TRANSMISIÓN DIGITAL EN BANDA BASE Contenido 1.1.2.-2. 3.-3. 4.-4. 5.-5. 6.-6. 77. Codificación de línea. Esquemas de codificación de línea. Características de la transmisión digital. Capacidad p de información de canal. Interferencia intersímbolo. Diagrama de ojo. Filtro de coseno elevado. elevado Objetivo.-Objetivo. Al finalizar el tema, el estudiante será capaz de describir y comparar los códigos de línea en términos de la información de reloj. Describir las técnicas de medición utilizadas para observar, diagnosticar y controlar problemas durante la transmisión, además de detectar la señal en presencia de ruido. Última modificación: 25 de agosto de 2010 www.coimbraweb.com T Tema 3 de: d COMUNICACIONES DIGITALES Edison Coimbra G. 1 1.-- Codificación de línea 1. Se p puede transmitir una señal digital g de 2 formas: en banda base o en banda ancha (con modulación digital). Transmitir en banda base significa enviar una señal digital sobre un canal sin cambiarla a analógica. Los datos, en forma de texto, números, imágenes gráficas, audio o voz, se almacenan en la memoria de un PC en secuencia de bits, “0”s y “1”s. Estos números binarios deben convertirse a señales digitales, es decir a niveles de voltaje o corriente (u otro tipo de símbolos) para su transmisión por la línea. Este proceso se llama codificación de línea. línea La codificación de línea es el proceso de convertir datos digitales en señales digitales. www.coimbraweb.com 2 Bits y símbolos Bit En las comunicaciones de datos, el objetivo es enviar bits de datos. Un bit es la entidad Bit. más á pequeña ñ que puede d representar t un elemento l t d de iinformación. f ió Símbolo En una comunicaciones de datos digitales, los bits Símbolo. son transportados por símbolos (variaciones de voltaje). Un símbolo es la unidad más corta (en cuanto a tiempo) de una señal digital. En otras palabras, los bits son transportados; los símbolos son los portadores. Tasa de bit y tasa de símbolos La tasa de bit es el número de bits enviados en 1 segundo. Su unidad es el bps. La tasa de símbolos es el número de símbolos enviados en 1 segundo. La unidad es el baud. Se utilizan diferentes terminologías en la literatura. La tasa de bit se denomina en algunas ocasiones i t tasa de d datos. d t L tasa La t d de símbolos í b l se denomina d i ttambién bié tasa t de d señal, ñ l tasa t de d pulsos, tasa de modulación o tasa de baud. Un objetivo en la comunicación de datos es incrementar la tasa de bit, al mismo tiempo que se reduce la tasa de símbolos. símbolos Si se incrementa la tasa de bit, bit se incrementa la velocidad de transmisión. Si se reduce la tasa de símbolos, se reducen los requisitos de ancho de banda (BW). www.coimbraweb.com 3 Relación entre la tasa de bit y de símbolos La relación depende del número de bits que son transportados por cada símbolo. Una analogía puede ayudar: suponga que un bit es una persona y un símbolo es un vehículo. Un vehículo puede transportar una o más personas. También se puede dar el caso de que una persona conduzca un vehículo y remolque otro. Aquí, 1 bit es transportado por 1 símbolo. Ambas tasas son iguales. iguales Ejemplo: codificación NRZ-L. Aquí, 1 símbolo t transporta t 2 bits. bit Esquema multinivel que incrementa la tasa de bit sobre el mismo BW. Ejemplo: codificación 2B1Q. www.coimbraweb.com Se necesitan 2 símbolos para transportar 1 bit. El símbolo extra garantiza la sincronización La sincronización. tasa de bit es la mitad de la de baud. Ejemplo: Manchester. Aquí, A í U Un grupo d de 4 bits es transportado por un grupo de 3 símbolos. 4 Ancho de banda (BW) Espectros de señal digital periódica y aperiódica. Es el rango de frecuencias contenido d en una señal. ñ l Una señal digital que transporta información no es periódica, por tanto, su BW es continuo con un rango infinito. infinito Sin embargo, las señales digitales que se encuentran en la vida real tienen un BW con valores finitos. El BW es teóricamente infinito, pero muchos de los componentes tienen una amplitud tan pequeña que se pueden ignorar. ignorar El BW efectivo es finito. finito La tasa de baud determina el BW requerido para una señal digital. Utilizando la analogía, el número de vehículos afecta al tráfico, no el número de personas que llevan. Más cambios en la señal significa inyectar más frecuencias en la señal. La frecuencia significa cambio y cambio significa frecuencia. Cuando se habla de BW, se define un rango de frecuencias. Se necesita saber dónde se sitúa este rango así como los valores de las frecuencias más alta y más baja. Además, la amplitud d cada de d componente t es un aspecto t iimportante. t t S Se puede d d decir i que ell BW es proporcional i l a lla tasa de baud. www.coimbraweb.com 5 Componente DC Cuando un nivel de voltaje en una señal digital es constante durante bastante tiempo, el espectro crea frecuencias muy bajas (resultado del análisis de Fourier). Estas frecuencias cercanas a 0, denominadas componentes DC (corriente continua), dan lugar a problemas en sistemas que no pueden pasar frecuencias bajas o que utilizan acoplamiento eléctrico con transformador. Por ejemplo, una línea telefónica no puede pasar frecuencias por debajo de los 300 Hz. Un enlace de larga distancia puede utilizar uno o más transformadores para aislar eléctricamente diferentes partes de la línea. Para estos sistemas, se necesita P i i un esquema sin i componentes DC. DC Autosincronización Para interpretar correctamente las señales recibidas, los intervalos de bits del receptor deben corresponder exactamente con los del transmisor. Si el reloj de receptor es más rápido o más lento, los intervalos no coincidirán y el receptor podría malinterpretar las señales. Una señal digital con autosincronización incluye información sobre el tiempo en los datos transmitidos. Esto se consigue con transiciones en la señal que alerten al receptor del comienzo, de la mitad o del fin de un pulso. Si el reloj de receptor no está sincronizado, estas transiciones p pueden reiniciar el reloj. j www.coimbraweb.com 6 2.-- Esquemas de codificación de línea 2. Se pueden dividir en 5 categorías. En cada una de ellas pueden haber varios i esquemas. U i l NRZ Unipolar Utiliza 2 niveles de voltaje TTL. Puede ser de lógica positiva o negativa. negativa Problema 1: tiene un componente de DC, no compatible para algunos equipos y medios. medios NRZ: No Retorno a Cero. www.coimbraweb.com No se utiliza en comunicación de datos. 7 Polar NRZ-L y NRZ-I Solución a problema 1: codificación NRZ-L. Desaparece el componente de DC. DC El RS-232 usa NRZ para 1 entre 3 y 25 V y para 0 entre +3 y +25 V. P bl Problema 2 2: problema bl de d sincronía i í NRZ-L NRZ L cuando hay muchos 0 ó 1. Solución parcial a problema 2: codificación NRZ I La sincronía se resuelve con NRZ-I. transiciones para los 1 que son más frecuentes que los 0. Polar RZ Solución completa a problema 2: codificación RZ RZ. La sincronía se resuelve con transiciones a cero en la mitad bit, tanto para los 0 y 1. Problema 3: utiliza 3 niveles de señal y 2 símbolos í b l ( (cambios) bi ) para transportar 1 bit. bi Es compleja y necesita mayor BW, aunque es más eficiente que las anteriores. www.coimbraweb.com Ya no se utiliza. 8 Polar bifásica Manchester Solución a problema 3: codificación Manchester. Hace lo mismo que RZ pero con sólo 2 niveles de señal. Se utiliza en redes LAN Ethernet. Polar bifásica Manchester diferencial Se utiliza en redes LAN Token Ring. www.coimbraweb.com 9 Bipolar AMI En el término AMI, AMI inversión de marca alternada, la palabra marca proviene de la telegrafía y significa 1. AMI se utiliza en comunicaciones de larga distancia, pero tiene el problema de sincronización cuando aparecen largas secuencias de 0. La técnica de aleatorización lo soluciona. Multinivel 2B1Q La codificación multinivel incrementa el número de bits por baud, codificando un patrón de n bits en un patrón de m símbolos. Los diferentes símbolos permiten it dif diferentes t niveles i l d de señal. ñ l Se utiliza en la tecnología DSL (línea de abonado digital) para ofrecer una conexión de alta velocidad a Internet utilizando las líneas telefónicas de abonado. www.coimbraweb.com 10 Aleatorización Los esquemas bifásicos (Manchester), adecuados para enlaces dedicados entre estaciones en una LAN, LAN no lo l son adecuados d d para comunicación i ió a llarga distancia, di t i d debido bid a que requieren un mayor BW. La codificación bipolar AMI tiene un BW más reducido y no crea una componente DC. Sin embargo, g , una larga g secuencia de 0 p provoca problemas p de sincronización. Se puede utilizar AMI para largas distancias si se utiliza la aleatorización, técnica que sustituye una larga secuencia pulsos de nivel cero con una combinación de otros niveles. El sistema insertar los pulsos requeridos de acuerdo a reglas de aleatorización definidas. Dos técnicas comunes son B8ZS y HDB3. HDB3 AMI - B8ZS (AMI con sustitución de 8 ceros). Introduce cambios artificiales denominados violaciones. Si vienen ocho 0 seguidos, cambia el patrón en base a la polaridad del 1 anterior. Se usa en EE.UU y Japón. AMI - HDB3 (Bipolar 3 de Alta Densidad). Introduce cambios cada vez que encuentra cuatro 0 consecutivos. Se basa en la polaridad d l 1 anterior del t i y ell número ú de d 1 desde d d la última sustitución. Se usa en el resto del mundo. www.coimbraweb.com 11 3.-- Características de la transmisión digital 3. 1 Inmunidad al ruido. La señal se regenera en el receptor con un Trigger o un amplificador operacional. 2 Detección de errores y corrección. Se han desarrollado técnicas para encontrar errores y corregirlos. 3 Compatibilidad con TDM. Permite transmitir varias señales por el mismo canal. 4 Procesamiento digital de señales. El procesador DSP permite comprimir los datos para i incrementar t lla velocidad l id d d de transmisión t i ió y almacenarlos, l l además d á d de muchos h otros t procesamientos no disponibles en técnicas analógicas. 5 Otra característica de la transmisión en banda base es que se requiere un medio con un BW incluso 10 veces mayor que el que se requiere con métodos analógicos. www.coimbraweb.com 12 El ruido y la relación S/N Ruido es cualquier energía eléctrica no deseada que aparece en la frecuencia de la señal deseada e interfiere con ella perturbando la comunicación. El ruido térmico t t ell más á constante, importante, produce este efecto. Sin Si embargo, b lo l que importa i es la l relación l ió d de la l potencia i de d la l señal ñ l y la l potencia i del d l ruido. id Esta relación S/N es una de las especificaciones más importantes de cualquier sistema de comunicaciones. S/N es la razón entre lo que se quiere (señal) y lo que no se quiere (ruido). Una S/N baja indica que la señal está muy corrompida por el ruido. www.coimbraweb.com 13 4.-- Capacidad de información de canal 4. Según el análisis de Fourier, una señal digital es una señal analógica compuesta. Una señal digital con una duración de bit de T/2, requiere, para su transmisión, un canal paso bajo b j con un BW mínimo í i i igual l a B. B Por P tanto, si la señal tiene 2 niveles, la velocidad de bit (vb) puede expresarse como: www.coimbraweb.com C = Capacidad de transmisión del canal, en bps. B = ancho de banda del canal, en Hz. 14 El canal paso bajo Para tener en el receptor una réplica exacta de una señal digital, se necesitaría un medio con un BW entre t 0 e infinito, i fi it que conserve lla amplitud lit d d de cada d uno d de llos componentes t en que se descompone la señal digital. Tales medios no se tienen en la vida real: pero tampoco son necesarios, como se ha visto, pues los componentes de la señal en frecuencias muy altas son tan pequeños que se pueden ignorar, además, si la señal recibida no es una réplica exacta, aún puede ser recuperada con técnicas de regeneración. 2 canales paso bajo con diferentes BW. El de mayor BW soporta transmisiones a mayor velocidad. l id d 2 nodos se pueden comunicar usando señales digitales con una precisión muy grande, a través de un medio con un BW muy grande, como un cable coaxial o una fibra óptica. www.coimbraweb.com El BW de un canal de transmisión es el rango de frecuencias que deja pasar. 15 Límites en la tasa de transmisión Una consideración importante en la transmisión de señales digitales es lo rápido que se pueden enviar por un canal, en bps. Depende de 3 factores. El ancho de banda disponible. Los niveles de señal que se usan. La calidad del canal (el nivel de ruido). Se han desarrollado 2 fórmulas teóricas para calcular la tasa de bits: la de Nyquist para un canal sin ruido y la de Shannon para un canal ruidoso. Canal sin ruido – Tasa de bits de Nyquist Nyquist define la máxima capacidad de transmisión teórica para un canal sin ruido. C B M capacidad de transmisión del canal, en bps. ancho de banda del canal, canal en Hz. Hz número de niveles de voltaje transmitidos. Se podría pensar que, dado un B específico, se puede conseguir cualquier velocidad incrementando los niveles M de la señal señal. La idea es correcta correcta, en la práctica existe un límite. límite Si se incrementan los niveles de la señal, se impone una carga en el receptor. Si los niveles son sólo 2, el receptor distingue fácilmente entre 0 y 1. Si los niveles son 64, el receptor debe ser muy sofisticado para distinguirlos. En otras palabras, incrementar los niveles de la señal reduce la fiabilidad del sistema. www.coimbraweb.com 16 Canal con ruido – Capacidad de Shannon Desafortunadamente, la capacidad de información de un canal no aumenta ilimitadamente al incrementar el número de niveles de señal señal, ya que el ruido dificulta distinguirlos distinguirlos, y un canal real siempre tiene ruido. En 1944, Shannon desarrolló la fórmula denominada Capacidad de Shannon, para determinar la máxima tasa de bits teórica de un canal. C capacidad de transmisión del canal, en bps. B ancho de banda del canal, en Hz. S/N / relación señal a ruido como razón de p potencias no en dB . En esta fórmula, no hay indicación del nivel de señal, lo que significa que, sin importar los niveles que se tengan, no se puede conseguir una velocidad mayor que la capacidad del canal . En otras palabras, palabras la fórmula define la característica del canal, canal no el método de transmisión. Usando ambos límites En la práctica, es necesario usar ambos métodos para encontrar los límites y los niveles de la señal. La capacidad de Shannon da el límite superior. La tasa de bits de Nyquist dice cuántos niveles de señal son necesarios. www.coimbraweb.com 17 Ejemplo 1: velocidad de transmisión máxima Un canal de radio tiene un ancho de banda de 10 kHz y una relación señal a ruido de 15 dB. ¿Cuál es la tasa máxima de datos que puede transmitirse: a) utilizando cualquier sistema? b) por medio de un código con 4 estados o niveles posibles? Respuesta.-Respuesta. Respuesta a) A partir de la fórmula de Shannon se calcula la tasa máxima de datos teórica para este canal. C = 50.3 kbps. b)) Se utiliza la fórmula de Nyquist yq para hallar la tasa de bits máxima posible p p dados el código especificado y el ancho de banda. C = 40 kbps. Se tiene que comparar este resultado con la tasa máxima de datos teórica para este canal. Puesto que es menor, debe ser posible transmitir con un esquema de 4 niveles, a 40 kbps. ¿¿Se p podría transmitir por p medio de un código g de 5 niveles? www.coimbraweb.com 18 Tasa de bit y tasa de baudio En este punto se debe distinguir entre tasa de bit y tasa de baudio. La tasa de bit es el número de bits transmitidos por segundo (C). La tasa de baudio es el número de símbolos transmitidos por segundo. Por consiguiente, si se designa que S sea la tasa de baudio. C S M capacidad de transmisión del canal, en bps. tasa de baudio en símbolos por segundo, en Bd. número de niveles de voltaje por símbolo. Ejemplo 2: Tasa de baudio Un modulador transmite símbolos, cada uno de los cuales tiene 64 estados posibles diferentes, 10.000 veces por segundo, Calcule la tasa de baudio y la tasa de bits. Respuesta.-Respuesta. La tasa de baudio es la tasa de símbolos, S = 10 kBd. Por tanto C = 60 kbps. www.coimbraweb.com 19 5.-- Interferencia intersímbolo 5. Cualquier canal práctico, con un BW finito, produce un efecto de filtrado sobre los flujos de datos que pasan a través de él, causando la dispersión de los impulsos cuadrados (bits y símbolos). Para símbolos consecutivos, esta dispersión hace que parte de la energía de símbolo se solape con los símbolos vecinos, causando i t f interferencia i iintersímbolo t í b l (ISI). (ISI) En forma adicional, si se efectúa un filtrado en el transmisor o receptor, también se puede d introducir d degradación d d ó ISI. La ISI degrada la capacidad del receptor para diferenciar un símbolo real a partir de la energía í que se h ha solapado l d entre t símbolos í b l adyacentes. d t IIncluso, l sin i h haber b ruido id presente t en el canal, puede llevar a errores de detección. La ISI se controla manipulando las características de filtrado del canal y de cualquier procesado en el transmisor o en el receptor, p p , de manera que q no degrade g la proporción p p de bits de error (BER) del enlace. Esto se consigue asegurando que la función de transferencia del filtro de canal tenga lo que se conoce como respuesta de frecuencia de Nyquist. www.coimbraweb.com 20 El filtro de Nyquist Una respuesta de frecuencia de Nyquist se caracteriza por lla función f ió de d transferencia t f i que ti tiene una banda b d de transición entre las bandas de paso y suprimida que es simétrica alrededor de una frecuencia f. f = frecuencia en punto de simetría, en Hz Ts = periodo del símbolo, en s. Para este tipo p de respuesta p de canal, los símbolos de datos están todavía dispersos, pero la forma de onda pasa por cero en múltiplos del período de símbolo. Si se muestrea el flujo de símbolos en el punto donde la ISI pasa por 0, la dispersión de energía entre símbolos adyacentes no afectará al valor del símbolo en ese punto de muestreo. Resulta evidente que la temporización de la muestra debe ser muy exacta. Uno de los mayores y retos en el diseño de modem,, particularmente en el caso de enlaces ruidosos o con alta distorsión, es la recuperación de información exacta de temporización de símbolo. www.coimbraweb.com 21 ¿Cómo conseguir una respuesta de canal de Nyquist? Es muy improbable que el canal de comunicaciones muestre por sí una respuesta de t transferencia f i d de N Nyquist. i t E Esto t significa i ifi que ell di diseñador ñ d d dell sistema i t d debe b añadir ñ di un filtrado compensatorio para conseguir la respuesta deseada. Usualmente se emplean ecualizadores adaptables de canal. Filtrado de Nyquist en telefonía celular En aplicaciones de radio digital, el canal de transmisión (el éter) puede no imponer ningún efecto de filtrado importante a través del BW de modulación: El principal filtrado es, por tanto, realizado por la circuitería del transmisor y receptor. El filtrado en el transmisor se emplea para delimitar la modulación al BW regulado, demodulador. En el receptor, el filtrado es necesario para eliminar una multitud de distintas señales que entran en el mismo mismo, y para minimizar el ruido que entra en el demodulador. A menudo la respuesta p de filtrado de Nyquist yq necesaria p para una ISI cero es dividida igualmente entre los sistemas transmisor y receptor utilizando un par de filtros de coseno elevado raíz (RRC: Root Raised Cosine), que son realizaciones del filtro de Nyquist. www.coimbraweb.com 22 6.-- Diagrama de ojo 6. El diagrama de ojo es una potente herramienta visual para observar y diagnosticar problemas bl d t de dentro d la l parte t d de modem d d un enlace de l d de comunicaciones i i di digitales. it l Se genera conectando un osciloscopio al flujo de símbolos filtrado y demodulado, antes de la conversión a dígitos binarios. El osciloscopio es redisparado en cada período de símbolo utilizando una señal de temporización obtenida desde la forma de onda recibida. El resultado l d es una superposición i ió de d muestras consecutivas i d de símbolos í b l recibidos ibid que forman una imagen de un “ojo” en la pantalla del osciloscopio. Barrido de una señal de 2 niveles Suponga un patrón aleatorio de “1”s y “0”s transmitidos a diferentes velocidades. El barrido toma lugar durante los niveles de señal alto y de señal bajo. bajo Ambos niveles aparecen en la pantalla. pantalla Para una tasa de datos mucho menor que la que el canal puede transmitir. www.coimbraweb.com Un sistema óptimo. Se transmite demasiado rápido. Empieza a cerrarse el ojo debido a la ISI. 23 Barrido de una señal de 4 niveles Suponga que se utilizan 4 niveles de voltaje, cada uno correspondiente a una secuencia de 2 bits. El ancho de banda requerido para la frecuencia fundamental de esta señal es el mismo que en el anterior ejemplo ejemplo, pero se logra transmitir el doble de información. El canal es ruidoso. El barrido de la señal muestra un diagrama donde se observa el efecto del ruido, que hace que las trazas sucesivas del osciloscopio estén a amplitudes diferentes. Si el ruido tiene la intensidad suficiente, el ojo se cierra y la recuperación de datos no es confiable. www.coimbraweb.com 24 Diagnóstico utilizando el diagrama de ojo A partir del diagrama de ojo, es posible hacer una valoración de ingeniería del comportamiento probable y fuentes de degradación en un enlace de comunicación digital. A continuación se muestran ejemplos de diagramas para distintos tipos de distorsión. Cada uno tiene un efecto identificable único en el aspecto de la apertura del ojo. El efecto del error de temporización aparece como un cierre del ojo debido a que el flujo de símbolos recibido ya no se muestrea en el punto de ISI cero. La adición de ruido afecta a la circuitería de recuperación de temporización y puede causar, ocasionalmente, el completo cierre del ojo, con la consiguiente producción de errores. www.coimbraweb.com 25 7.-- Filtro de coseno elevado 7. Una realización común del filtro de Nyquist es el filtro en coseno elevado, llamado así porque la banda de transición (la zona entre la banda de paso y la suprimida) tiene la forma de onda cosenoidal. La brusquedad del filtro es controlada por el parámetro , factor de atenuación progresiva del filtro. Cuando = 0, concuerda con un filtro ideal ((también conocido como filtro de frente abrupto). p ) Filtros digitales Tradicionalmente ha sido difícil construir un filtro con una respuesta de Nyquist utilizando componentes analógicos. Esto ha llevado al desarrollo del procesador digital de señales (DSP) para poner en uso cotidiano los filtros de Nyquist y en coseno elevado. www.coimbraweb.com FIN 26