8. El Modelo Estándar de las interacciones electrodébiles (QFD) y fuertes (QCD). El bosón de Higgs 452 1. Gauge Theories B The gauge symmetry principle B Quantization of gauge theories 2. Spontaneous Symmetry Breaking B Discrete symmetry B Continuous symmetry: global vs gauge 3. The Standard Model B Gauge group and particle representations 4. Electroweak interactions B Case of one family B Electroweak SSB: Higgs sector, gauge boson and fermion masses B Additional generations: fermion mixings (quark sector) B Complete Lagrangian and Feynman rules B Phenomenology 5. Strong interactions 453 1. Gauge Theories 454 The symmetry principle free Lagrangian Lagrangian of a free fermion field ψ( x ): (Dirac) L0 = ψ(i/ ∂ − m)ψ ∂/ ≡ γµ ∂µ , ψ = ψ † γ0 ⇒ Invariant under global U(1) phase transformations: ψ( x ) 7→ ψ0 ( x ) = e−iqθ ψ( x ) , q, θ (constants) ∈ R ⇒ By Noether’s theorem there is a conserved current: jµ = q ψγµ ψ , ∂µ jµ = 0 and a Noether charge: ˆ Q= d3 x j 0 , ∂t Q = 0 455 The symmetry principle free Lagrangian A quantized free fermion field: ˆ ψ( x ) = d3 p q (2π )3 2E~p ∑ a~p,s u(s) (~p)e−ipx + b~†p,s v(s) (~p)eipx s=1,2 – is a solution of the Dirac equation (Euler-Lagrange): (i/ ∂ − m)ψ( x ) = 0 , (/ p − m)u(~p) = 0 , (/ p + m)v(~p) = 0 , – is an operator from the canonical quantization rules (anticommutation): † { a~p,r , a~†k,s } = {b~p,r , b~k,s } = (2π )3 δ3 (~p −~k)δrs , { a~p,r , a~k,s } = · · · = 0 , that annihilates/creates particles/antiparticles on the Fock space of fermions 456 The symmetry principle free Lagrangian For a quantized free fermion field: ⇒ Normal ordering for fermionic operators (H spectrum bounded from below): : a~p,r a~†q,s : ≡ − a~†q,s a~p,r , ⇒ The Noether charge is an operator: ˆ ˆ : Q : = q d3 x : ψγ0 ψ : = q Q a~†k,s |0i = +q a~†k,s |0i (particle) , † † b~p,r : ≡ −b~q,s : b~p,r b~q,s d3 p (2π )3 ∑ s=1,2 a~†p,s a~p,s − b~†p,s b~p,s † † Q b~k,s |0i = −q b~k,s |0i (antiparticle) 457 The symmetry principle gauge invariance dictates interactions To make L0 invariant under local ≡ gauge transformations of U(1): ψ( x ) 7→ ψ0 ( x ) = e−iqθ ( x) ψ( x ) , θ = θ (x) ∈ R perform the minimal substitution: ∂µ → Dµ = ∂µ + ieqAµ (covariant derivative) where a gauge field Aµ ( x ) is introduced transforming as: 1 Aµ ( x ) 7→ A0µ ( x ) = Aµ ( x ) + ∂µ θ ( x ) e ⇐ Dµ ψ 7→ e−iqθ ( x) Dµ ψ ψ Dψ / inv. ⇒ The new Lagrangian contains interactions between ψ and Aµ : ( coupling e Lint = −eq ψγµ ψAµ ∝ charge q (= −e jµ Aµ ) 458 The symmetry principle gauge invariance dictates interactions Dynamics for the gauge field ⇒ add gauge invariant kinetic term: (Maxwell) 1 L1 = − Fµν F µν 4 ⇐ Fµν = ∂µ Aν − ∂ν Aµ 7→ Fµν The full U(1) gauge invariant Lagrangian for a fermion field ψ( x ) reads: Lsym 1 = ψ (i D / − m)ψ − Fµν F µν 4 (= L0 + Lint + L1 ) The same applies to a complex scalar field φ( x ): 1 Lsym = ( Dµ φ)† D µ φ − m2 φ† φ − λ(φ† φ)2 − Fµν F µν 4 459 The symmetry principle non-Abelian gauge theories A general gauge symmetry group G is an N-dimensional compact Lie group g∈G, θ a = θ a (x) ∈ R , −iT a θ a ~ g( θ ) = e , T a = Hermitian generators , Tr{ T a T b } ≡ 21 δab , a = 1, . . . , N [ T a , T b ] = i f abc T c structure constants: (Lie algebra) f abc = 0 Abelian f abc 6= 0 non-Abelian ⇒ Finite-dimensional irreducible representations are unitary: d-multiplet : d × d matrices : Ψ( x ) 7→ Ψ0 ( x ) = U (~θ )Ψ( x ) , ψ 1 . Ψ = .. ψd U (~θ ) [given by { T a } algebra representation] 460 The symmetry principle Examples: non-Abelian gauge theories G N Abelian U(1) 1 Yes SU(n) n2 − 1 No (n × n unitary matrices with det = 1) • U(1): 1 generator (q), one-dimensional irreps only • SU(2): 3 generators f abc = e abc (Levi-Civita symbol) ◦ Fundamental irrep (d = 2): T a = 12 σ a (3 Pauli matrices) a )bc = −i f abc ◦ Adjoint irrep (d = N = 3): ( Tadj • SU(3): 8 generators √ = 1, = = 23 , f 147 = f 156 = f 246 = f 247 = f 345 = − f 367 = ◦ Fundamental irrep (d = 3): T a = 12 λ a (8 Gell-Mann matrices) a )bc = −i f abc ◦ Adjoint irrep (d = N = 8): ( Tadj f 123 f 458 f 678 1 2 (for SU(n): f abc totally antisymmetric) 461 The symmetry principle non-Abelian gauge theories To make L0 invariant under local ≡ gauge transformations of G: Ψ( x ) 7→ Ψ0 ( x ) = U (~θ )Ψ( x ) , ~θ = ~θ ( x ) ∈ R substitute the covariant derivative: eµ , ∂µ → Dµ = ∂µ − igW e µ ≡ T a Wµa W where a gauge field Wµa ( x ) per generator is introduced, transforming as: i 0 † e e e Wµ ( x ) 7→ Wµ ( x ) = U Wµ ( x )U − (∂µ U )U † g ⇐ Dµ Ψ 7→ UDµ Ψ Ψ DΨ / inv. ⇒ The new Lagrangian contains interactions between Ψ and Wµa : ( coupling g Lint = g Ψγµ T a ΨWµa ∝ charge T a (= g ja Wµa ) µ 462 The symmetry principle non-Abelian gauge theories Dynamics for the gauge fields ⇒ add gauge invariant kinetic terms: (Yang-Mills) LYM 1 n e e µν o 1 a a,µν = − Tr Wµν W = − Wµν W 2 4 ⇐ e µν 7→ U W e µν U † W e µν ≡ ∂µ W e ν − ∂ν W e µ − ig[W e µ, W e ν] W ⇒ a = ∂µ Wνa − ∂ν Wµa + g f abc Wµb Wνc Wµν ⇒ LYM contains cubic and quartic self-interactions of the gauge fields Wµa : 1 Lkin = − (∂µ Wνa − ∂ν Wµa )(∂µ W a,ν − ∂ν W a,µ ) 4 1 Lcubic = − g f abc (∂µ Wνa − ∂ν Wµa )W b,µ W c,ν 2 1 Lquartic = − g2 f abe f cde Wµa Wνb W c,µ W d,ν 4 463 Quantization of gauge theories propagators The (Feynman) propagator of a scalar field: ˆ † D ( x − y) = h0| T {φ( x )φ (y)} |0i = i d4 p −ip·( x −y) e (2π )4 p2 − m2 + ie is a Green’s function of the Klein-Gordon operator: 2 4 (x + m ) D ( x − y) = −iδ ( x − y) ⇔ e ( p) = D i p2 − m2 + ie The propagator of a fermion field: ˆ S( x − y) = h0| T {ψ( x )ψ(y)} |0i = (i/ ∂ x + m) d4 p i −ip·( x −y) e (2π )4 p2 − m2 + ie is a Green’s function of the Dirac operator: 4 (i∂ / x − m)S( x − y) = iδ ( x − y) ⇔ Se( p) = i / p − m + ie 464 Quantization of gauge theories propagators BUT the propagator of a gauge field cannot be defined unless L is modified: (e.g. modified Maxwell) Euler-Lagrange: 1 1 L = − Fµν F µν − (∂µ Aµ )2 4 2ξ ∂L ∂L − ∂µ =0 ∂Aν ∂(∂µ Aν ) ⇒ gµν − 1 − 1 ξ ∂µ ∂ν Aµ = 0 – In momentum space the propagator is the inverse of: k k 1 i µ ν e µν (k ) = kµ kν ⇒ D −k2 gµν + 1 − − g + ( 1 − ξ ) µν ξ k2 + ie k2 ⇒ Note that (−k2 gµν + kµ kν ) is singular! ⇒ One may argue that L above will not lead to Maxwell equations . . . unless we fix a (Lorenz) gauge where: ∂µ Aµ = 0 ⇐ Aµ 7→ A0µ = Aµ + ∂µ Λ with ∂µ ∂µ Λ ≡ −∂µ Aµ 465 Quantization of gauge theories gauge fixing (Abelian case) The extra term is called Gauge Fixing: LGF = − 1 µ ( ∂ A µ )2 2ξ ⇒ modified L equivalent to Maxwell Lagrangian just in the gauge ∂µ Aµ = 0 ⇒ the ξ-dependence always cancels out in physical amplitudes Several choices for the gauge fixing term (simplify calculations): Rξ gauges (’t Hooft-Feynman gauge) ξ=1: (Landau gauge) ξ=0: igµν k2 + ie kµ kν i e Dµν (k) = 2 − gµν + 2 k + ie k e µν (k) = − D 466 Quantization of gauge theories gauge fixing (non-Abelian case) For a non-Abelian gauge theory, the gauge fixing terms: LGF = − ∑ a 1 (∂µ Wµa )2 2ξ a allow to define the propagators: ab e µν (k) = D kµ kν iδab − gµν + (1 − ξ a ) 2 k2 + ie k BUT, unlike the Abelian case, this is not the end of the story . . . 467 Quantization of gauge theories Faddeev-Popov ghosts (?) Add Faddeev-Popov ghost fields c a ( x ), a = 1, . . . , N: adj LFP = (∂µ c a )( Dµ ) ab cb = (∂µ c a )(∂µ c a − g f abc cb Wµc ) ⇐ adj c Dµ = ∂µ − igTadj Wµc Computational trick: anticommuting scalar fields, just in loops as virtual particles e ab (k ) = D iδab k2 + ie [(−1) sign for closed loops! (like fermions)] ⇒ Faddeev-Popov ghosts needed to preserve gauge symmetry: = i( gµν k2 − k µ k ν )Π(k2 ) ⇒ Faddeev-Popov ghosts needed to preserve unitarity at the loop level: qq̄ → qq̄ 468 Quantization of gauge theories complete Lagrangian Then the complete quantum Lagrangian is Lsym + LGF + LFP ⇒ Note that in the case of a massive vector field (Proca) 1 1 2 µν L = − Fµν F + M Aµ Aµ 4 2 is not gauge invariant – The propagator is: e µν (k) = D i k2 − M2 + ie − gµν + µ ν k k M2 469 2. Spontaneous Symmetry Breaking 470 Spontaneous Symmetry Breaking discrete symmetry Consider a real scalar field φ( x ) with Lagrangian: 1 1 λ L = (∂µ φ)(∂µ φ) − µ2 φ2 − φ4 invariant under φ 7→ −φ 2 2 4 ⇒ 1 2 H = (φ̇ + (∇φ)2 ) + V (φ) 2 1 2 2 1 4 V = µ φ + λφ 2 4 µ2 , λ ∈ R (Real/Hermitian Hamiltonian) and λ > 0 (existence of a ground state) (a) µ2 > 0: min of V (φ) at φcl = 0 r (b) µ2 < 0: min of V (φ) at φcl = v ≡ ± – A quantum field must have v = 0 a |0i = 0 − µ2 , in QFT h0| φ |0i = v 6= 0 (VEV) λ ⇒ φ( x ) ≡ v + η ( x ) , h0| η |0i = 0 471 Spontaneous Symmetry Breaking discrete symmetry At the quantum level, the same system is described by η ( x ) with Lagrangian: 1 λ 4 µ 2 2 3 L = (∂µ η )(∂ η ) − λv η − λvη − η 2 4 √ (mη = 2λ v) not invariant under η 7→ −η ⇒ Lesson: L(φ) had the symmetry but the parameters can be such that the ground state of the Hamiltonian is not symmetric (Spontaneous Symmetry Breaking) ⇒ Note: One may argue that L(η ) exhibits an explicit breaking of the symmetry. However this is not the case since the coefficients of terms η 2 , η 3 and η 4 are determined by just two parameters, λ and v (remnant of the original symmetry) 472 Spontaneous Symmetry Breaking continuous symmetry Consider a complex scalar field φ( x ) with Lagrangian: L = (∂µ φ† )(∂µ φ) − µ2 φ† φ − λ(φ† φ)2 invariant under U(1): φ 7→ e−iqθ φ r − µ2 v 2 λ > 0, µ < 0 : h0| φ |0i ≡ √ , |v| = λ 2 Take v ∈ R+ . In terms of quantum fields: 1 φ( x ) ≡ √ [v + η ( x ) + iχ( x )], 2 h0| η |0i = h0| χ |0i = 0 1 1 λ 1 L = (∂µ η )(∂µ η ) + (∂µ χ)(∂µ χ) − λv2 η 2 − λvη (η 2 + χ2 ) − (η 2 + χ2 )2 + λv4 2 2 4 4 Note: if veiα (complex) replace η by (η cos α − χ sin α) and χ by (η sin α + χ cos α) ⇒ The actual quantum Lagrangian L(η, χ) is not invariant under U(1) √ U(1) broken ⇒ one scalar field remains massless: mη = 2λ v, mχ = 0 473 Spontaneous Symmetry Breaking continuous symmetry Another example: consider a real scalar SU(2) triplet Φ( x ) a a 1 λ 1 L = (∂µ ΦT )(∂µ Φ) − µ2 ΦT Φ − (ΦT Φ)2 inv. under SU(2): Φ 7→ e−iT θ Φ 2 2 4 that for λ > 0, µ2 < 0 acquires a VEV h0| ΦT Φ |0i = v2 (µ2 = −λv2 ) ϕ1 ( x ) 1 √ ( ϕ1 + iϕ2 ) Assume Φ( x ) = ϕ2 ( x ) and define ϕ ≡ 2 v + ϕ3 ( x ) λ 1 µ 2 2 † 2 † 2 2 1 L = (∂µ ϕ )(∂ ϕ) + (∂µ ϕ3 )(∂ ϕ3 ) − λv ϕ3 − λv(2ϕ ϕ + ϕ3 ) ϕ3 − (2ϕ ϕ + ϕ3 ) + λv4 2 4 4 † µ ⇒ Not symmetric under SU(2) but invariant under U(1): ϕ 7→ e−iqθ ϕ (q = arbitrary) ϕ3 7 → ϕ3 SU(2) broken to U(1) ⇒ 3 − 1 = 2 broken generators ( q = 0) ⇒ 2 (real) scalar fields (= 1 complex) remain massless: m ϕ = 0, m ϕ3 = √ 2λ v 474 Spontaneous Symmetry Breaking continuous symmetry ⇒ Goldstone’s theorem: [Nambu ’60; Goldstone ’61] The number of massless particles (Nambu-Goldstone bosons) is equal to the number of spontaneously broken generators of the symmetry ⇒ Hamiltonian symmetric under group G ⇒ By definition: H |0i = 0 [T a , H ] = 0 , a = 1, . . . , N H ( T a |0i) = T a H |0i = 0 – If |0i is such that T a |0i = 0 for all generators ⇒ non-degenerate minimum: the vacuum – If |0i is such that 0 a T |0i 6= 0 for some (broken) generators a0 ⇒ degenerate minimum: chose one (true vacuum) and ⇒ excitations (particles) from |0i to 0 a a e−iT θ 0 0 a a e−iT θ 0 |0i 6 = |0i |0i cost no energy: massless! 475 Spontaneous Symmetry Breaking gauge symmetry Consider a U(1) gauge invariant Lagrangian for a complex scalar field φ( x ): 1 L = − Fµν F µν + ( Dµ φ)† ( D µ φ) − µ2 φ† φ − λ(φ† φ)2 , 4 Dµ = ∂µ + ieqAµ 1 inv. under φ( x ) 7→ = , Aµ ( x ) 7→ = Aµ ( x ) + ∂µ θ ( x ) e If λ > 0, µ2 < 0, the L in terms of quantum fields η and χ with null VEVs: φ0 ( x ) e−iqθ ( x) φ( x ) 1 φ( x ) ≡ √ [v + η ( x ) + iχ( x )] , µ2 = −λv2 2 1 1 1 L = − Fµν F µν + (∂µ η )(∂µ η ) + (∂µ χ)(∂µ χ) 4 2 2 λ 1 − λv2 η 2 − λvη (η 2 + χ2 ) − (η 2 + χ2 )2 + λv4 4 4 + eqvAµ ∂µ χ + eqAµ (η∂µ χ − χ∂µ η ) 1 1 2 µ + (eqv) Aµ A + (eq)2 Aµ Aµ (η 2 + 2vη + χ2 ) 2 2 A0µ ( x ) Comments: √ (i) mη = 2λ v mχ = 0 (ii) M A = |eqv| (!) (iii) Term Aµ ∂µ χ (?) (iv) Add LGF 476 Spontaneous Symmetry Breaking gauge symmetry Removing the cross term (no mixing in propagators) and new gauge fixing: LGF = − 1 ( ∂ µ A µ − ξ M A χ )2 2ξ total deriv. ⇒ L + LGF }| { z 1 1 1 2 µ µ µν µ 2 = − Fµν F + M A Aµ A − (∂µ A ) + M A ∂µ ( A χ) 4 2 2ξ 1 1 µ + (∂µ χ)(∂ χ) − ξ M2A χ2 + . . . 2 2 and the propagators of Aµ and χ are: " e µν (k ) = D e (k) = D kµ kν i − gµν + (1 − ξ ) 2 2 2 k − M A + ie k − ξ M2A # i k2 − ξ M2A + ie ⇒ χ has a gauge-dependent mass: actually it is not a physical field! 477 Spontaneous Symmetry Breaking gauge symmetry A more transparent parameterization of the quantum field φ is iqζ ( x )/v φ( x ) ≡ e 1 √ [v + η ( x )] , 2 h0| η |0i = h0| ζ |0i = 0 1 φ( x ) 7→ e−iqζ ( x)/v φ( x ) = √ [v + η ( x )] 2 1 1 µν L = − Fµν F + (∂µ η )(∂µ η ) 4 2 λ 4 1 4 2 2 3 − λv η − λvη − η + λv 4 4 1 1 + (eqv)2 Aµ Aµ + (eq)2 Aµ Aµ (2vη + η 2 ) 2 2 ⇒ ζ gauged away! Comments: √ (i) mη = 2λ v (ii) M A = |eqv| (iii) No need for LGF ⇒ This is the unitary gauge (ξ → ∞): just physical fields 478 Spontaneous Symmetry Breaking ⇒ Brout-Englert-Higgs mechanism: gauge symmetry [Higgs ’64; Englert, Brout ’64; [Anderson ’62] Guralnik, Hagen, Kibble ’64] The gauge bosons associated with the spontaneously broken generators become massive, the corresponding would-be Goldstone bosons are unphysical and can be absorbed, the remaining massive scalars (Higgs bosons) are physical (the smoking gun!) • The would-be Goldstone bosons are ‘eaten up’ by the gauge bosons (‘get fat’) and disappear (gauge away) in the unitary gauge (ξ → ∞) ⇒ Degrees of freedom are preserved Before SSB: 2 (massless gauge boson) + 1 (Goldstone boson) After SSB: 3 (massive gauge boson) + 0 (absorbed would-be Goldstone) • For loops calculations, ’t Hooft-Feynman gauge (ξ = 1) is more convenient: ⇒ Gauge boson propagators are simpler, but ⇒ Goldstone bosons must be included in internal lines 479 Spontaneous Symmetry Breaking gauge symmetry Comments: • After SSB the FP ghost fields (unphysical) acquire a gauge-dependent mass, due to interactions with the scalar field(s): e ab (k ) = D iδab k2 − ξ M2A + ie • Gauge theories with SSB are renormalizable [’t Hooft, Veltman ’72] UV divergences appearing at loop level can be removed by renormalization of parameters and fields of the classical Lagrangian ⇒ predictive! 480 3. The Standard Model 481 [Glashow ’61; SM: Gauge group and particle reps Weinberg ’67; [D. Gross, F. Wilczek; Salam ’68] D. Politzer ’73] The Standard Model is a gauge theory based on the local symmetry group: SU(3)c ⊗ SU(2) L ⊗ U(1)Y → SU(3)c ⊗ U(1)Q {z } | {z } | | {z } strong em electroweak with the electroweak symmetry spontaneously broken to the electromagnetic U(1)Q symmetry by the Brout-Englert-Higgs mechanism (ingredients: 12 flavors + 12 gauge bosons + H) The particle (field) content: I II III Q f uuu ccc ttt f0 ddd sss bbb 2 3 − 13 f νe νµ ντ 0 f0 e µ τ −1 Fermions spin 1 2 Quarks Leptons Qf = Qf0 + 1 Bosons spin 1 8 gluons W± , Z γ spin 0 Higgs strong interaction weak interaction em interaction origin of mass 482 SM: Gauge group and particle representations The fields lay in the following representations (color, weak isospin, hypercharge): Multiplets SU(3)c ⊗ SU(2) L ⊗ U(1)Y I Quarks (3, 2, 61 ) uL dL Higgs c L sL III t L bL Q = T3 + Y 2 3 − 13 = = 1 2 − 21 + 1 6 1 6 + (3, 1, 32 ) uR cR tR 2 3 = 0+ 2 3 (3, 1, − 31 ) dR sR bR − 13 = 0− 1 3 Leptons II (1, 2, − 21 ) νeL eL νµ L ντL 0= µL τL −1 = 1 2 − 12 − − 1 2 1 2 (1, 1, −1) eR µR τR −1 = 0−1 (1, 1, 0) νeR νµR ντR 0= 0+0 (1, 2, 21 ) (3 families of quarks & leptons) ⇒ Electroweak (QFD): SU(2) L ⊗U(1)Y Strong (QCD): SU(3)c 483 4. Electroweak interactions 484 The EWSM with one family (of quarks or leptons) Consider two massless fermion fields f ( x ) and f 0 ( x ) with electric charges Q f = Q f 0 + 1 in three irreps of SU(2) L ⊗U(1)Y : L0F 0 = i f ∂/f + i f ∂/f 0 f R,L = iΨ1 ∂/Ψ1 + iψ2 ∂/ψ2 + iψ3 ∂/ψ3 ; 1 = (1 ± γ5 ) f , 2 fL , Ψ1 = f L0 | {z } (2, y1 ) 0 f R,L 1 = (1 ± γ5 ) f 0 2 ψ2 = f R , |{z} (1, y2 ) ψ3 = f R0 |{z} (1, y3 ) To get a Langrangian invariant under gauge transformations: Ψ1 ( x ) 7 → U L ( x )e −iy1 β( x ) Ψ1 ( x ), UL ( x ) = e −iT i αi ( x ) , σi T = 2 i (weak isospin gen.) ψ2 ( x ) 7→ e−iy2 β( x) ψ2 ( x ) ψ3 ( x ) 7→ e−iy3 β( x) ψ3 ( x ) 485 The EWSM with one family covariant derivatives ⇒ Introduce gauge fields Wµi ( x ) (i = 1, 2, 3) and Bµ ( x ) through covariant derivatives: i e µ + ig0 y1 Bµ )Ψ1 , W e µ ≡ σ Wµi Dµ Ψ1 = (∂µ − igW 2 ⇒ LF Dµ ψ2 = (∂µ + ig0 y2 Bµ )ψ2 0 Dµ ψ3 = (∂µ + ig y3 Bµ )ψ3 where two couplings g and g0 have been introduced and e µ ( x ) 7 → U L ( x )W e µ ( x )U † ( x ) − i (∂µ UL ( x ))U † ( x ) W L L g 1 Bµ ( x ) 7→ Bµ ( x ) + 0 ∂µ β( x ) g ⇒ Add gauge invariant kinetic terms for the gauge fields LYM 1 i 1 i,µν = − Wµν W − Bµν Bµν , 4 4 j i Wµν = ∂µ Wνi − ∂ν Wµi + geijk Wµ Wνk (include self-interactions of the SU(2) gauge fields) and Bµν = ∂µ Bν − ∂ν Bµ 486 The EWSM with one family mass terms forbidden ⇒ Note that mass terms are not invariant under SU(2) L ⊗U(1)Y , since LH and RH components do not transform the same: m f f = m( f L f R + f R f L ) ⇒ Mass terms for the gauge bosons are not allowed either ⇒ Next the different types of interactions are analyzed 487 The EWSM with one family charged current interactions e µ Ψ1 , L F ⊃ gΨ1 γµ W Wµ3 1 e µ = √ W 2 2Wµ √ 2Wµ† −Wµ3 ⇒ charged current interactions of LH fermions with complex vector boson field Wµ : LCC g √ f γµ (1 − γ5 ) f 0 Wµ† + h.c. , = 2 2 ℓ W 1 √ Wµ ≡ (Wµ1 + iWµ2 ) 2 d W ν u ν u W W ℓ d 488 The EWSM with one family neutral current interactions The diagonal part of e µ Ψ1 − g0 Bµ (y1 Ψ1 γµ Ψ1 + y2 ψ γµ ψ2 + y3 ψ γµ ψ3 ) L F ⊃ gΨ1 γµ W 2 3 ⇒ neutral current interactions with neutral vector boson fields Wµ3 and Bµ We would like to identify Bµ with the photon field Aµ but that requires: y1 = y2 = y3 and g0 y j = eQ j ⇒ impossible! ⇒ Since they are both neutral, try a combination: Wµ3 c − sW Z sW ≡ sin θW , cW ≡ cos θW ≡ W µ θW = weak mixing angle Bµ sW cW Aµ 3 LNC = with T3 ∑ ψj γ j =1 µ n h 3 0 i h 3 0 i o − gsW T + g cW y j Aµ + gcW T − g sW y j Zµ ψj σ3 = (0) the third weak isospin component of the doublet (singlet) 2 489 The EWSM with one family neutral current interactions To make Aµ the photon field: e = gsW = g0 cW Q = T3 + Y where the electric charge operator is: Q1 = Qf 0 0 Qf0 , Q2 = Q f , Q3 = Q f 0 ⇒ Electroweak unification: g of SU(2) and g0 of U(1) are related ⇒ The hyperchages are fixed in terms of electric charges and weak isospin: y1 = Q f − 1 1 = Qf0 + , 2 2 y2 = Q f , LQED = −e Q f f γµ f Aµ y3 = Q f 0 + ( f → f 0) ⇒ RH neutrinos are sterile: y2 = Q f = 0 490 The EWSM with one family neutral current interactions The Zµ is the neutral weak boson field: Z LNC = e f γµ (v f − a f γ5 ) f Zµ with vf = 2 T 3f − 2Q f sW L 2sW cW , af = + ( f → f 0) T 3f L 2sW cW The complete neutral current Lagrangian reads: Z LNC = LQED + LNC f γ f Z f = u, d, ℓ f = u, d, ν, ℓ 491 The EWSM with one family gauge boson self-interactions Cubic: LYM o iecW n µν † † ⊃ L3 = − W µ Z ν − Wµ† Wν Z µν W Wµ Zν − Wµν sW o n † W µ Aν − Wµ† Wν F µν + ie W µν Wµ† Aν − Wµν with Fµν = ∂µ Aν − ∂ν Aµ Zµν = ∂µ Zν − ∂ν Zµ W γ Wµν = ∂µ Wν − ∂ν Wµ W Z W W 492 The EWSM with one family gauge boson self-interactions Quartic: LYM ⊃ L4 = − e2 2 2sW Wµ† W µ 2 − Wµ† W µ† Wν W ν o 2 n e 2 cW ν ν † µ † µ − 2 Wµ W Zν Z − Wµ Z Wν Z sW o e 2 cW n + 2Wµ† W µ Zν Aν − Wµ† Z µ Wν Aν − Wµ† Aµ Wν Z ν sW n o 2 † µ ν † µ ν − e Wµ W Aν A − Wµ A Wν A W W W γ W γ W Z W W W γ W Z W Z Note: even number of W and no vertex with just γ or Z 493 Electroweak symmetry breaking setup Out of the 4 gauge bosons of SU(2) L ⊗U(1)Y with generators T 1 , T 2 , T 3 , Y we need all to be broken except the combination Q = T 3 + Y so that Aµ remains massless and the other three gauge bosons get massive after SSB ⇒ Introduce a complex SU(2) Higgs doublet φ+ 1 0 , h0| Φ |0i = √ Φ= 0 2 v φ with gauge invariant Lagrangian (µ2 = −λv2 ): L Φ = ( Dµ Φ ) † D µ Φ − µ 2 Φ † Φ − λ ( Φ † Φ ) 2 , take yΦ = 1 2 ⇒ e µ + ig0 yΦ Bµ )Φ Dµ Φ = (∂µ − igW 0 3 =0 ( T + Y ) |0i = Q v { T 1 , T 2 , T 3 − Y } |0i 6 = 0 494 Electroweak symmetry breaking gauge boson masses Quantum fields in the unitary gauge: σi i Φ( x ) ≡ exp i θ ( x ) 2v 0 1 √ 2 v + H (x) 0 σi i 1 Φ( x ) 7→ exp −i θ ( x ) Φ( x ) = √ 2v 2 v + H (x) ⇒ 1 physical Higgs field H (x) 3 would-be Goldstones θ i ( x ) gauged away – The 3 dof apparently lost become the longitudinal polarizations of W± and Z that get massive after SSB: LΦ ⊃ L M g2 v2 † µ g2 v2 = Wµ W + 2 Zµ Z µ 4} 8cW | {z | {z } 2 MW ⇒ MW = MZ cW 1 = gv 2 1 2 2 MZ 495 Electroweak symmetry breaking Higgs sector ⇒ In the unitary gauge (just physical fields): LΦ = L H + L M + L HV 2 + 14 λv4 1 2 2 M2H 3 M2H 4 1 µ H − 2H , L H = ∂µ H∂ H − M H H − 2 2 2v 8v MH = q H H H H H H −2µ2 = √ 2λ v H 2 L M + L HV 2 = MW Wµ† W µ W W 2 H2 1+ H+ 2 v v H H 2 1 2 2 H + MZ Zµ Z µ 1 + H + 2 2 v v Z Z H Z Z H H W W H 496 Electroweak symmetry breaking Higgs sector Quantum fields in the Rξ gauges: φ+ ( x ) , Φ( x ) = 1 √ [ v + H ( x ) + iχ ( x )] φ− ( x ) = [φ+ ( x )]∗ 2 LΦ = L H + L M + L HV 2 1 4 + λv 4 1 + (∂µ φ+ )(∂µ φ− ) + (∂µ χ)(∂µ χ) 2 + iMW (Wµ ∂µ φ+ − Wµ† ∂µ φ− ) + MZ Zµ ∂µ χ + trilinear interactions [SSS, SSV, SVV] + quadrilinear interactions [SSSS, SSVV] 497 Electroweak symmetry breaking gauge fixing To remove the cross terms Wµ ∂µ φ+ , Wµ† ∂µ φ− , Zµ ∂µ χ and define propagators add: LGF = − 1 1 1 ( ∂ µ Z µ − ξ Z M Z χ )2 − ( ∂ µ A µ )2 − |∂µ W µ + iξ W MW φ− |2 2ξ γ 2ξ Z ξW ⇒ Massive propagators for gauge and (unphysical) would-be Goldstone fields: k k i µ ν γ e µν − gµν + (1 − ξ γ ) 2 D (k) = 2 k + ie k k k i µ ν Z (k) = e µν D − g + ( 1 − ξ ) ; µν Z 2 k2 − M2Z + ie k − ξ Z M2Z k k i µ ν W (k) = e µν D − g + ( 1 − ξ ) ; µν W 2 + ie 2 k2 − MW k2 − ξ W MW e χ (k) = D i k2 − ξ Z M2Z + ie e φ (k) = D i 2 + ie k2 − ξ W MW (’t Hooft-Feynman gauge: ξ γ = ξ Z = ξ W = 1) 498 Electroweak symmetry breaking Faddeev-Popov ghosts (?) The SM is a non-Abelian theory ⇒ add Faddeev-Popov ghosts ci ( x ) (i = 1, 2, 3) 1 c1 ≡ √ ( u + + u − ) , 2 i c2 ≡ √ ( u + − u − ) , 2 c 3 ≡ cW u Z − sW u γ LFP = (∂µ ci )(∂µ ci − geijk c j Wµk ) + interactions with Φ | {z } | {z } U kinetic + [UUV] U masses + [SUU] ⇒ Massive propagators for (unphysical) FP ghost fields: e uγ ( k ) = D i , k2 + ie e uZ (k) = D i , 2 2 k − ξ Z MZ + ie e u± ( k ) = D i 2 + ie k2 − ξ W MW (’t Hooft-Feynman gauge: ξ Z = ξ W = 1) 499 Electroweak symmetry breaking Faddeev-Popov ghosts (?) LFP = (∂µ uγ )(∂µ uγ ) + (∂µ u Z )(∂µ u Z ) + (∂µ u+ )(∂µ u+ ) + (∂µ u− )(∂µ u− ) iecW µ µ µ µ u ) u − ( ∂ u ) u ] A − [( ∂ u ) u − ( ∂ u− )u− ] Zµ + ie [( ∂ + + − − µ + + s W iecW µ µ µ † [UUV] − ie[(∂ u+ )uγ − (∂ uγ )u− ]Wµ + [(∂ u+ )u Z − (∂µ u Z )u− ]Wµ† sW + ie[(∂µ u )u − (∂µ u )u ]W − iecW [(∂µ u )u − (∂µ u )u ]W − γ γ + µ − Z µ Z + sW 2 2 − ξ Z M2Z u Z u Z − ξ W MW u+ u+ − ξ W MW u− u− 1 1 + − Hu − φ u + φ u+ u − eξ M − Z Z Z Z 2sW cW 2sW !# " 2 − s2 cW 1 + W [SUU] − eξ W MW u+ ( H + iχ)u+ − φ uγ − uZ 2sW 2sW cW " !# 2 2 cW − sW 1 − − eξ W MW u− ( H − iχ)u− − φ uγ − uZ 2sW 2sW cW 500 Electroweak symmetry breaking fermion masses We need masses for quarks and leptons without breaking gauge symmetry ⇒ Introduce Yukawa interactions: φ+ φ 0∗ uR LY = − λ d u L d L d R − λ u u L d L φ0 −φ− φ+ φ 0∗ νR + h.c. − λ` ν L ` L ` R − λν ν L ` L φ0 −φ− 0∗ + φ φ transforms under SU(2) like Φ = where Φc ≡ iσ2 Φ∗ = −φ− φ0 ⇒ After EW SSB, fermions acquire masses: o n 1 LY ⊃ − √ (v + H ) λd dd + λu uu + λ` `` + λν νν 2 ⇒ v mf = λf √ 2 501 Additional generations Yukawa matrices There are 3 generations of quarks and leptons in Nature. They are identical copies with the same properties under SU(2) L ⊗ U(1)Y differing only in their masses ⇒ Take a general case of nG generations and let u jI , d jI , νjI , ` jI be the members of family j (j = 1, . . . , nG ). Superindex I (interaction basis) was omitted so far ⇒ General gauge invariant Yukawa Lagrangian: + 0∗ φ φ I ( d ) (u) I I I LY = − ∑ λ d + λ u jL d jL kR jk jk ukR 0 − φ −φ jk + 0∗ φ φ I (`) ( ν ) I I λ ν I + h.c. + + ν jL ` jL 0 λ jk `kR kR jk − −φ φ (d) (u) (`) (ν) where λ jk , λ jk , λ jk , λ jk are arbitrary Yukawa matrices 502 Additional generations mass matrices After EW SSB, in nG -dimensional matrix form: n o H I I I I I I I I LY ⊃ − 1 + d L Md d R + u L Mu u R + l L M` l R + ν L Mν ν R + h.c. v with mass matrices (d) v (Md )ij ≡ λij √ 2 (Mu )ij ≡ (u) λij v √ 2 (M` )ij ≡ (`) λij v √ 2 (Mν )ij ≡ (ν) λij v √ 2 ⇒ Diagonalization determines mass eigenstates d j , u j , ` j , νj in terms of interaction states d jI , u jI , ` jI , νjI , respectively ⇒ Each M f can be written as M f = H f U f = S†f M f S f U f ⇐⇒ M f M†f = H2f = S†f M2f S f q with H f ≡ M f M†f a Hermitian positive definite matrix and U f unitary – Every H f can be diagonalized by a unitary matrix S f – The resulting M f is diagonal and positive definite 503 Additional generations fermion masses and mixings In terms of diagonal mass matrices (mass eigenstate basis): Md = diag(md , ms , mb , . . .) , M` = diag(me , mµ , mτ , . . .) , LY ⊃ − 1 + n H v Mu = diag(mu , mc , mt , . . .) Mν = diag(mνe , mνµ , mντ , . . .) d Md d + u Mu u + l M` l + ~ν Mν ~ν o where fermion couplings to Higgs are proportional to masses and d L ≡ Sd d LI d R ≡ Sd Ud d RI u L ≡ Su u LI u R ≡ Su Uu u RI l L ≡ S` l LI l R ≡ S` U` l RI νL ≡ Sν νLI νR ≡ Sν Uν νRI Neutral Currents preserve chirality ⇒ LNC does not change flavor I I I I f f = f f and f f = f f L L L L R R R R ⇒ GIM mechanism [Glashow, Iliopoulos, Maiani ’70] 504 Additional generations quark sector However, in Charged Currents (also chirality preserving and only LH): u LI d LI = u L Su S†d d L = u L Vd L with V ≡ Su S†d the (unitary) CKM mixing matrix [Cabibbo ’63; Kobayashi, Maskawa ’73] g LCC = √ ∑ ui γµ (1 − γ5 ) Vij d j Wµ† + h.c. 2 2 ij ⇒ ui dj W Vij W ui V∗ij dj ⇒ If ui or d j had degenerate masses one could choose Su = Sd (field redefinition) and flavor would be conserved in the quark sector. But they are not degenerate ⇒ Su and Sd are not observable. Just masses and CKM mixings are observable 505 Additional generations quark sector How many physical parameters in this sector? • Quark masses and CKM mixings determined by mass (or Yukawa) matrices • A general nG × nG unitary matrix, like the CKM, is given by n2G real parameters = nG (nG − 1)/2 moduli + nG (nG + 1)/2 phases Some phases are unphysical since they can be absorbed by field redefinitions: ui → eiφi ui , d j → eiθ j d j ⇒ Vij → Vij ei(θ j −φi ) Therefore 2nG − 1 unphysical phases and the physical parameters are: (nG − 1)2 = nG (nG − 1)/2 moduli + (nG − 1)(nG − 2)/2 phases 506 Additional generations quark sector ⇒ Case of nG = 2 generations: 1 parameter, the Cabibbo angle θC : cos θC sin θC V= − sin θC cos θC ⇒ Case of nG = 3 generations: 3 angles + 1 phase. In the standard parameterization: Vud Vus Vub V= Vcd Vtd Vcs Vts 1 0 0 c13 0 s13 Vcb = 0 c23 s23 0 1 Vtb 0 −s23 c23 −s13 eiδ13 0 c12 c13 s12 c13 = −s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 with cij ≡ cos θij ≥ 0, sij ≡ sin θij ≥ 0 e−iδ 0 −s 12 c12 0 0 0 1 c13 s13 e−iδ13 s23 c13 c23 c13 (i < j = 1, 2, 3) c12 s12 0 δ13 only source ⇒ of CP violation in the SM ! and 0 ≤ δ13 ≤ 2π 507 Complete SM Lagrangian fields and interactions L = L F + LYM + LΦ + LY + LGF + LFP • Fields: [F] fermions [S] scalars [V] vector bosons • Interactions: [FFV] [U] unphysical ghosts [FFS] [SSV] [SVV] [VVV] [VVVV] [SSS] [SSSS] [SUU] [UUVV] [SSVV] 508 Complete SM Lagrangian Feynman rules Feynman rules for generic couplings normalized to e (all momenta incoming): (iL) [FFVµ ] [FFS] [SVµ Vν ] [S( p1 )S( p2 )Vµ ] [Vµ (k1 )Vν (k2 )Vρ (k3 )] [Vµ (k1 )Vν (k2 )Vρ (k3 )Vσ (k4 )] ie( gS − gP γ5 ) = ie(c L PL + c R PR ) ieKgµν ieG ( p1 − p2 )µ ieJ gµν (k2 − k1 )ρ + gνρ (k3 − k2 )µ + gµρ (k1 − k3 )ν 2 ie C 2gµν gρσ − gµρ gνσ − gµσ gνρ ie2 C2 gµν also [UUVV] [SSS] ieC3 also [SUU] [SSSS] ie2 C4 [SSVµ Vν ] Note: g L,R = gV ± g A ieγµ ( gV − g A γ5 ) = ieγµ ( g L PL + gR PR ) Attention to symmetry factors! c L,R = gS ± gP http://www.ugr.es/local/jillana/SM/FeynmanRulesSM.pdf 509 Phenomenology Input parameters Parameters: 17 +9 = 1 1 1 1 9 +3 formal: g g0 v λ λf MW MZ practical: α MH mf 4 6 VCKM UPMNS where e = gsW = g0 cW and e2 α= 4π | 1 MW = gv 2 {z g, g0 , v M MZ = W cW } MH = √ 2λ v v mf = √ λf 2 ⇒ Many (more) experiments ⇒ After Higgs discovery, for the first time all parameters measured! 510 Phenomenology Input parameters Experimental values • Fine structure constant: α−1 = 137.035 999 074 (44) [Particle Data Group ’15] from Harvard cyclotron ( ge ) • The SM predicts MW < MZ in agreement with measurements: MZ = (91.1876 ± 0.021) GeV MW = (80.387 ± 0.016) GeV from LEP1/SLD from LEP2/Tevatron/LHC • Top quark mass: mt = (173.24 ± 0.95) GeV from Tevatron/LHC • Higgs boson mass: M H = (125.6 ± 0.4) GeV from LHC • ... 511 Phenomenology Observables and experiments Low energy observables • ν-nucleon (NuTeV) and νe (CERN) scattering: asymmetries CC/NC and ν/ν̄ 2 ⇒ sW • atomic parity violation (Ce, Tl, Pb): asymmetries eR,L N → eX due to Z-exchange between e and nucleus • muon decay (PSI): lifetime GF2 m5µ 1 2 2 = Γµ = /m f ( m µ) e τµ 192π 3 f ( x ) ≡ 1 − 8x + 8x3 − x4 − 12x2 ln x iM = √ ie 2sW 2 2 ⇒ sW ⇒ GF 2 ) Fermi theory (−q2 MW z }| { −igρδ 4GF GF πα ρ δ ρ eγ νL 2 νL γ µ ≡ i √ (eγ νL )(νL γρ µ) ; √ = 2 2 2 q − MW 2sW MW 2 2 512 Phenomenology Observables and experiments Low energy observables ⇒ Fermi constant provides the Higgs VEV (electroweak scale): √ −1/2 v= 2GF ≈ 246 GeV ⇒ Consistency checks: e.g. From muon lifetime: GF = 1.166 378 7(6) × 10−5 GeV−2 If one compares with (tree level result) G πα πα √F = 2 2 = 2 /M2 ) M2 2sW MW 2(1 − MW 2 Z W using measurements of MW , MZ and α there is a discrepance that disappears when quantum corrections are included 513 Phenomenology Observables and experiments e+ e− → f¯ f nh i 2 dσ fα = Nc β f 1 + cos2 θ + (1 − β2f ) sin2 θ G1 (s) dΩ 4s o +2( β2f − 1) G2 (s) + 2β f cos θ G3 (s) G1 (s) = Q2e Q2f + 2Qe Q f ve v f Reχ Z (s) + (v2e + a2e )(v2f + a2f )|χ Z (s)|2 G2 (s) = (v2e + a2e ) a2f |χ Z (s)|2 G3 (s) = 2Qe Q f ae a f Reχ Z (s) + 4ve v f ae a f |χ Z (s)|2 ⇐ A FB s f with χ Z (s) ≡ , N c = 1 (3) for f = lepton (quark), β f = velocity 2 s − MZ + iMZ Γ Z σ(s) = f Nc i 2πα2 h β f (3 − β2f ) G1 (s) − 3(1 − β2f ) G2 (s) , 3s βf = q 1 − 4m2f /s 514 Phenomenology Observables and experiments Z production (LEP1/SLD) MZ , Γ Z , σhad , A FB , A LR , Rb , Rc , R` 2 ⇒ M Z , sW from e+ e− → f¯ f at the Z pole (γ − Z interference vanishes). Neglecting m f : σhad Γ(e+ e− )Γ(had) = 12π M2Z Γ2Z Γ(had) Γ(`+ `− ) f αMZ 2 Γ(Z → f f¯) ≡ Γ( f f¯) = Nc (v f + a2f ) 3 Rb = Γ(bb̄) Γ(had) Rc = Γ(cc̄) Γ(had) R` = Forward-Backward and (if polarized e− ) Left-Right asymmetries due to Z: A FB σ − σB 3 Ae + Pe = F = Af σF + σB 4 1 + Pe Ae A LR σ − σR = Ae Pe = L σL + σR with A f ≡ 2v f a f v2f + a2f 515 Phenomenology Observables and experiments W-pair production (LEP2) e+ e− → WW → 4 f (+γ) W production (Tevatron/LHC) pp̄/pp → W → `ν` (+γ) ⇒ MW ⇒ MW Top-quark production (Tevatron/LHC) pp̄/pp → tt̄ → 6 f ⇒ mt 516 Observables and experiments Higgs production (LHC) pp → H + X and H decays to different channels ⇒ M H [VBF] gg fusion WW, ZZ fusion [ggF] [VBF] [VH] [VH] [ttH] Higgs-strahlung Higgs BR + Total Uncert [%] [ggF] tt̄ fusion 1 10-1 WW bb gg oo LHC HIGGS XS WG 2013 Phenomenology ZZ cc 10-2 aa Za 120 140 10-3 [ttH] µµ 10-4 80 100 160 180 200 MH [GeV] 517 5. Strong interactions 518 Strong interactions Properties Quantum Chromodynamics (QCD) is the theory of strong interactions Quarks and gluons are the fundamental dof but they never show up as free states: they are bound in hadrons (confinement): Baryons (q1 q2 q3 or q1 q2 q3 ) name Mesons content Q [e] p proton uud +1 p antiproton uud −1 n neutron ddu n antineutron ddu Λ lambda uds Λ antilambda uds . . . ∼ 120 . . . 0 m [GeV] name π0 0,938 π+ π− 0,939 K+ K− 0 1,116 (q1 q2 ) K0 K 0 content neutral pion charged pion charged kaon neutral kaon uu, dd Q [e] 0 ud +1 du −1 us +1 su −1 ds sd 0 m [GeV] 0,135 0,140 0,494 0,498 . . . ∼ 140 . . . and exotics (glueballs, tetraquarks, pentaquarks, . . . ) 519 Strong interactions Properties Strong interactions are responsible for: • Stability of nuclei (nucleon-nucleon interaction is a residual strong force) strong attraction is greater than electric repulsion • ∼ 99 % of nucleon mass is binding energy, i.e. most of the mass in everything! 520 QCD Lagrangian SU(3) gauge symmetry LQCD = ψ f i i D /ij − mδij {z | quarks 1 a a,µν ψ f j − Fµν F } |4 {z } (flavor diagonal) gluons a = ∂µ Aνa − ∂ν Aµa + gs f abc Abµ Acν Fµν (Anti–)quarks ψ f come in Nc = 3 colors (anticolors) and there are n f = 6 flavors: f = u, d, s, c, b, t (flavor index) ψfi fundamental irrep 3 (3̄) i = 1, . . . , Nc = 3 (color index) Gluons Aµa come in Nc2 − 1 = 8 combinations of color and anticolor: Aµa a = 1, . . . , Nc2 − 1 = 8 (color index) adjoint irrep 8 521 QCD Lagrangian SU(3) gauge symmetry LQCD = ψ f i i D /ij − mδij {z | quarks 1 a a,µν ψ f j − Fµν F } |4 {z } (flavor diagonal) gluons a = ∂µ Aνa − ∂ν Aµa + gs f abc Abµ Acν Fµν Quark kinetic terms and quark-gluon interactions come from covariant derivative: ( Dµ )ij = δij ∂µ − igs tija Aµa , tija 1 a = λij 2 (8 Gell-Mann matrices 3 × 3) Gluon kinetic terms and self-interactions fixed by SU(3) structure constants f abc : Lkin Lcubic Lquartic 1 = − (∂µ Aνa − ∂ν Aµa )(∂µ A a,ν − ∂ν A a,µ ) 4 1 = − gs f abc (∂µ Aνa − ∂ν Aµa )Ab,µ Ac,ν 2 1 = − gs2 f abe f cde Aµa Abν Ac,µ Ad,ν 4 522 QCD Lagrangian Feynman rules Quark and gluon external legs and propagators are as usual Vertices: (interactions with would-be Goldstones and Faddeev-Popov ghosts omitted here) 523 QCD About color charges Quarks carry color charge: Antiquarks carry anticolor charge: R ψ = ψ( x ) ⊗ G B ψ = ψ( x ) ⊗ R G B Gluons carry color and anticolor. A gluon emission repaints the quark: a, µ 1 0 1 0 e.g. ψi t1ij ψj ∼ 12 0 1 0 1 0 0 0 0 0 0 0 i j 524 QCD About color charges 3 ⊗ 3̄ = 1 ⊕ 8 8 gluons: (1 in 9 combinations is color-neutral) ( RR − GG RR + GG − 2BB If the color-singlet massless gluon state existed: RR + GG + BB it would give rise to a strong force of infinite range! Likewise, only color-singlet states can exist as free particles: q1 q̄2 q1 q2 q3 3 ⊗ 3̄ = 1 ⊕ 8 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 (here color-singlets are mesons) (here color-singlets are baryons) but q1 q2 color singlets do not exist, since 3 ⊗ 3 = 3̄ ⊕ 6 525 QCD About color charges t a = 12 λ a Color algebra (useful identities): 1 (convention) Tr(t t ) = TR δab , TR = 2 Nc2 − 1 a a tik tkj = CF δij , CF = 2Nc a b f acd f bcd = C A δab , a tija tkl C A = Nc 1 1 = δil δjk − δ δ 2 2Nc ij kl In QCD: Nc = 3 , (Fierz) 4 CF = , 3 CA = 3 ⇒ Since C A > CF , gluons have a larger color charge than quarks and therefore gluons interact more strongly 526 QCD About color charges Color flow: e.g. qq̄ → qq̄ jk → il (1) (2) (3) xx → xx xx → yy xy → xy xy → yx qq̄ → qq̄ 1 3 (1) f = (2) 1 f = 2 qq → qq jl → ik xx → xx xy → yx xy → xy xx → yy f (ijkl ) f ( xxxx ) = f (yxxy) = f ( xxyy) = f (yxyx ) = 1 3 1 2 − 16 (3) f =− 1 6 0 527 QED vs QCD running coupling All coupling constants run: g2 α≡ = α( Q2 ), where Q is the momentum scale of the process 4π Q2 ∂α = β(α) , 2 ∂Q β ( α ) ≡ − β 0 α2 (1 + β 1 α + β 2 α2 + . . . ) 2 α( Q ) = α( Q20 ) 1 + β 0 α( Q20 ) ln Q2 (Leading Order) Q20 Physically, this is related to the (anti-)screening of the fundamental charges by quantum fluctuations, depending on the sign of β 0 : e2 1 • In QED: αem = , β 0,QED (αem ) = − 4π 3π 33 − 2n f gs2 • In QCD: αs = , β 0,QCD (αs ) = 4π 12π (< 0) (> 0 for n f ≤ 16) 528 QED running coupling In QED, the fluctuating vacuum behaves like a dielectric medium, screening the bare electric charge e0 at increasing distances R ∼ 1/Q: e.g. α( M2Z ) ≈ 1/128 529 QCD running coupling Contributions to the QCD beta function β(αs ) (from QCD vacuum polarization): (1) screening (2), (3) anti-screening (non-abelian!) 530 QCD running coupling ⇒ There is a scale ΛQCD where αs → ∞ (dimensional transmutation) given at LO by 1 1 2 Λ2QCD = Q2 exp − ⇔ α ( Q ) = s β 0 α s ( Q2 ) Q2 β 0 ln 2 ΛQCD ΛQCD ≈ 200 MeV, that is R ∼ 1/Q ≈ 1 fm (the size of a proton!) Asymptotic freedom: At short distances (Q ΛQCD ) quarks and gluons are almost free, they interact weakly: perturbative regime Infrared slavery: At long distances (Q ∼ ΛQCD ) the coupling diverges (Landau pole), quarks and gluons interact very strongly (confinement into hadrons): non-perturbative regime ⇒ Strong interactions are short-range, despite of gluon being massless 531 QCD running coupling 532 QCD Perturbative methods Only when αs ( Q2 ) 1, i.e. when Q ΛQCD Starting point: diagrams involving quarks and gluons at a given order e.g. q t q̄ t̄ Then: many sophisticated techniques to match real life . . . 533 QCD real life (e.g. at LHC) 534 QCD real life (e.g. at LHC) 535 QCD real life (e.g. at LHC) 536 QCD real life (e.g. at LHC) 537 QCD real life (e.g. at LHC) 538 QCD real life (e.g. at LHC) 539 Hadron structure Deep Inelastic Scattering Consider the following hadron scattering, described by the invariant quantities: k0 k q = k − k0 P Q2 = − q2 Q2 x= 2( Pq) y= ( Pq) ( Pk) (momentum transfer squared) (hadron’s momentum fraction carried by the struck quark, as shown later) (inelasticity) Some have an easier interpretation in the lab frame, where the hadron is at rest: P = ( M, 0, 0, 0) k = ( E, 0, 0, E) 0 0 0 0 k = ( E , E sin θ, 0, E cos θ ) ⇒ E − E0 y= E with s = ( P + k )2 = 2ME + M2 the CM energy squared. Notice that Q2 = 2( Pk) xy = xy(s − M2 ) (usually s M2 ) 540 Hadron structure Deep Inelastic Scattering Varying Q2 changes the resolution of our microscope: – Al low Q2 (long wavelength) one sees a pointlike hadron (unresolved structure) – At high Q2 (short wavelength) the probe interacts with a hadron constituent resolving its structure ⇒ This is the deep inelastic scattering (DIS) 541 Hadron structure DIS Lepton–quark scattering To understand the underlying processes, consider first the case of eq → eq mediated by a photon exchange: k γ p k0 e q = k − k0 p0 q iM = µ 0 −igµν ν je,r ,r0 (k, k ) 2 jq,r2 ,r0 ( p, 1 1 2 q µ je,r p0 ) 0 0 (r1 ) 0 µ (r1 ) ( k, k ) = u ( k )( ieγ )u (k) 0 ,r 1 1 ν jq,r 0 ( p, 2 ,r2 0 p)=u (r20 ) ( p0 )(−ieeq γν )u(r2 ) ( p) The (unpolarized) differential cross section is: dσ 1 1 = 16π ŝ2 4 r dt̂ 0 1 ,r2 ,r1 ,r2 |M| = 2πα2em eq2 ŝ2 + û2 ŝ2 t̂2 i1 dσ 4πα2em h 2 2 = 1 + ( 1 − y ) e q 2 dQ2 Q4 or where ∑0 2 pk − pk0 û ŝ = ( p + k) , t̂ = (k − k ) = − Q , û = ( p − k ) ⇒ y = = 1+ ŝ pk 2 0 2 2 0 2 542 Hadron structure DIS Lepton–quark scattering Assuming that the struck quark carries a fraction ξ of the hadron momentum P, pµ = ξPµ taking an on-shell (massless) quark, p02 = ( p + q)2 = q2 + 2( pq) = −2( Pq)( x − ξ ) = 0 ⇒ x=ξ [as promised: x is the hadron’s momentum fraction carried by the struck quark] and introducing ˆ 0 1 dx δ( x − ξ ) = 1 we have: i1 d2 σ 4πα2em h 2 2 = 1 + ( 1 − y ) e δ( x − ξ ) q 2 dxdQ2 Q4 (1) 543 Hadron structure DIS Lepton–hadron scattering Consider now the case of eh → eh: k0 k γ q = k − k0 P Notice that before, in the case of eq → eq, the cross section can be written as the µν contraction of a leptonic tensor (Lµν ) and a hadronic tensor (Wq ): dσ 1 1 = dQ2 16π ŝ2 4 r ∑0 0 1 ,r2 ,r1 ,r2 4πα2em µν 0 0 |M| ≡ L ( k, k ) W ( p, p ) µν q 4 Q 2 Lµν (k, k0 ) ≡ [kµ k0ν + kν k0µ − (kk0 ) gµν ] 1 ŝ Wq ( p, p0 ) ≡ [ pµ p0ν + pν p0µ − ( pp0 ) gµν ] µν eq2 ŝ where an appropriate normalization has been chosen 544 Hadron structure DIS Lepton–hadron scattering µν Now, replace Wq by the most general tensor built from momenta P and q: W µν ≡ −W1 gµν + W2 µ ν W4 µ ν W5 µ ν µ ν P P + q q + ( P q + q P ) 2 2 2 M M M compatible with parity conservation. For weak interactions (W ± ,Z) add: eµναβ Pα q β µνρσ k k 0 in Lµν ) iW3 (to be contracted with an extra ie ρ σ 2M2 The form factors Wi = Wi ( x, Q2 ) depend on two (scalar) variables at a given s. Since Lµν is symmetric, antisymmetric contributions are not introduced in W µν . Furthermore, current conservation qµ W µν = qν W µν = 0 implies that: 2 ( Pq) M2 ( Pq) W5 = − 2 W2 , W4 = W2 + 2 W1 2 q q q The resulting hadronic tensor is: µ ν q q W ( Pq) ( Pq) W µν = W1 − gµν + 2 + 22 Pµ − 2 qµ Pν − 2 qν q M q q 545 Hadron structure DIS Lepton–hadron scattering Contracting the leptonic tensor with our generalized hadronic tensor one gets: ŝ Lµν W µν W2 W3 0 0 = 2(kk )W1 + [2( Pk)( Pk ) − (kk ) M ] 2 − [( Pk)(qk ) − ( Pk )(qk)] 2 M M 0 0 0 2 It is customary to redefine the form factors: F1 = ( Pk) W1 , ( Pq) F2 = ( Pk) ( Pk) W , F = W3 2 3 2 2 M M so that, introducing x and y with pµ = xPµ and neglecting M2 s (then ŝ = xs), 1 h 2 y i µν Lµν W = xy F1 + (1 − y) F2 + xy 1 − F3 x 2 where we have used (kk0 ) (kk0 ) 0 ( Pq) = y( Pk) = , ( Pk ) = ( Pk) − ( Pq) = (1 − y ) , x xy ŝ (qk0 ) = −(qk) = (kk0 ) , (kk0 ) = y 2 546 Hadron structure DIS Lepton–hadron scattering The differential cross section eh → eh (photon exchange) then reads: 2 2 4παem 1−y d σ 2 = [ 1 + ( 1 − y ) ] F + ( F2 − 2xF1 ) 1 2 4 x dxdQ Q that can be compared to the cross section eq → eq in (1): i1 d2 σ 4πα2em h 2 2 = 1 + ( 1 − y ) δ( x − ξ ) e q 2 dxdQ2 Q4 ⇒ If hadron constituents were free quarks (spin – Callan-Gross relation: 1 2 particles with charge eq ), then: F2 = 2xF1 [ F2 = eq2 xδ( x − ξ )] – Bjorken scaling. The structure functions would not depend on Q2 : Fi ( x, Q2 ) = Fi ( x ) (the constituents are pointlike particles) Both properties are modified by gluon corrections 547 Hadron structure DIS Neutrino-nucleon scattering (small detour) From previous expressions one can easily obtain cross sections for νN scattering, CC (W-exchange) and NC (Z-exchange), replacing the photon propagator by 1 1 − 2 →− 2 , 2 Q Q + MV MV = MW,Z and extracting/absorbing some constants from/in the form factors, as GF2 π 2 α2em g4 = 4 4 = 4 2sW MW 32MW The νN cross sections are then: CC,NC CC,NC d2 σνN d2 σνN = xs dxdy dxdQ2 = GF2 s 2 MV π 2 Q2 + MV !2 h i y xy2 F1CC,NC + (1 − y) F2CC,NC + xy 1 − F3CC,NC 2 548 Hadron structure DIS Parton Model The hadron is composed of partons: quarks and/or antiquarks, in principle. Then, one can introduce the Parton Distribution Functions (PDF) F2 ( x ) = 2xF1 ( x ) = ∑ eq2 x fq/h (x) q,q̄ where f q/h dx expresses the probability to find a quark q inside hadron h carrying a fraction of the hadron longitudinal momentum in [ x, x + dx ]. In e-proton and e-neutron scattering one probes the nucleon structure functions 2 2 2 1 ep 2 1 1 p F2 = ( up + up ) + − ( dp + d ) + − ( sp + sp ) + . . . x 3 3 3 2 2 2 1 en 2 1 1 n F2 = ( un + un ) + − ( dn + d ) + − ( sn + sn ) + . . . x 3 3 3 where the PDFs ( f u/p ( x ) ≡ up ( x ), etc.) are related by isospin symmetry: up = dn ≡ u , dp = un ≡ d , sp = sn ≡ s , ... 549 Hadron structure DIS Parton Model The quantum numbers of a proton must be those of a uud combination of valence quarks ( f v ). The rest are sea quarks ( f s ): u = uv + us , d = dv + ds , u = us = us , d = ds = ds , s = ss = ss , ... u d u 550 Hadron structure DIS Parton Model Then the following sum rules apply: ˆ ˆ 1 1 dx [u( x ) − u( x )] = 2 dx uv ( x ) = 0 ˆ 0 ˆ 1 dx dv ( x ) = 0 0 1 dx [d( x ) − d( x )] = 1 And, assumimg just u, d and s and taking S as the total sea contribution: 1 ep 1 F2 = (4uv + dv ) + x 9 1 en 1 F2 = (uv + 4dv ) + x 9 4 S 3 4 S 3 ep One can now guess what the proton structure function F2 looks like . . . 551 Hadron structure If the proton is DIS Parton Model ep then F2 ( x ) is 552 Hadron structure If the proton is DIS Parton Model ep then F2 ( x ) is 553 Hadron structure DIS Parton Model (Where are the gluons?) Another sum rule: sum of partons must carry all hadron momentum, ˆ 1 dx x [u( x ) + u( x ) + d( x ) + d( x ) + s( x ) + s( x ) + . . . ] = 1 0 ˆ Actually gluons carry about 50 % of hadron momentum: 0 1 dx xg( x ) ≈ 0.5 554