
135
24
179
32
231
42
280
51
323
58
361
65
399
72
Molde N°: 10
Tiempo (min.): 0
Lectura C. C.
Dial
(kgf./cm²)
4
1
10
2
17
3
26
5
35
7
44
8
51
9
61
11
68
12
75
14
177
Granulometría
(Manual de Carreteras, Volumen N° 8, Sección 8.102.1)
Fecha: 15 de Noviembre del 2008.
Muestra: 5.
Peso Total de la Muestra: 615 gr.
Tamaño Máximo Absoluto de la Muestra: 5 mm.
Peso Sobretamaño: No hay.
Porcentaje Sobretamaño: No hay.
Granulometría - Fracción Menor Tamiz 5 mm.
Porcentaje de diferencia aceptada para material menor a 5 mm.:
Peso Seco Inicial Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm.:
Peso Seco Cuarteo Lavado Pasa en 5 mm.:
Peso Seco Cuarteo Pasa en 5 mm. (Tamizado):
Porcentaje de diferencia arrojada:
Tamiz N°
Abertura
(mm.)
N°4
5
N° 10
2
N° 40
0,5
N° 200
0,08
Residuos
Peso
Retenido (g. )
0
231
341
28
3%
615
604
600
0,70
0,7%
% Retenido
% Que Pasa
0
37,6
55,4
4,6
100
62,4
7,0
2,4
169
Determinación de la Compactación del Proctor Modificado
(NCh1726.Of80)
Fecha: 16 de Noviembre 2008.
Muestra: 5.
Preparación de Muestras (Reemplazo)
Tamiz N°
3"
2 1/2"
2"
1 1/2"
1"
3/4"
3/8"
4
Abertura (mm.)
80
63
50
40
25
20
10
5
% Que Pasa
100
Factor de Corrección
100% Que Pasa - % Que Pasa N° 4 =
3/4" - % Que Pasa N° 4 =
F.C. =
0
0
0
Se llenarán 5 recipientes con 6 kgs. de material pétreo distribuidos de la siguiente
manera:
¾ 0 grs. será de material que pasa 3/4" y queda retenido en 3/8".
¾ 0 grs. será de material que pasa 3/8" y queda retenido en N° 4.
¾ 6000 grs. será de material que pasa N° 4.
Determinación de la Densidad Húmeda del Suelo Compactado
Peso de Muestra de Ensayo: 6 kgs.
Peso de Molde Proctor: 2834 grs.
Volumen de Molde Proctor: 2128 cm³
Molde (N°)
Humedad
Preparación
(w%)
Cantidad
de Agua
(cm³)
1
1
1
1
1
4
6
8
10
12
240
360
480
600
720
Peso
Recip. +
Suelo
Húmedo
(gr.)
10672
10726
10793
10905
10927
Suelo
Húmedo
(gr.)
Densidad
Húmeda
(gr./cm³)
4101
4155
4222
4334
4356
1,927
1,953
1,984
2,037
2,047
170
Tabla Relación de Humedad / Densidad - Ensayo Proctor Modificado
Peso
Peso
Peso de
Recipiente
Humedad
Peso
Recipiente + Recipiente
Suelo
(N°)
Preparación Recipiente
Suelo
+ Suelo
Húmedo
(w%)
(gr.)
Húmedo(gr.) Seco (gr.)
(gr.)
9
12
17
14
3
21
23
25
16
13
4
4
6
6
8
8
10
10
12
12
361,41
354,54
348,66
360,67
347,07
373,08
366,37
370,36
348,96
358,48
⎡
⎤
γ H = ⎢W H ⎥
⎢⎣ V M ⎥⎦
1228,66
1253,34
1105,7
1206,13
1266,62
1214,36
1034,01
1152,95
1266,69
1160,8
1197,88
1221
1062,38
1161,74
1215,24
1161,13
988,81
1106,32
1204,15
1097,18
⎡ γ
⎤
H
γ D = ⎢⎢ (1 + W %)⎥⎥
⎣
⎦
867,25
898,8
757,04
845,46
919,55
841,28
667,64
782,59
917,74
802,32
Peso
de
Suelo
Seco
(gr.)
836,47
866,46
713,72
801,07
868,17
788,05
622,44
735,96
855,2
738,7
Peso
Densidad
de
w%
w%
Seca
Agua Real
Real
Real
(gr.)
Ponderada (gr./cm³)
30,78
32,34
43,32
44,39
51,38
53,23
45,2
46,63
62,54
63,62
3,7
3,7
6,1
5,5
5,9
6,8
7,3
6,3
7,3
8,6
3,7
1,858
5,8
1,845
6,3
1,866
6,8
1,907
8
1,896
⎡
⎤
W % = ⎢W W ⎥
⎢⎣W S ⎥⎦
γH: Densidad Suelo Húmeda.
γD: Densidad Suelo Seca.
WH: Peso Suelo Húmedo.
WS: Peso Suelo Seco.
WW: Peso de Agua.
VM: Volumen de Molde Proctor.
W%: Contenido de Agua o Humedad.
171
172
Determinación de Correlación de Ambos Métodos
Determinación de las Densidades Máximas y Mínimas y Cálculo de la Densidad Relativa en Suelos No Cohesivos.
(NCh1726.Of80)
Fecha: 27 de Noviembre 2008.
Muestra: Comparación
Volumen del Molde: 2830 cm³.
Peso del Molde: 8.319 gr.
1. Densidad Mínima
N°
1
2
3
4
5
Peso Molde + Suelo (gr.)
13020
13018
13007
13012
13016
Peso Suelo (gr.)
4701
4699
4688
4693
4697
Densidad Mínima (gr./cm³)
1,661
1,660
1,657
1,658
1,660
178
2. Densidad Máxima
Altura del Molde: 15,15 cm.
Área de Molde: 181,45 cm².
Espesor Placa: 1,24 cm.
Descenso de Placa (cm.)
Tiempo
(min.)
4
6
8
Dh1
Dh2
Dh3
Dh4
Dh
Promedio
(cm.)
1,91
1,83
1,72
2,08
1,86
1,65
1,91
1,76
1,78
1,98
1,81
1,73
1,97
1,82
1,72
Método
Seco
Seco
Seco
Altura
Final
(cm.)
Volumen
Final
(cm.)
11,94
12,10
12,19
2166,63
2194,76
2212,00
Peso
Seco
Final +
Molde
(gr.)
13064
13077
13221
Peso
Seco
Final
(gr.)
Densidad
Máxima
(gr./cm³)
4746
4758
4902
2,190
2,168
2,216
179
Determinación de las Densidades Máximas y Mínimas con Molde C.B.R.
1. Densidades
Volumen del Molde: 2123 cm3
Peso del Molde: 4740 gr.
Peso de D.E y P.B: 11076 gr.
Tiempo
(min.)
0
4
6
8
Método
Seco
Seco
Seco
Seco
Peso (suelo +
D.E+P.B + Molde) gr.
19386
20405
20415
20263
Peso Seco Final (gr.)
3570
4589
4599
4447
Densidad Máxima
(gr./cm3)
1,682
2,162
2,166
2,095
180
Anexo V:
Certificados
181
182
183
184
185
186
187
188
189
190
Descargar