Instructor: Chris King I. Math 127 Test 2 Review Use a calculator to solve the equation on the interval [0, 2π). Round the answer to two decimal places. 1. tan θ = 5 II. 2. 4 cos θ + 3 = 0 Solve the equation on the interval [0, 2π). 2. 1 + sin θ = 2 cos 2 θ 1. tan θ = 2sin θ III. Solve each. Find all solutions. 0 1. sin 2 x − sin x = IV. 2. cos 4 x = Find the exact value under the given conditions. π 15 ,0 < α < ; 17 2 a. Find cos (α + β ) 1. sin α= cos β= π 3 ,0 < β < 5 2 b. Find sin 2 β a c. Find tan 2 12 3π ,π < a < ; 5 2 a. Find sin (α + β ) 2. tan a = cos = β −8 π , < β <π 17 2 b. Find tan 2a β c. Find sin 2 −5 π 15 π , < α < π ; sin= β , < β <π 13 2 17 2 a. Find tan (a + β ) 3. cos= α b. Find cos 2 β α c. Find cos 2 − 2 2 III. Verify the identities. 1. ( 4sin u cos u ) (1 − 2sin 2 u ) = sin 4u 2. 3. 4. 5. 6. cos θ − cos 5θ = tan 2θ sin θ + sin 5θ cos 4 θ − sin 4 θ = cos 2θ cot α cot β − 1 cot (α + β ) = cot α + cot β csc 2 θ sec ( 2θ ) = csc 2 θ − 2 cos ( x − y ) 1 + tan x tan y = cos ( x + y ) 1 − tan x tan y 7. 1. sin θ csc θ − cos 2 θ = sin 2 θ 8. 3sin 2 θ + 4 cos 2 θ = 3 + cos 2 θ sec θ sin θ 9. 2 tan θ + = csc θ cos θ sin θ cos θ tan θ 10. = 2 2 cos θ − sin θ 1 − tan 2 θ