3. r2 = 9 sin 2θ, r ≥ 0, 0 ≤ θ ≤ π/2 ∫ π 2 1 · 9 sin 2θdθ Area = 0 2 π 2 9 = − cos 2θ 4 0 9 = 2 4. r = tan θ, π/6 ≤ θ ≤ π/3 ∫ π 3 1 Area = tan2 θdθ π 2 6∫ π 1 3 = sec2 θ − 1dθ 2 π6 1 √ 1 π π = ( 3− √ − + ) 2 6 3 3 1√ 1 3− π = 3 12 11. r = 3 + 2 cos θ ∫ 1 π Area = 2 · (3 + 2 cos θ)2 dθ 2 0 ∫ π = 9 + 12 cos θ + 4 cos2 θdθ 0 = 11π 23. ∫ π 3 Area = ∫ − π3 π 3 = 1 [(2 cos θ)2 − 1]dθ 2 4 cos2 θ − 1dθ 0 √ π 3 2 = + π− 2 3 3 √ 3 1 = + π 2 3 27. ∫ π 3 Area = ∫ − π3 π 3 = 1 [(3 cos θ)2 − (1 + cos θ)2 ]dθ 2 8 cos2 θ − 2 cos θ − 1dθ 0 = π 1 31. ∫ π 8 1 Area = 16 (sin 2θ)2 dθ 2 0 ∫ π 8 4 sin2 θ cos2 θdθ = 8 ∫0 π 8 = 32 cos2 θ − cos4 θdθ ∫0 π 8 1 1 = 32 − cos2 2θdθ 4 4 π 0 = −1 2 33. ∫ π 8 1 sin 2θdθ 0 2 π = − cos 2θ|08 √ 2 = 1− 2 Area = 4 38. 1 − cos θ = 1 + sin θ ⇒ tan θ = −1 3 7 ⇒ θ = π, π 4 4 Figure 1: Ex. 38 2 46. r = 5θ , 0 ≤ θ ≤ 2π ∫ 2π √ dr L = r2 + ( )2 dθ dθ ∫0 2π √ 52θ + (5θ ln 5)2 dθ = 0 ∫ 2π √ = 5θ 1 + (ln 5)2 dθ 0 θ 2π √ 5 = 1 + (ln 5)2 · ln 5 0 √ 1 + (ln 5)2 2π = [5 − 1] ln 5 47. r = θ2 , 0 ≤ θ ≤ 2π ∫ 2π √ L = θ4 + 4θ2 dθ 0 ∫ 2π √ = θ 4 + θ2 dθ 0 1 3 2π = (4 + θ2 ) 2 3 0 8 3 ((1 + π 2 ) 2 − 1) = 3 48. r = 2(1 + cos θ) ∫ L = 2 π √ 4(1 + cos θ)2 + 4 sin2 θdθ ∫0 π √ = 4 2(1 + cos θ)dθ 0 π θ = 16 sin 2 0 = 16 55. (a) Let x = r cos θ, y = r sin θ √ ∫ β dx dy (10.2.6) S = 2πy ( )2 + ( )2 dt dt dt √ ∫αb d d = 2πr sin θ ( r cos θ)2 + ( r sin θ)2 dθ dθ √ dθ ∫a b dr = 2πr sin θ r2 + ( )2 dθ dθ a 3 (b) r2 = cos 2θ ∫ √ π 4 sin2 2θ 2 2πr sin θ cos 2θ + dθ cos 2θ 0 √ ∫ π√ 4 1 4π cos 2θ sin θ cos 2θ 0 ∫ π 4 4π sin θdθ 0 √ 2π(2 − 2) S = = = = 56. (a) ∫ S= √ b 2πr cos θ dr 2 ) dθ dθ r2 + ( a (b) ∫ √ π 4 S = 2 2πr cos θ 0 sin2 2θ cos 2θ + dθ cos 2θ π sin θ|04 = 4π √ = 2 2π 4