Formulaire de trigonométrie sin2x + cos2x = 1 tanx = 1 + tan2x = 1 cos2x π 6 1 2 π 4 π 3 π 2 angle –x π–x π+x π –x 2 π +x 2 2 2 3 2 1 sinus – sinx sinx – sinx cosx cosx 1 3 2 2 2 1 2 0 cosinus cosx – cosx – cosx sinx – sinx 0 3 3 1 non définie tangente – tanx – tanx tanx 1 tanx – angle 0 sinus 0 cosinus tangente sinx = sina cosx = cosa tanx = tana 3 ⇔ | x = a + 2kπ ou | x = π – a + 2kπ ⇔ | x = a + 2kπ ou | x = – a + 2kπ ⇔ x = a + kπ π x ≠ 2 + kπ (k ∈ ZZ) (k ∈ ZZ) (k ∈ ZZ) tana + tanb tan(a + b) = 1 – tana.tanb tana – tanb tan(a – b) = 1 + tana.tanb cos(a + b) = cosa.cosb – sina.sinb cos(a – b) = cosa.cosb + sina.sinb sin(a + b) = sina.cosb + sinb.cosa sin(a – b) = sina.cosb – sinb.cosa 1 + cos(2x) 2 x Si t = tan 2 alors cos(2x) = cos2x – sin2x sin(2x) = 2sinx.cosx 2tanx tan(2x) = 1 – tan2x p + q p – q sinp + sinq = 2sin .cos 2 2 p – q p + q sinp – sinq = 2sin .cos 2 2 p + q p – q cosp + cosq = 2cos .cos 2 2 p + q p – q cosp – cosq = –2sin .sin 2 2 1 sina.sinb = [cos(a – b) – cos(a + b)] 2 1 cosa.cosb = [cos(a + b) + cos(a – b)] 2 1 sina.cosb = [sin(a + b) + sin(a – b)] 2 cos2x = sinx cosx sin2x = 2t sinx = 1 + t2 1 – cos(2x) 2 1 – t2 cosx = 1 + t2 tanx = 2t 1 – t2 1 tanx