Álgebra tensorial y cinemática

Anuncio
Cátedra de Mecánica del Continuo – FI-UNER
Cursado: Primer cuatrimestre de 2008
Material de Estudio
Tema II: Algebra Tensorial y Derivada Material
Notación indicial y convención de suma
!
=
=
"
!
%
!
#
&
$
!
'
(
%
%
$
"
&
!
!
=
=
)
(
%
&
"
%
*
&
+
,
(
% "
"
)
"
+
!
"
$
.
&
/
!
=
!
0
=
&
1
(
1
"
/
(
&
$
1
%
%
"
/
&
+
&
=
+
2
&
=
(
3
&
4
%
+"!
"
/
&
'
Tensores
#
3
!
4
.
"
&
5
6
α
α
#
$ 7
α
8
!
-
9
#
9
:
&
;
)
$
'
:
(
$
;⋅
:
;⋅
,
$
Productos entre vectores y tensores
(
$
!
⋅ =
!
⋅
#
=
=
=
!
!
=
=
!
!
=
=
#
=
(
)
⋅
0
#δ
!
=
#
=
δ
δ
≠
6
<
) ⋅ (#
⋅ =(
.
(
=
#
=
#δ
=
#
)
⋅
=
(
&
)
1
4
>
=(
⋅
=
(
)⋅
)
⋅
2
= δ
=
(
%
%
4
)(#
=(
=
'
#
/
(
&
5
:
δ!
δ!
;
;
!
-
δ!
!
δ!
;
'
?
!
!
:
5
@
6
!⋅
?
:
$
!⋅
:
&
3
&
"
&
)
)
;
!
δ!
!⋅
"
"
!⋅
' '
&
/
'
/
&
!
+
&
"
4
[ ]
=
4
[ # ( )](' )
= # ' [ ]( )
! !
!
!
!
= # '! δ !
= #'
[ ]
(
) :
=( ⋅
&
;
)
/
=
! !
!
!
! !
⋅(
=
[ ]
4
=( ⋅
:
A:
:
;
;
;
!
)
)
=
)
]
)]
,
)
0
⋅(
!
:δ ! ;⋅
B⋅
!
)
:
!⋅
;⋅
!⋅
⋅
!⋅
⋅
1
!⋅
!
/
!
5
[ # ( )]('
= # ' [ ](
= # ' ( )⋅ [
= (' ) ⋅ [ # (
[ ]
.
)
1
: !⋅
;⋅
C
2
?
?
"
%
&
⋅
⋅
3
⋅
⋅
!6
Componentes de un tensor
@
4
/
&
D
'
'
(
$
(
$
$!
&
!
!
$
.
>
)
(
=
)
( )
=
!
= $
&
"
$
[
= $
>
!!
](
[
=$
!
=$
!
=$
!
(
=$
!
δ!
⋅(
!
)
]( ! )
!
!
)
⋅
!
)
!)
=$
$
&
!
⋅
E
$
/
$
⋅
$
$
!,
&
/
+
&
⋅
F
!,
!0
!0
$
/
/
*
⋅
⋅
⋅
$
Algunos tensores especiales
E
!1
>
⋅
⋅ )!
)!
!
!4
%
%
&
"
)!
!
(
!2
!
!3
&
)!
δ!
δ
?
E
&?
/
/
$
(
'
)6
( )⋅
=
(
,
⋅
$
'
)⋅
=
(
$$
)⋅ (# ) =
! !
$$#
)
)
,
( )⋅
=( ⋅
(
)⋅
= # $!
!
D
)⋅ ( ) =
)
$ #
)
)
$$ = $
)!
$
$
))
Operadores diferenciales espaciales
G
*
∇φ =
∂φ
∂φ
∂φ
+
+
∂
∂
∂
=
∇⋅ =
=
!
=
∂φ
∂
)0
&
# *
∂
∂
∂
∂
+
+
=
∂
∂
∂
∂
)1
&
∇
),
∂φ
∂
&
φ -
∂H∂
φ
∂φ
∂φ
∂φ
+
+
∂
∂
∂ !
∇φ =
∇
$$ = $
$
4
F
φ?
7
+
8
φ?
%
∆φ = ∇ φ
= ∇ ⋅ (∇φ )
=∇⋅
∂φ
∂φ
∂φ
+
+
∂
∂
∂
=
∂φ ∂φ ∂φ
+
+
∂
∂
∂
=
∂φ
∂ ∂
)2
&
∆ = ∇ = ∇ ⋅∇ =
∂
∂
⋅
∂
∂
=
∂ ∂
∂ ∂
(
⋅
)=
∂ ∂
∂ ∂
δ =
∂ ∂
∂ ∂
)3
0
G&
+
∂ H∂ ∂
%
∂ H∂
&
(%
/
"
'
.
>
∂
∂
∇ =
∇⋅
∆ = ∇ ⋅ (∇
)=
=
∂
∂
∂
∂
⋅ ($ !
∂
∂
⋅
!
(
)= ∂
(
) = ∂$
⋅(
!
∂
! !
)
=
,6
∂
∂
∂
!
⋅
) = ∂$
!
∂
∂
∂
!
!
δ
!
=
=
∂$ !
∂
∂ !
δ
∂ ∂
,
!
!
=
∂ !
∂ ∂
!
,
Conceptos de cinemática y movimiento en el continuo. Descripción
material y espacial
%
&
@
"
$
.
5
"
(
"
&
I
&
%
"
$
&
$
&
/
D
+
&
"
*
F
&
(
"
&
"
"
&
1
"
(
&
&
"
6
&
5
"
&
.
,!
+
*
.
,!
+
.
*
&
6
,)
#
6
*
@
6
,,
$
$
&
$
ϕ
>
J
&
/
"
ϕ
(
"
&
(
+*
*
>
ϕ =ϕ
J
,0
&
%
E
&
&
,
ϕ = ϕK
,1
ϕ
-
$
ϕ
5
&
&
*
& +
&
$
"
&
"
&
G
,,
E
&
H
&
$
&
&
'
Derivada material y derivada total. Aceleración de una partícula
%
H
&
>
2
D
&
J
#
∂ H∂
.
+
G
(
5
&
&
( $
#
& H&
F
4
(
/
#
H
(
"
(
& +
/
D
'
"
+ E
"
L
(
%
"
&
,2
+
-
,2
"
+
=
@
+
∂
∂
,3
"
4
"
.
,3
ϕ
ϕ
,0
$%
$
4
&
&
&ϕ ∂ϕ
=
&
∂
φ
'
,1 .
&
φ
#
+
$ %
&
06
& (
&
∂φ ∂φ
=
∂
∂
.
%
(
+
$
φ
>
&
&
0
0
"
φ
φ
'
& (
"
&
φ
3
φ
+
φ
"
φ:
;
+
"
>
∂φ
∂
∂φ ∂
G
≠
=
∂φ
∂φ
+
∂
∂
= ∇φ ⋅
≠
∂
∂
∂
∂
0
= ⋅
/
&
%
&
&φ ∂φ
=
+ ⋅ ∇φ
&
∂
(
(
0!
/
#
4
%
&
-
#
- ' 4
"
φ
4
4
"
%
&
φ
. %
$
&
=
∂φ
+
∂
⋅ ∇φ
0)
#
0)
&
.
0)
.
&
$
$
4
$
& .
=
C
%
'
0
!
=
=
=
%
+
&
&
∂#!
∂
=
0,
0,
∂#!
∂#
+ !
∂
∂
]
$
&
∂
=
&
∂
&
∂#!
∂#
+# !
∂
∂
∂
+ [∇
∂
"
&
≠
∂
∂
00
≠
=
∂
+ ⋅ [∇
∂
00
'
∇
]= ∂
∂
+ ( ⋅ ∇)
/
&
C
6
Descripción cinemática del flujo. Camino de partícula, línea de corriente y
línea de traza
(
$
.
&
$
$
%
5
+
#
(
&
/%
(
"
+
%
/
"
&
%
"
#
+
"
/
+ (
+
'
+
'
' &
%
E
&
/
$
"
.
$
&
"
$
=
=
E
#
=
01
=
#
02
#
$
&
"
"
$
&
03
5
"
$
"
L
@
+
>
+
&
16
+
"
1
/
E"
"
4
6
1
6
"
/
&
+
"
6
=
6
$
(
6
)
1!
Descargar