PRIMER BLOQUE: FUNCIONES

Anuncio
PRIMER BLOQUE: FUNCIONES
1.− Dada f(x) = ax^3 + bx^2 + cx + d (NOTA= ^2= cuadrado)
Sabiendo que f ' (1) = f ' (−1) = 0 y a no es 0, determinar la función .
¿Es posible que tal función cumpla que f(0) = f(1) = 0 ?
2 puntos
nota: no te comas mucho la olla que no sale ninguna función porque siempre sale
a=0
2.−
a) Definida f para todos los números reales como f(x) = | x+2 | | x−2 |
Hallar los puntos donde es derivable. Hallar máximos−mínimos locales.
b) Enunciar la regla de Barrow.
c) Hallar la integral definida entre 0 y 3 de 2 f(x) dx.
3 puntos
3.−
a) Enunciar la regla de L'Hopital.
b) Límites:
1
sen x
* lim ( x − 1 ) * lim ( 1 + tg x )
x −> 1 ln x sen (x−1) x −> 0 1 + sen x
2,5 puntos
4.− Siendo r > 1 y el dominio de f todos los números reales positivos y el 0
r
f (x) = x (x elevado a r)
a) Hallar la ecuación de la recta normal a la gráfica en el punto (1,1). Hacer un posible boceto.
1
b) Hallar el área comprendida entre la gráfica de f, su recta normal en (1,1) y el eje OX.
2
Descargar