BIR VOL III BQ 2015

Anuncio
Manual bIR
VOLUMEN III:
BIOQUÍMICA GENERAL Y
CLÍNICA
Autoras: María del Carmen Enjo Mallou
Hélade Sotomayor Pérez
Dra. Idalmys Perdomo López
Editora: Dra. Iliana Perdomo López
Manual BIR.
VOLUMEN III: BIOQUÍMICA GENERAL
Y CLÍNICA
Autoras: María del Carmen Enjo Mallou
Hélade Sotomayor Pérez
Dra. Idalmys Perdomo López
© Iliana Perdomo López (editora).
Depósito legal: C 611-2012
Reservado todos los derechos. Está prohibido, bajo las sanciones penales y el resarcimiento civil
previsto en las leyes, reproducir, registrar o transmitir esta publicación, íntegra o parcialmente por
cualquier sistema de recuperación y por cualquier medio, sea mecánico, electrónico, magnético, por
fotocopia o por cualquier otro, sin la autorización previa por escrito de la editora.
ÍNDICE BIOQUÍMICA GENERAL Y CLÍNICA
UNIDAD I: BIOQUÍMICA GENERAL
1
1.- INTRODUCCIÓN. COMPOSICIÓN DE LOS SERES VIVOS
1
2.- GLÚCIDOS
7
2.1- OSAS O MONOSACÁRIDOS
2.1.1.- ACTIVIDAD ÓPTICA
8
9
2.1.2.- ESTRUCTURA CÍCLICA DE LOS MONOSACÁRIDOS
12
2. 1.3.- ISÓMEROS CONFORMACIONALES
14
2. 1.4.- PROPIEDADES GENERALES DE LAS OSAS
15
2. 1.5.- DERIVADOS DE MONOSACÁRIDOS
16
2.2- OLIGOSACÁRIDOS: DISACÁRIDOS
18
2.2.1.-CARACTERÍSTICAS DEL ENLACE GLUCOSÍDICO
19
2.2.2.-TIPOS DE ENLACE GLUCOSÍDICO
19
2.2.3.-OLIGOSACÁRIDOS MÁS IMPORTANTES
20
2.3- POLISACARIDOS
20
2.3.1.- HOMOPOLISACÁRIDOS
20
2.3.2.- HETEROPOLISACÁRIDOS
23
2.4- HETERÓSIDOS
26
2.4.1.- PROTEOGLUCANOS
26
2.4.2.- GLUCOPROTEÍNAS
28
2.4.3.- OTROS HETERÓSIDOS
29
3.- LÍPIDOS
31
3.1- LÍPIDOS SAPONIFICABLES SIMPLES
32
3.1.1.- ÁCIDOS GRASOS
32
3.1.2.- ACILGLICÉRIDOS
37
3.1.3.- CÉRIDOS
39
3.1.2.- ESTÉRIDOS
39
3.2- LÍPIDOS INSAPONIFICABLES COMPLEJOS
40
3.2.1.- FOSFOGLICÉRIDOS O GLICEROFOSFOLÍPIDOS
40
3.2.2.-ESFINGOLÍPIDOS
43
3.3- LÍPIDOS INSAPONIFICABLES
45
3.3.1.-TERPENOS
46
3.3.2.-ESTEROIDES
46
4.- AMINOÁCIDOS, PÉPTIDOS Y PROTEINAS
4.1- AMINOÁCIDOS
4.1.1.- CARÁCTERISTICAS ESTRUCTURALES
49
49
49
4.1.2.- ESTEREOQUIMICA DE LOS AMINOACIDOS
49
4.1.3.- CLASIFICACIÓN
49
4.1.4.- PROPIEDADES FISICAS
52
4.1.5.- IONIZACIÓN
52
4.1.6.- REACCIONES DE IDENTIFICACION DE AMINOACIDOS
54
4.2- PÉPTIDOS
55
4.2.1.- EL ENLACE PEPTIDICO
55
4.2.2.- CARACTERISTICAS DEL ENLACE PEPTÍDICO
55
4.2.3.- CARACTERIZACIÓN DE PÉPTIDOS Y PROTEINAS
56
4.2.4.- PÉPTIDOS DE IMPORTANCIA BIOLÓGICA
57
4.3- PROTEÍNAS
4.3.1.- CLASIFICACIÓN DE LAS PROTEÍNAS
57
57
4.3.1.1. ATENDIENDO A SU COMPOSICIÓN
58
4.3.1.2. ATENDIENDO A SU FORMA
58
4.3.1.3. ATENDIENDO A SU SOLUBILIDAD
59
4.3.1.4. ATENDIENDO A SU FUNCION BIOLÓGICA
59
4.3.2.- ESTRUCTURA DE LAS PROTEÍNAS
60
4.3.2.1. ESTRUCTURA PRIMARIA
60
4.3.2.2. ESTRUCTURA SECUNDARIA
60
4.3.2.3. ESTRUCTURA TERCIARIA
64
4.3.2.4. ESTRUCTURA CUATERNARIA
65
4.4- ENZIMAS
5.- COMPOSICIÓN, ESTRUCTURA Y FUNCIONES DE LAS BIOMEMBRANAS
77
91
5.1- LÍPIDOS DE MEMBRANAS
92
5.2- PROTEÍNAS DE MEMBRANAS
98
5.3- TRANSPORTES A TRAVÉS DE MEMBRANAS
100
6.- INTRODUCCIÓN AL METABOLISMO.
109
7.- GLUCOLISIS
117
8.- FERMENTACIONES
127
9.- DESCARBOXILACIÓN OXIDATIVA DEL PIRUVATO
131
10.- CICLO DE KREBS
135
11.- CADENA DE TRANSPORTE ELECTRÓNICO Y FOSFORILACIÓN OXIDATIVA
141
12.- LANZADERAS
155
13.- GLUCONEOGÉNESIS
157
14.- METABOLISMO DEL GLUCÓGENO
169
15.- OTRAS RUTAS DE OXIDACIÓN DE LA GLUCOSA
185
16.- OXIDACIÓN DE ÁCIDOS GRASOS
195
17.- BIOSÍNTESIS DE LÍPIDOS
209
18.- METABOLISMO DE CUERPOS CETONICOS
225
19.- BIOSÍNTESIS DE COLESTEROL
229
20.- METABOLISMO DE LAS LIPOPROTEÍNAS
235
21.- METABOLISMO DE AMINOÁCIDOS
247
22.- METABOLISMO DE NUCLEÓTIDOS
265
23.- INTEGRACIÓN DEL METABOLISMO
279
UNIDAD II: BIOQUÍMICA CLÍNICA
289
24.- BIOQUÍMICA CLÍNICA
289
GENERALIDADES DE ANÁLISIS CLÍNICOS
289
SANGRE
293
HECES
304
ORINA
304
LÍQUIDOS ESPECIALES
306
HORMONAS
309
INFARTO AGUDO DEL MIOCARDIO
311
PRINCIPALES REACTANTES DE FASE AGUDA
312
MARCADORES TUMORALES
312
DIAGNÓSTICO DE LABORATORIO DE ENFERMEDADES AUTOINMUNES
313
ANEXOS
315
BIBLIOGRAFÍA
319
UNIDAD I
BIOQUÍMICA GENERAL
Bioquímica
InspiracleBIR/2015
TEMA 1. INTRODUCCIÓN. COMPOSICIÓN DE LOS SERES VIVOS.
Todos los seres vivos están constituidos, cualitativa y cuantitativamente, por los mismos
elementos químicos, aproximadamente 30, lo que confirma la idea de que la vida se ha
desarrollado sobre unos elementos concretos que poseen unas propiedades físico-químicas
acordes con los procesos químicos que se desarrollan como parte de ésta.
Se denominan bioelementos o elementos biogénicos aquellos elementos químicos que
forman parte de los seres vivos. Atendiendo a su abundancia (no importancia) se pueden
agrupar
en
tres
categorías:
mayoritarios
primarios,
mayoritarios
secundarios
y
oligoelementos.
Bioelementos mayoritarios primarios o principales: C, H, N, O.
Son los elementos más abundantes de la materia viva (constituyen más del 95 % de la masa
total). Éstos son idóneos por sus propiedades físico – químicas.
Bioelementos mayoritarios secundarios: S, P, Mg, Ca, Na, K, Cl.
Presentes en todos los seres vivos, son los llamados macrominerales o macroelementos.
MAYORITARIOS SECUNDARIOS:
Azufre
Se encuentra en los aminoácidos cisteína y metionina, así como en algunas sustancias
como el Coenzima A.
Fósforo
Forma parte de los nucleótidos, unidades estructurales de los ácidos nucleicos y algunos
de ellos con funciones específicas en el metabolismo intermediario (Ej: ATP). Forman
parte de coenzimas y otras moléculas como fosfolípidos, componentes fundamentales de
las membranas celulares. También forma parte de los fosfatos, sales minerales
abundantes en los seres vivos.
2+
Forma parte de la molécula de clorofila, ión Mg es requerido en muchas actividades
enzimáticas, fundamentalmente en muchas reacciones que implican al ATP.
Su déficit es producido por algunos estados de desnutrición, alcoholismo, algunos
Magnesio
diuréticos y la acidosis metabólica.
Su carencia produce: temblores, debilidad, arritmia, hipotensión, apoplejía (accidente
cerebrovascular), cálculos renales, etc…
Calcio
Mineral más abundante del organismo, formando parte huesos y dientes. En forma iónica
interviene en la contracción muscular, coagulación sanguínea, algunas regulaciones
hormonales y actividades enzimáticas, así como en la transmisión del impulso nervioso.
Su control homeostático se realiza a través de vitamina D y parathormona (PTH).
Su carencia produce: osteoporosis, tetania (calambres musculares), hipotensión,
depresión, entre otros síntomas. Se une a proteínas: calmodulina (fijadora de calcio, actúa
como sensora), calsecuestrina (almacenadora de calcio en el retículo sarcoplásmico,
músculo estriado) y calreticulina (similar a calsecuestrina pero en células no musculares).
Sodio
Catión extracelular más abundante; necesario para la transmisión nerviosa y la
contracción muscular; contribuye al mantenimiento del equilibrio ácido – base y
electrolítico.
Potasio
Catión intracelular más abundante; necesario para la transmisión nerviosa y la contracción
muscular; al igual que el sodio contribuye al mantenimiento del equilibrio ácido – base y
electrolítico.
Cloro
Principal anión extracelular; necesario para mantener el balance hídrico en la sangre y
1
Bioquímica
TEMA 2. GLÚCIDOS.
InspiracleBIR/2015
[p. 200, 216 (2010); 158, 209, 210 (2011); 223 (2012); 133 (2013);
191, 192 (2014)]
Los glúcidos son moléculas orgánicas caracterizadas por la presencia de cadenas
carbonadas portadoras de grupos hidroxilos y funciones aldehídicas, cetónicas, ácidas o
aminadas.
DISTRIBUCIÓN EN LA NATURALEZA
Son compuestos naturales ampliamente distribuidos:
a) Como elementos estructurales; confiriendo resistencia
Celulosa: pared celular de los vegetales
quitina: exoesqueleto de invertebrados
polisacáridos de la pared bacteriana
b) Como reserva energética
Almidón: vegetal
Glucógeno: animal
c) Como componentes de metabolitos fundamentales
Glúcidos que forman parte de la composición de ácidos nucléicos
Componentes de coenzimas
d) Como moléculas de reconocimiento y portadoras de información (los oligosacáridos
contienen una densidad de información mucho mayor que las proteínas o los ácidos
nucléicos, suponiendo un auténtico código de azúcares)
Oligosacáridos que forman parte de glucoproteínas o glucolípidos localizados en la
superficie externa de la membrana plasmática
7
InspiracleBIR/2015
Bioquímica
GLÚCIDOS
CLASIFICACIÓN
2.1.
OSAS O MONOSACÁRIDOS. [p. 208 (2009)]
-Son compuestos cuya fórmula general es *(CH2O)n, y que poseen:

(n-1) funciones alcohólicas,

Una función carbonílica
*Aunque esta es la fórmula general, no todos los compuestos la cumplen, por ejemplo, la
desoxirribosa, y otros compuestos, sin pertenecer a este grupo, como el lactato, sí la
cumplen.
-La clasificación de los monosacáridos atiende a dos criterios:

Nº de átomos de carbono; así tendremos triosas (3C), tetrosas (4C), hasta heptosas
(7C)

Naturaleza de la función carbonílica, aldosas (si poseen grupo aldehído) y cetosas (si
poseen función cetónica)
-La combinación de estos dos criterios permite caracterizar un monosacárido, así una
aldohexosa, está constituida por 6 C, 5 funciones alcohólicas y una función aldehído,
mientras una cetohexosa tendrá 6 C, 5 funciones alcohólicas y una función cetónica.
8
InspiracleBIR/2015
Bioquímica
2.2.3. Oligosacáridos más importantes
DISACÁRIDOS.
REDUCTORES
Monosacáridos Enlace
Fuente
MALTOSA
Glu + glu
α 1-4
Hidrólisis del almidón
CELOBIOSA
Glu + glu
β 1-4
Hidrólisis de la celulosa
LACTOSA
Gal + glu
Β 1-4
Componente mayoritario de la leche.
En la glándula mamaria se sintetiza
por la lactosa sintetasa
NO REDUCTORES
SACAROSA
Glu + fru
α(glu) β(fru) (1- Azúcar de caña y remolacha
2)
TREHALOSA
Glu + glu
α (1-1)
Pared celular de hongos e insectos
TRISACÁRIDOS.
Destaca la rafinosa: gal + glu + fru, alfa 1-6 y alfa 1-2
2.3.
POLISACÁRIDOS
2.3.1. HOMOPOLISACÁRIDOS (contienen el mismo tipo de azúcar).
Según su función:
De reserva.
ALMIDÓN: supone la reserva glucídica esencial en el reino vegetal. Su estructura contempla
una mezcla de dos polímeros distintos, la amilosa (30%) y la amilopectina (70%), ambos
digeridos por las α-amilasas de glándulas salivares (también llamada ptialina) y páncreas,
rindiendo como productos moléculas de maltosa y pequeños núcleos de dextrina (contienen
en su caso los puntos de ramificación)
*La elevación de esta enzima es de interés para el diagnóstico de pancreatitis aguda y
parotiditis.
- amilosa: es un polímero lineal constituido por unidades de glucosa unidas mediante enlace
(α1-4).
La cadena, de entre 200 y 3000 residuos adopta una conformación helicoidal debido a la
presencia de los enlaces alfa (facilitan la formación de gránulos). Las vueltas de espira
generadas se mantienen estabilizadas gracias a la formación de puentes de hidrógeno.
20
InspiracleBIR/2015
Bioquímica
Fuente: Fig 7-22 (pag 252) del libro “Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed.,
2006”.
3.
De
origen
animal:
los
más
importantes
son
los
glucosaminoglucanos
(mucopolisacáridos), polímeros lineales compuestos por la repetición de un disacárido,
formado generalmente por un ácido hexurónico (glucurónico, idurónico…) y una hexosamina
(N-Ac-glucosamina,
N-Ac-galactosamina…),
que
suele
estar
acetilada.
Los
glucosaminoglucanos están presentes en la matriz extracelular de los tejidos de animales
multicelulares, están interconectados con proteínas fibrosas (elastina, la fibronectina y la
minina).
24
Bioquímica
MUCOPOLISACÁRIDO
InspiracleBIR/2015
UNIDAD REPETITIVA DISACÁRIDA
LOCALIZACIÓN
FUNCIÓN ESTRUCTURAL

Elevada tendencia a la hidratación, actuando como lubricantes

Confieren viscosidad y elasticidad (conforman el cemento intercelular y son
amortiguadores)

Suelen unirse de forma covalente a proteínas (excepto el ácido hialurónico)

Compuestos sensibles al ataque por hialuronidasa (presente en
microorganismos y espermatozoides)
ÁC HIALURÓNICO
Líquido sinovial
No está sulfatado
Cordón umbilical
Humor vítreo
Cartílago
CONDROITÍN
Ligamentos
SULFATO
Tendón
Es el más abundante
Piel
Vasos
DERMATÁN SULFATO
sanguíneos
Válvulas
Córnea (queratán
QUERATÁN SULFATO
sulfato-I)
Cartílago
No
contiene
ácido
(quer.
Salufato-II)
hexurónico
25
Bioquímica
InspiracleBIR/2015
TEMA 3. LÍPIDOS [p. 217, 218, 250 (2010); 211 (2011)]
Los lípidos son compuestos orgánicos que se definen por su insolubilidad en agua y
solubilidad en disolventes polares (éter, cloroformo, benceno..), no obstante se contemplan
excepciones.
Entre las características más sobresalientes:
-
compuestos hidrofóbicos
-
no son moléculas poliméricas
-
exhiben una mayor variedad estructural
Funciones biológicas
-
energética
-
estructural
-
aislante
-
funciones especiales: Por ejemplo, los esteroides, los eicosanoides y algunos
metabolitos de los fosfolípidos funcionan como señales. Actúan como hormonas,
mediadores y segundos mensajeros. Algunos son cofactores de reacciones
enzimáticas (vit. K..). otros se utilizan como anclas para fijar las proteínas a las
membranas.
Clasificación
Ácidos grasos
Lípidos saponificables
Simples
Acilglicéridos
(C, H, O)
Céridos
Estéridos
- Contienen ácidos grasos
Otros: etólidos y eteroglicéridos
-Tras la hidrólisis alcalina se
Complejos
obtienen jabones
Fosfoacilglicéridos
Además de (C, H, O) Esfingolípidos
pueden contener N, Lipoproteínas
P, S
Lípidos insaponificables
-
No
contienen
en
estructura ácidos grasos
- Derivan del isopreno
Terpenoides
su
Esteroides
Vit. A, E, K
Ubiquinonas
Vit D
Colesterol1
Ácidos biliares
Hormonas esteroideas2
1
Las células procariotas carecen de colesterol, pero éste se encuentra en distintas cantidades en prácticamente
todas las membranas de animales, fundamentalmente mamíferos.
2
Las hormonas esteroídicas incluyen a las hormonas sexuales femeninas (estrógenos, progestágenos),
masculinas (andrógenos) y a los corticoesteroides (glucocorticoides y mineralocorticoides).
31
InspiracleBIR/2015
3.1.
3.1.1.
Bioquímica
LÍPIDOS SAPONIFICABLES SIMPLES
ÁCIDOS GRASOS [p. 247 (2009)].
Los ácidos grasos son en su mayor parte ácidos monocarboxílicos con un nº de átomos de
carbono superior o igual a 4, saturados o no, generalmente no ramificados, a veces cíclicos,
o llevando otras funciones diferentes además de la función ácido.
-
En la gran mayoría de los casos, los ácidos grasos tienen un nº par de átomos de
carbono (los de 16 y 18 carbonos son los más abundantes).
-
Los átomos de carbono se numeran empezando por el extremo carboxilo
-
Los carbonos 2 y 3 suelen llamarse alfa y beta
-
El carbono final se denomina omega
Fuente: Esquema (pag 292) del libro “Bioquímica Estructural. Editorial AC. España, 1977”
-
La nomencatura de los ácidos grasos deriva del nombre de sus hidrocarburos
parentales (terminado en –oico)
-
A nivel fisiológico pueden estar como ácidos grasos libres, no esterificados, unidos a
albúmina (poco habitual) o bien formando parte de la estructura de otros lípidos
saponificables (casi siempre por esterificación).
*El aumento de ácidos grasos libres en sangre se da en ciertas situaciones: ejercicio, diabetes,
ayuno, feocromocitoma…
Clasificación de los ácidos grasos [p. 102 (2004)].
De cadena sencilla
Saturados (Cn:0)
Los ácidos grasos saturados y de cadena lineal son los que más abundan en la
naturaleza, suelen ser de nº par de átomos de carbono (entre 2 y 32). Los principales
son el ácido laúrico (12C), el ácido mirístico3 (14C), el ácido palmítico (16C), el ácido
esteárico (18C), el araquídico (20C) y el lignocérico (24C)
Desaturados
3
El ácido mirístico está presente en la subunidad α de las proteínas G. p 257 (2006).
32
Bioquímica
InspiracleBIR/2015
Colesterol (27C) [p. 107 (2004); 199 (2006)].
Fuente: Fig 10-16 (pag 355) del libro “Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed.,
2006”.
El colesterol es el principal esteroide en los tejidos animales, es un compuesto anfipático,
con:
-
un grupo de cabeza polar, un hidroxilo en C3 (polo hidrofílico y posición de
esterificación con ácidos grasos),
-
un cuerpo hidrocarbonato apolar formado por el núcleo esteroide y la cadena lateral
hidrocarbonada ramificada en C20 (cola apolar)
-
una insaturación en C5
-
grupos metilo en C18 y C19
El colesterol ejerce un papel fundamental regulando la fluidez de las membranas de las
células eucariotas, puesto que ello depende del cociente fosfolípidos/colesterol, de este
modo, a mayor contenido en colesterol, menor será la fluidez de la membrana.
Es, además, el principal precursor de los esteroides
Ácidos biliares (24C). [p. 132; (2005)]
- Se clasifican en primarios (cólico y quenodeoxicólico) y en secundarios (deoxicólico y
litocólico), obtenidos a partir de los primarios.
- Los ácidos biliares se conjugan con ciertos aminoácidos, como la glicina y la taurina para
formar sales biliares, compuestos que cumplen una importante función emulsionando las
gotas de grasa y facilitando la acción de las lipasas durante el proceso digestivo, se
sintetizan a partir del colesterol en el hígado.
- Además, sufren una circulación enterohepática en un 95%.
- Se reabsorben mayoritariamente en el íleon distal mediante cotransporte con sodio.
- Su síntesis es regulada por la 7-α-hidroxilasa hepática.
El mecanismo más importante para degradar el colesterol es su conversión en
ácidos biliares.
47
Bioquímica
InspiracleBIR/2015
Las características más relevantes de este tipo de estructura secundaria:
-
El esqueleto polipeptídico se encuentra compactamente enrollado alrededor del eje
longitudinal imaginario de la molécula, esta rotación helicoidal es dextrógira
-
Los grupos R de los *L-aminoácidos se disponen hacia el exterior del esqueleto
helicoidal, permitiendo su ubicación y evitando los impedimentos estéricos
-
La unidad repetitiva es el giro de hélice, que abarca unos 5,4 Å a lo largo del eje
longitudinal
-
Cada giro de hélice incluye 3,6 aminoácidos
*En algún caso excepcional se han encontrado proteínas que contienen fragmentos de hélice alfa
levógira formada por D- aminoácidos.
Experimentos con modelos moleculares han demostrado que una hélice se puede formar tanto con
D- como con L- aminoácidos, pero todos los residuos deben pertenecer a la misma serie.
Fuente: Fig 4-4 (pag 121) del libro “Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed.,
2006”.
61
InspiracleBIR/2015
Bioquímica
Giros beta
Son elementos de conexión que unen tramos sucesivos de hélices alfa o conformaciones
beta. Son muy frecuentes los giros beta que conectan los extremos adyacentes de dos
segmentos de hojas beta antiparalelas.
Estas estructuras forman giros cerrados de 180º mediante enlaces de H establecidos entre
los grupos peptídicos del primer y cuarto aminoácidos de los 4 implicados en el giro.
A menudo se encuentran Gly y Pro.
Los giros B suelen ubicarse en la superficie de las proteínas globulares
4.3.2.3.
Estructura terciaria. [p. 232 (2005); 218 (2007); 213 (2008)]
Hace referencia al plegamiento espacial completo y compacto de cada cadena.
Incluye el conjunto de interacciones, covalentes o de otro tipo, como puentes disulfuro,
puentes de hidrógeno, interacciones hidrofóbicas, fuerzas de Van der Waals e interacciones
iónicas.
En esta estructura, los fragmentos con estructuras secundarias variadas pueden combinarse
con zonas sin estructura secundaria definida, o zonas de giro donde las cadenas se pliegan
con un patrón determinado.
La disposición de los aminoácidos difiere según la proteína sea fibrosa o globular, así, en las
proteínas globulares (que suelen ser solubles):
-
los aminoácidos no polares se sitúan preferentemente hacia el interior de la proteína,
para evitar el contacto con el disolvente acuoso
-
los residuos con carga suelen ubicarse hacia el exterior , interaccionando con el
medio acuoso
-
los grupos polares de los aminoácidos sin carga se distribuyen a lo largo de la
cadena polipeptídica, pero con cierta preferencia, aparecen también hacia la zona
externa
64
InspiracleBIR/2015
Bioquímica
SEPARACIÓN Y PURIFICACIÓN DE PROTEÍNAS:
Para estudiar una proteína es fundamental su extracción, separación y purificación.
Primero se procede a la rotura de las células para liberar las proteínas, posteriormente se
realiza la centrifugación diferencial. A continuación se utilizan uno o varios métodos de
separación / purificación:
1.
Precipitación: la solubilidad de una proteína depende de:
 pH: a pH próximos al pHi disminuye la solubilidad de la proteína.
 Temperatura: la solubilidad aumenta con la temperatura, hasta aproximadamente
40 ºC, por encima de esta temperatura la disminución brusca de la temperatura
refleja la desnaturalización de las proteínas.
 Disolventes: disolventes orgánicos neutros miscibles con el agua (etanol, acetona)
disminuyen la solubilidad de las proteínas, actuando con el interior hidrofóbico y
desorganizando la estructura terciaria, lo que provoca su desnaturalización y
precipitación.
 Concentración salina: a concentraciones salinas moderadas se incrementa la
solubilización por salado (salting in), en tanto que a concentraciones salinas muy
elevadas se produce la precipitación por salado (salting out). Es muy utilizado el
sulfato amónico.
2.
Diálisis: permite separar las proteínas de los disolventes, aprovechando el mayor
tamaño de estas. De esta forma se puede eliminar el sulfato amónico utilizado en pasos
anteriores.
3.
Cromatografía: es un método potente para el fraccionamiento de proteínas. Según las
características de la proteína a separar se pueden utilizar distintas técnicas
cromatográficas:
 Cromatografía de intercambio iónico: separa las proteínas en función de la carga
eléctrica. Se utilizan un intercambiador aniónico (dietil aminoetil celulosa) y un
intercambiador catódico (carboximetil celulosa), que se utilizan para captar
proteínas negativas (aniones) o positivas (cationes), respectivamente.

Cromatografía de fase reversa (= fase sólida apolar): separa en función del
gradiente de solubilidad.

Cromatografía de exclusión molecular, de filtración o de permeación: separa en
función del tamaño (peso molecular). Para ello se utiliza un relleno de bolas (de
poliacrilamida, dextrano, agarosa, ....) con diferentes tamaños; sirve para determinar masas
moleculares (eluyen primero las proteínas de mayor PM).
72
Bioquímica
InspiracleBIR/2015
4.4 ENZIMAS. [p. 236; 237; 238 (2005); 194 (2006); 213 (2007); 212 (2009)]
CARACTERÍSTICAS GENERALES DE LOS ENZIMAS.
- Casi todas son proteínas (excepción- ribozimas)
- Poseen una elevada especificidad (suelen actuar sobre un único sustrato, incluso pueden
presentar estereoselectividad, distinguir entre los isómeros D y L de un sustrato)
- Aumentan la velocidad de reacción, recuperándose al final de ésta sin ser modificados
- Su actividad puede regularse
Con la excepción de un pequeño grupo de moléculas de RNA catalítico, todos los enzimas
son proteínas. Algunos enzimas no requieren para su actividad más grupos químicos que
unos cuantos residuos aminoácidos, otros, requieren para su actividad un componente
químico adicional denominado cofactor. Así, a la molécula enzimática completa
catalíticamente activa, junto con su coenzima y/o iones metálicos se denomina
HOLOENZIMA, que estaría compuesta por:
- apoenzima, fracción protéica del enzima o aquella que se desnaturaliza por calefacción.
Es catalíticamente inactiva en ausencia de cofactor (si lo requiere)
- cofactor: fracción del enzima que no se desnaturaliza por calefacción y cuya naturaleza
puede ser:
-
inorgánica (uno o varios iones)
Algunos elementos inorgánicos que actúan como cofactores enzimáticos
Cu2+
Fe2 + o Fe3+
K+
Mg2+
Mn2+
Mo
Ni 2+
Se
Zn 2+
-
Citocromo oxidasa
Citocromo oxidasa, catalasa, peroxidasa
Piruvato quinasa
Hexoquinasa, glucosa 6-fosfatasa,
quinasa (enzimas de glucolisis)
Arginasa, ribonucleótido reductasa
Dinitrogenasa
Ureasa (Urea → NH4 + CO2)
Glutation peroxidasa
Anhidrasa
carbónica,
deshidrogenada, carboxipeptidasas
orgánica o metaloorgánica compleja, denominada coenzima
piruvato
alcohol
* Un coenzima o ión metálico, unido muy fuertemente o de forma covalente a la proteína se denomina
grupo prostético
*Algunos enzimas requieren tanto un coenzima como uno o varios iones metálicos para su actividad
MECANISMO DE ACCIÓN ENZIMÁTICA. [p. 190 (2006); 214; 215 (2007); 236 (2008)]
Existe una barrera energética a superar para transformar el sustrato en una forma llamada
Estado de Transición
77
InspiracleBIR/2015
Bioquímica
La km nos indica la afinidad que un enzima presenta por un sustrato
La constante de M-M y la velocidad de una reacción enzimática que siga esta cinética
pueden calcularse de forma sencilla a partir de las velocidades de catálisis a diferentes
concentraciones de sustratos, y manteniendo fija la concentración de enzima. Para ello se
transforma la ecuación de M-M, tomando los valores inversos de V y S, para obtener otra
ecuación que resulte en una línea recta al ser representada gráficamente.
La representación gráfica de 1/V frente a 1/S se denomina representación de LineweaverBurk (o representación de los dobles recíprocos), es una línea recta con una pendiente
Km/Vmáx. [p. 172 (2003)]
Otra representación, aunque menos utilizada, es la de Eadie-Hofstee
V0  Vmax  K m 
80
V0
[S ]
InspiracleBIR/2015
Bioquímica
Reversibles: pueden separarse del enzima mediante diálisis
-
INHIBICIÓN COMPETITIVA
Inhibidor y sustrato
compiten por unirse al
centro activo, suelen
tener estructuras
análogas.
Vmáx: no varía
Km: aumenta
Normalmente revierte al
incrementar la
concentración de
sustrato
INHIBICIÓN NO COMPETITIVA
Inhibición no competitiva
El inhibidor se une de
forma reversible a un
sitio diferente del centro
activo.
Vmáx: disminuye
Km: no varía
E+S
Puede unirse al enzima
libre o al complejo E-S.
En ambos casos no se
produce formación de
productos
También se denomina
mixta
K1
ES
K2
1/V
E+P
K-1
E+I
ES+I
Ki
Ki2
EI
EIS
1/Vmax
Disminuyen el número
de recambio de la
enzima.
INHIBICIÓN ACOMPETITIVA
Es un tipo de inhibición Vmáx. Disminuye
propia de reacciones Km: disminuye
con más de un sustrato.
El inhibidor se une al
complejo E-S, no al
enzima libre.
86
K1
ES
K-1
ES+I
Ki
Sin I
1/V ’max
- 1/Km
E+S
Con I
EIS
K2
E+P
0
1/[S]
Bioquímica
InspiracleBIR/2015
REGULACIÓN ENZIMÁTICA. [p. 165 (2003); 89 (2004); 239 (2005); 216 (2007)]
Existen diferentes niveles de regulación de la actividad enzimática:
-
Control de la cantidad / concentración de enzima: regulación LENTA. Se lleva a
cabo a nivel de la expresión de los genes que codifican las enzimas, implicando un
control de la síntesis y la degradación de las mismas. (ADN → ARN → proteína).
-
Compartimentación: de forma general las enzimas que participan en una misma ruta
suelen ubicarse en el mismo compartimiento subcelular. La compartimentación permite
la separación de dos rutas opuestas que podrían interferirse mutuamente (ej: biosíntesis
de ácidos grasos transcurre en el citosol, mientras su degradación transcurre en la matriz
mitocondrial), y permite regular la velocidad de funcionamiento de ambas rutas
controlando la disponibilidad de sustrato. Algunas rutas poseen enzimas en
compartimentos diferentes (ej: gluconeogénesis, ruta para sintetizar glucosa a partir de
precursores no glucídicos, posee etapas citosólicas, la mayor parte, y una mitocondrial) .
-
Existencia de Isoenzimas: Formas múltiples de una enzima con diferente localización
en el organismo, que catalizan la misma reacción pero exhibiendo parámetros
cinéticos diferentes (afinidad diferente por un sustrato). Presentan diferente pHi, PM
(movilidad electroforética), sensibilidad a moduladores de la actividad enzimática, etc.
(Ej: LDH, CPK, FAlc).
-
Activación por proteólisis o existencia de zimógenos (proenzimas): Muchas
enzimas son sintetizadas de una forma inactiva como zimógenos o proenzimas y se
activan por proteólisis. Este tipo de activación es irreversible y transcurre por la acción
de
proteasas.
(Ej:
proteasas
digestivas:
quimotripsinógeno/quimotripsina,
pepsinógeno/pepsina; proteínas de la cascada de la coagulación: fibrinógeno/ fibrina; proteínas
del complemento, proinsulina/insulina por pérdida del péptido C).
-
Control de la actividad enzimática: regulación RÁPIDA, mediante enzimas
reguladoras, implica el control de la velocidad de la ruta. Puede ser: regulación
covalente reversible (Ej: por fosforilación, adenilación, metilación, etc.) y/o
regulación alostérica reversible por sustrato o moduladores.
Regulación covalente reversible: Generalmente por fosforilación reversible de una
enzima que alterna entre dos formas: una más activa y otra menos activa. Suele estar
mediada por la acción hormonal. Mecanismo más habitual: H → H – R → activación de
proteína G → activación de Adenilato Ciclasa → ↑ AMPc → activación de proteína kinasa A →
fosforilacion de la enzima . La enzima fosforilada puede ser más o menos activa. La
regulación por modificación covalente requiere de la acción de otras enzimas. En el caso
de la fosforilación (generalmente sobre aa hidroxilados como Ser o Tyr) es llevada a
cabo por proteín-quinasas (fosforilan) y la defosforilación, por proteín-fosfatasas
(desfosforilan).
87
Bioquímica
InspiracleBIR/2015
TEMA 5. COMPOSICIÓN, ESTRUCTURA Y FUNCIONES DE LAS
BIOMEMBRANAS. [p. 186 (2006); 208 (2010); 197 (2014)]
Las membranas biológicas son asociaciones unitarias supramoleculares de lípidos,
proteínas y carbohidratos que recubren las estructuras celulares y subcelulares (en células
eucariotas), definiendo su extensión y manteniendo las diferencias esenciales entre el
contenido de la célula (u organelo en cuestión) y su entorno.
La membrana plasmática es la que rodea a la célula y sus funciones son:

Barrera selectiva al paso de sustancias.

Transporte de moléculas al interior y exterior de la célula.

Implicada en los movimientos y extensión celular.

Actúa como receptora de la información captada del exterior y transmitida al
interior de la célula. En resumen: papel primordial en la señalización celular.

Se establecen a través de las membranas gradientes iónicos, que pueden ser
usados para la síntesis de ATP, dirigir el movimiento transmembranoso de
solutos seleccionados o, en células nerviosas y musculares , para producir y
transmitir señales eléctricas.
Aunque realicen diferentes funciones, todas las membranas biológicas tienen una estructura
básica común: una finísima bicapa lipídica y con moléculas proteicas, que se mantienen
unidas fundamentalmente por interacciones no covalentes (hidrofóbicas) y cooperativas.
Las membranas celulares son estructuras asimétricas, dinámicas, fluidas, y la mayoría de
sus moléculas son capaces de desplazarse en el plano de la membrana.
Figura. Dibujos esquemáticos que muestran en dos (A) y tres dimensiones (B) la membrana
celular. (A, por cortesía de Daniel S. Friend.).
Fuente: Fig 10-1 (pag 509) del libro “Biología Molecular de la Célula. Editorial Omega, Barcelona, 3ª ed., 2002”.
91
Bioquímica
InspiracleBIR/2015
Fuente: Fig 10-2 (pag 510) del libro “Biología Molecular de la Célula. Editorial Omega, Barcelona, 3ª ed., 2002”.
Los fosfolípidos predominantes en la membrana plasmática de muchas células de mamíferos
son: fosfatidilcolina (lecitina), esfingomielina, fosfatidilserina y fosfatidiletanolamina.
Las estructuras de estas moléculas se muestran en la figura. Sólo la fosfatidilserina: tiene una
carga neta negativa, las otras tres moléculas son eléctricamente neutras a pH fisiológico,
presentando una carga negativa y otra positiva. En conjunto, estos cuatro fosfolípidos
constituyen más de la mitad de la masa de lípidos de la mayoría de las membranas. Otros
fosfolípidos, tales como los fosfolipidos de inositol, son funcionalmente importantes, tienen un
papel crucial
en las señalización celular, pero se hallan en cantidades relativamente
pequeñas.
Fuente: Fig 10-10 (pag 515) del libro “Biología Molecular de la Célula. Editorial Omega, Barcelona, 3ª ed., 2002”.
93
Bioquímica
InspiracleBIR/2015
FIGURA. Generación e inactivación de ROS. SOD (superóxido dismutasa), GSH (glutatión reducido), GSSG
(glutatión oxidado), TRX (tiorredoxina).
Superóxido Dismutasa: dismuta el anión superóxido en peróxido de hidrógeno.
Catalasa: actúa sobre el peróxido de hidrógeno transformándolo en agua y oxígeno.
FOSFORILACIÓN OXIDATIVA. [p. 222 (2008); 216 (2009)]
Las posibles formas de obtención de ATP en la célula:
- Fosforilación a nivel de sustrato: la oxidación de los sustratos está acoplada con la
síntesis de ATP a través de un intermediario rico en energía. (Ej: se convierte el
fosfoenolpiruvato en piruvato y al mismo tiempo ADP y Pi en ATP).
- Fosforilación oxidativa: la oxidación del NADH y del FADH2 están acopladas a la síntesis
de ATP a través de un gradiente de protones.
La fosforilación oxidativa puede definirse como un proceso mediante el cual la energía
liberada por el trasiego de los electrones a lo largo de la cadena respiratoria se conserva
mediante la fosforilación de ADP a ATP; es decir, la energía liberada en el transporte
electrónico se convierte en la energía del enlace fosfato contenido en la molécula de ATP.
La fosforilación oxidativa requiere que esté intacta la membrana interna mitocondrial.
147
Bioquímica
InspiracleBIR/2015
ALTERACIONES EN EL METABOLISMO DE AMINOÁCIDOS[
Fenilcetonuria
Clásica
(99%)
Maligna*
(1%)
[p. 234 (2006)]
Tirosinemia
Fenilalanina hidroxilasa (requiere
tetrahidrobiopterina) Phe –x→ Tyr
ó
Dihidropteridina reductasa
Altos niveles de Phe son neurotóxicos y
produce retraso psicomotor (se requiere
diagnóstico neonatal y tto precoz sin
fenilalanina)
Fumaril acetoacetato hidrolasa (último Ez
de la degradación de Tyr:
Tipo I
fumaril-acetoacetato→fumarato
+acetoacetato
Tipo II
Tirosina aminotransferasa (primer Ez de
la degradación de Tyr:
Dieta rica en Tyr, y restricción de
Phe y aspartamo (edulcorante:
contiene Phe).
Excreción urinaria de ácido fenil
pirúvico. Test de Guthrie: método
para estimar Phe en sangre.
Dieta rica en biopterina (deriva de
GTP)
Se produce hiperfenilalaninemia.
* La biopterina también es
necesaria para la síntesis de
catecolaminas y serotonina.
Clínica: afectación renal y
hepática y evolución a carcinoma
hepacelular.
Tto: restricción de Tyr, Phe y Met.
También denominada síndrome
de Richner Hanhart.
Tyr → 4-OH fenilpirúvico
Tirosinasa (difenol oxidasa): síntesis de
melanina
Albinismo
Alcaptonuria
Tyr –x→DOPA –x→ dopaquinona →
melanina
Homogentísico – oxidasa
Homogentísico 1,2-dioxigenasa
Phe → Tyr → OH fenilpirúvico → ácido
homogentísico –x→ maleil acetoacetato
Homocistinuria
e hiperhomocisteinemia
No tiene cura. Prevención:
cuidado de piel y ojos y protección
solar.
Cistationina β-sintasa
HomoCys –x→ Cys
Hay un bloqueo del metab. de
Phe y Tyr. Tto: → restricción de
Phe y Tyr.
Se acumula ácido homogentísico
(produce pigmentación oscura de
tejido cartilaginoso y conjuntivo →
artritis y reumatismo) y se excreta
por la orina (se oscurece y es
fuertemente reductora).
El metabolismo de la Met está
afectado. Tto: dieta pobre en Met
+ suplementos de Cys, betaína,
B6, y B12.
Clínica: Alteraciones oculares,
osteoporosis, riesgo de enferm.
cardiovasculares,
tromboembolismo.
Acidurias orgánicas de cadena ramificada
1. Enfermedad de la
orina con olor a
Jarabe de Arce.
Descarboxilasas de aa ramificados (2oxo-isovalerato-deshidrogenasa)
2. Acidemia
propiónica
Propionil CoA carboxilasa
(propionil CoA –x→ metilmalonil CoA)
3. Acidemia
metilmalónica
Metilmalonil CoA mutasa
(L-metilmalonil CoA –x→Succinil CoA)
Restricción de Val; Leu e Ile.
Clínica: orina con olor a jarabe de
arce (azúcar quemada), retraso
mental y del crecimiento.
Dieta hipoproteica y dar
suplementos de carnitina.
Idem tto. Como en otras
acidemias orgánicas, puede
producir hiperamonemia, debido a
la inhibición de carbamil P sintasa
I por metabolitos orgánicos
ácidos.
261
Bioquímica
InspiracleBIR/2015
EFECTOS DEL GLUCAGÓN [p. 180 (2006); 222 (2007); 241 (2008)]
EFECTO METABÓLICO
↑↑Degradación del glucógeno
↓ Síntesis de glucógeno (hígado)
RESULTADO
Glucógeno → glucosa
Menos glucosa almacenada
como glucógeno
↓ Glicólisis (hígado)
Menos glucosa usada como
combustible en hígado
↑ Gluconeogénesis (hígado)
Aminoácidos
Glicerol
→ glucosa
Oxalacetato
↑ Movilización de ácidos grasos Menos glucosa usada como
(tejido adiposo)
combustible en hígado y
músculo
↑ Cetogénesis
Provee cuerpos cetónicos
como alternativa a glucosa
ENZIMA DIANA
↑ Glucógeno fosforilasa
↓ Glucógeno sintasa
↓ FFK 1
↑ Fructosa bifosfatasa 2
↓ piruvato quinasa
↑ PEP carboxiquinasa
↑ TAG lipasa
La adrenalina comparte muchos de estos efectos del glucagón, aunque en ocasiones con
diferente significado biológico.
285
UNIDAD II
BIOQUÍMICA CLÍNICA
InspiracleBIR/2015
Bioquímica
Para asegurar la identificación correcta del tubo apropiado, los tapones de los tubos que
contienen anticoagulante y aditivo están codificados, según normativa internacional, por
colores:
INTERFERENCIAS: Pueden ser debidas a:
1) Lisis de células: Ciertas sustancias están en el interior de las células en concentraciones
muy diferentes respecto a las del suero/plasma. Por tanto, la lisis de las células puede
alterar la concentración normal en suero/plasma para algunas sustancias.
La hemólisis (lisis anormal de los eritrocitos) puede deberse a muchas causas pero cabe
destacar por su frecuencia:
1. extracción muy rápida de la sangre
2. transporte-almacenamiento prolongado;
El suero presenta un aspecto hemolítico cuando la concentración de la Hb es >200 mg/L.
296
Bioquímica
o
InspiracleBIR/2015
Su elevación en LA y suero materno indica defectos de cierre del tubo neural,
lo cual se confirma mediante detección de acetil-colinesterasa en LA.
o
La detección de AFP y β-HCG en suero "materno", junto con las semanas de
gestación, edad de la embarazada, peso, raza y enfermedades asociadas,
permite estimar el riesgo de Síndrome de Down: que se confirmaría con un
cariotipo.
o
En no embarazadas: es un marcador tumoral ( ej : hepatocarcinoma).
 Cociente lecitina/esfingomielina útil en diagnóstico de posible distres respiratorio
en el recién nacido.
 Cariotipo: sirve para detectar alteraciones cromosómicas en el feto.
LIQUIDO ARTICULAR (SINOVIAL): está en la cavidad articular y tiene como función la de
lubricar la articulación. En condiciones normales, presenta aspecto transparente, escaso
número de células.
-
La muestra se obtiene por paracentesis (al igual que en los líquidos pleural,
peritoneal, etc) Generalmente se realizan estudios conocer si se trata de un exudado
o un trasudado.
Características macroscópicas: es un líquido claro, incoloro, viscoso. Si el líquido aparece
turbio indica proceso inflamatorio. Si tiene aspecto opaco puede ser septico (Ej: una artritis
tuberculosa).
Caracteristicas en estudios de laboratorio:
Se hace conteo celular. Según la cifra de leucocitos encontrada por microlitro, se clasifican
los líquidos en 4 tipos:
Normal: < 200
Mecánico: 200-2.000
Inflamatorio: 2.000-75.000
Séptico: > 100.000
Estudio bioquímico: Glucosa puede disminuir en caso de infección.
Proteínas Totales: la cantidad normal es de 20 g/L, y aumenta en inflamaciones.
Investigación de cristales: Se utiliza el microscopio de luz polarizada para investigar la
presencia de cristales en el líquido sinovial, que tiene lugar en las artritis gotosa, artritis
reumatoide, etc).
307
Bioquímica
InspiracleBIR/2015
BIBLIOGRAFÍA.
-
NELSON, D.L. y COX, M.M.: Lehninger. Principios de Bioquímica. Ediciones
Omega, Barcelona, 4ª ed., 2006.
-
LOZANO, J. A., et al: Bioquímica y Biología Molecular. Editorial McGraw-Hill
Interamericana. Madrid, 3ª ed., 2005.
-
LOUISOT, P.: Bioquímica Estructural. Editorial AC. España, 1977.
-
DEBLIN, T. M.: Bioquímica, libro de texto con aplicaciones clínicas, Editorial
Reverté, S.A. España. 4ª ed., 2004.
-
KOOLMAN, J.A., ROHM, K-H.: Bioquímica, texto y atlas. Editorial Médica
Panamericana, 3ª Ed., 2004.
-
The Merck Manual Online. 2004-2010 Merck Sharp & Dohme Corp. Robert S.
Porter, Justin L. Kaplan, Eds.
-
Harrison Principios de Medicina Interna. 17a edición. Anthony S. Fauci,
Eugene Braunwald, Dennis L. Kasper, Stephen L. Hauser, Dan L. Longo, J.
Larry Jameson, and Joseph Loscalzo, Eds.
-
Medimecum. Guia de terapia farmacológica. Adis International. 2002.
-
ALBERTS, B.; BARY, D.; LEWIS, J.; RAFF, M,; ROBERTS, K.; WATSON, J.D.
“Biología Molecular de la célula”. Ediciones Omega, 3ª ed., 2002.
319
Descargar