Subido por gilbert.tic

Fibonacci

Anuncio
FIBONACCI
SERIE DE FIBONACCI
“Dos número consecutivos, sumados generan uno nuevo”.
Comenzando con el cero y el uno. Le seguirı́an 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, etc.
Una operación aritmética en la que cada miembro es igual a la suma de los dos precedentes
xn = xn − 1 + xn − 2
(1)
La Serie de Fibonacci (Leonardo de Pisa, 1170-1240), antes mostrada, en abstracto, está encarnada en la
arquitectura del Nautilo (Nautilus), la concha marina, cuya sección produce la figura, que es uno de los ejercicios más comunes en el dibujo arquitectónico (Espiral de Durero, aproximación con arcos de circunferencia
de la espiral logarı́tmica r = a bθ , b = ϕ2/π = 1.358456, de grado α = arctan(ln b) = 17.03239◦ (0.297271
rad), Alberto Durero (Albrecht Dürer), 1471-1528) [1,2,6]. No obstante, esta operación sencilla produce una
belleza incalculable, que se dirı́a que es de oro puro. Ya veremos por qué.
Fig 1. La serie de Fibonacci representada en abstracto (arriba),
está encarnada en la arquitectura del Nautilo (abajo).
1
La serie de Fibonacci se originó de la resolución del problema de la crı́a de conejos. En la crı́a de
conejos, contando siempre en parejas, éstas se reproducen cada mes, dando como producto de su unión una
nueva pareja, la cual no se puede reproducir hasta cuando son adultos un mes después. Ası́, comenzando con
una pareja, después de un mes cuando son adultos se reproducen. Para el segundo mes son dos parejas, pero
sólo la más antigua se reproduce, por lo que para el tercer mes son tres parejas, una de las cuales es todavía
muy joven. Dos de estas tres parejas se reproducen, por lo que al cuarto mes son cinco parejas, dos de las
cuales son jóvenes. La tres parejas adultas se reproducen y al quinto mes son en total ocho parejas, tres de
las cuales son jóvenes. Y ası́ sucesivamente. El número de parejas totales por mes, sigue la secuencia de la
serie de Fibonacci, mostrado en la fig.2 de abajo, quien publicó los resultados de su descubrimiento en su
libro Liber Adasis de 1202. De esta forma acreditó su nombre a la fórmula para las próximas generaciones.
Fig 2. La serie de Fibonacci como solución al problema de la reproducción de conejos.
La serie de Fibonacci también posee la caracterı́stica que, en el infinito, cada elemento entre el anterior
es un número Δ = xn /xn − 1 particular. Dividiendo la serie (1) entre xn − 1 resulta
xn
xn − 2
=1+
xn − 1
xn − 1
Δ≈1+
1
Δ
(3)
o reorganizando la expresión anterior
Δ2 − Δ − 1 ≈ 0
cuya soluciones son
√
1± 5
Δ≈
2
(4)
(5)
En el caso positivo, Δ coincide con la proporción áurea ϕ o proporción de oro. Este resultado es independiente
de los dos números iniciales que se escogan para generar la serie de Fibonacci [7].
Otra caracterı́stica de la serie de Fibonacci, es que la serie de los residuos rn al dividir sus elementos
por d, es decir rn = xn − d ∗ cn , es una serie periódica. Se tienen, por ejemplo, perı́odos de 16 veces, 20
veces ó 60 veces, si el divisor es d = 7, d = 5 ó d = 10. Estas series periódicas de los residuos se han usado
para generar música [8]. Compositores como Bach o Mozart usaban este patrón matemático para recrear
2
los acordes de sus piezas. Si no, sólo se debe prestar atención a cualquier interpretación de estos genios
musicales. La Espiral Dorada simula los movimientos cı́clicos de las notas musicales y permite que el sonido
sea armonioso.
PROPORCION AUREA
La razón creada dividiendo cada número de la serie de Fibonacci por el número que le precede se
aproxima al valor A = ϕ ≈ 1.618033989..., siendo A = L/l la Proporción Áurea ó Dorada, su inversa coincide
exactamente con la resta de uno 1/A = A − 1 y el cuadrado con la suma de uno A2 = A + 1. La relación
de los lados de todos los rectángulos involucrados en la figura 1 dan este resultado también, la proporción
áurea. El centro de la espiral se le denomina el Ojo de Dios (Clifford A. Pickover) [9,10].
La espiral de Durero de la figura 1 está basada en rectángulos que tienen siempre la relación áurea
en sus lados. En la espiral de Fibonacci cada rectángulo tiene una relación de sus lados, que son elementos
sucesivos de la serie. En el infinito ambas espirales son coincidentes y ambas son aproximaciones de la espiral
logarı́tmica de ángulo 17.03239 grados constante [6].
La razón es aproximada, esto es, la razón en la cual convergen no puede ser expresada en términos de
una fracción. Los pitagóricos descubrieron estos número y los llamaron Irracionales, y se dice que quedaron
tan perturbados por ellos que establecieron la pena de muerte para cualquiera de su secta que revelase su
existencia a las multitudes ignorantes. Hispano fué desterrado por desafiar la prohibición. Se ahogó en el
mar, destino que los pitagóricos atribuyeron a un castigo divino [1,2]. Algo parecido debió ocurrir con los
números imaginarios, pero más actualizado. Por ello, estos nombres tan extraños y ahora tan corrientes, que
no nos detenemos a pensar en eso.
No es casual que la proporción áurea sea la fórmula de una relación geométrica que aparece en el
Partenón de Fidias (de aquı́ su sı́mbolo ϕ), la Mona Lisa de Leonardo da Vinci y el Nacimiento de Venus de
Boticelli; y es la base de la octava que se emplea en la música occidental desde los tiempos de Bach. Leonardo
da Vinci basó sus trabajos artı́sticos y cientı́ficos, como Hombre Vitruvio y algunos de sus inventos, en la
Espiral y la proporción Dorada. Toda la fecunda diversidad de esta simetrı́a particular, expresada en infinidad
de modos, desde conchas marinas, la cantidad y longitud de los pétalos de una margarita, ramas de un árbol,
las espirales de las piñas, los girasoles, los ciclones y las galaxias hasta el clave bien temperado, deriva, por lo
tanto, de una sola invariancia, la de la serie de Fibonacci. La comprensión de que una sola simetrı́a abstracta
podrı́a tener tantas manifestaciones fructı́feras y diversas deleitó a los sabios del Renacimiento, quienes la
citaban como prueba de la eficacia de las matemáticas y de la sutileza de los designios de Dios [1,2].
La proporción áurea, también denominada Dorada (la proporción media y extrema de Euclides o la
divina proporción de Luca Pacioli, 1509), casualmente, resulta ser una de las soluciones (en valor absoluto)
de la ecuación cuadrática
y = x2 ± x − 1 = 0
(1 ∓ x)/x = x
x ± 1 = 1/x
(6)
figura geométrica y simétrica en el plano x − y, que representa la siguiente complejidad, después de la lı́nea
recta. El caso negativo coincide con la ecuación (4). Las soluciones o raı́ces de la parábola anterior son su
intersección con el eje x. Las soluciones que nos interesan son
A=ϕ=
√
1+ 5
L
=
≈ 1.618033989...
l
2
La expresión decimal de ambas,
l
1
1
=
= =A−1=
l
A
ϕ
√
5−1
≈ 0.618033989...
2
(7)
√
5/4 ± 1/2 = 1.25 ± 0.5, son iguales. Resulta que
√
1
l
l
L−l
L
= = =
= −1=A−1
L = l + l = l/2 + l 5/2
A
L
l
l
l
1
1
A = ϕ = 1 + ϕ = 1 + 1 + 1 + 1 + ···ϕ = 1 + = 1 +
ϕ
1 + 1+ 1 1
1+···ϕ
3
(8)
(9)
lo que nos indica que, si prolongamos un cuadrado de lado l, a partir de su mitad l/2, en la longitud
√
l 5/2, que es la hipotenusa de un triángulo rectángulo de lados l y l/2, nos da un rectángulo de longitud
L, con la geometrı́a de la relación áurea. Esta era la manera en que los dibujantes, pintores, escultores,
arquitectos, etc. obtenı́an de forma racional, lo que en principio era irracional. La primera expresión de (9),
ϕ2 = 1 + ϕ ≈ 2.618033989... (sorprendentemente ϕ, ϕ−1 y φ2 tienen exactamente los mismos decimales), es
lo que se denomina el triángulo de Kepler [5], por lo que satisface el teorema de pitágoras para un triángulo
√
rectángulo de lados 1 y ϕ e hipotenusa ϕ. Las potencias del número áureo pueden expresarse en función de
una suma de potencias de grados inferiores del mismo número, establecida una verdadera sucesión recurrente
de potencias. El caso más simple es: ϕn = ϕn−1 + ϕn−2 cualquiera sea n un número entero. Este caso es
una sucesión recurrente de orden k = 2, pues se recurre a dos potencias anteriores. En general, se tiene que
ϕn =
j j
i=0
i
ϕ[n−(j+i)]
(10)
donde los exponentes son todos positivos si k = 2j ≤ n (i, j, n ∈ N), pero se permiten exponentes negativos
en ϕ que son exponentes positivos en 1/ϕ, la Sección Áurea.
El icosaedro tiene en su interior 15 rectángulos áureos. Cada rectángulo contiene, en sus lados menores,
a dos aristas opuestas, de las 30 que posee el icosaedro (ver figura 3 abajo). Las coordenadas cartesiana de los
12 vértices de un icosaedro centrado en el origen son (0, ±1, ±A), (±1, ±A, 0) y (±A, 0, ±1) [3]. Esto se debe
a que dos lados del rectángulo son aristas del icosaedro y los otros dos son las diagonales de dos pentágonos
regulares paralelos girados 180 grados. La diagonal del pentágono regular está en proporción áurea con el lado
del pentágono, que en este caso es la arista del icosaedro. El volumen del icosaedro es V = (5/6) (1 + ϕ) a3 ,
√
siendo ϕ = Δ = A = (1 + 5)/2 la relación áurea y a el largo de una arista. En el icosaedro podemos
encontrar varias veces el número áureo ϕ. En la imagen de abajo se pueden apreciar algunas proporciones
áureas presentes en el icosaedro (las distancias son las proyectadas horizontalmente sobre el plano vertical):
Fig 3. Relaciones en distancias para el icosaedro que se ajustan a la relación áurea.
4
CD/AB = ϕ
EG/FG = ϕ
CL/CI = ϕ
AH/GN = ϕ
IK/HI = ϕ
GD/MD = ϕ
AD/GD = ϕ
KH/IK = ϕ
MN/BM = ϕ
BM/BF = ϕ
CI/LI = ϕ
MD/GM = ϕ
BN/MN = ϕ
FG/EF = ϕ
BF/FM = ϕ
BC/CG = ϕ
CG/GB = ϕ
GD/AG = ϕ
En un pentagrama y un dodecaedro se observa la relación áurea (ver figura 4)
Fig 4. Un pentagrama ilustrando las relaciones áurea contenidas.
Un dodecaedro con tres rectángulos dorados insertados tocando los centros de los pentágonos.
Se satisfacen las siguientes relaciones con los lados coloreados de un pentagrama [4]
ϕ=
verde
azul
rojo
=
=
verde
azul
púrpura
(11)
En un dodecaedro se pueden isertar también rectángulos dorados como muestra la figura 4. Los 12
vértices de un icosaedro con aristas de longitud 2 pueden expresarse en coordenadas cartesianas por los
siguientes puntos
(0, ±1, ±ϕ)
(±1, ±ϕ, 0)
(±ϕ, 0, ±1)
(12)
√
como ya se observó en la figura 3. Los 20 vértices de un dodecaedro con aristas de longitud 2/ϕ = 5 − 1
también se pueden dar en términos similares
(±1, ±1, ±1)
(0, ±1/ϕ, ±ϕ)
(±1/ϕ, ±ϕ, 0)
(±ϕ, 0, ±1/ϕ)
(13)
Los 12 vértices de los tres rectángulos áureos coinciden con los centros de las caras de un dodecaedro. Para
un dodecaedro con aristas de longitud a, su volumen V y su área A total se pueden expresar también en
términos del número áureo
A=3
15 ϕ
15 + 20 ϕ a2 = √
a2
3−ϕ
V=
5
4+7ϕ 3
5 (1 + ϕ) 3
a =
a
2
6−2ϕ
(14)
La equivalencia de las expresiones anteriores se resuelve con las identidades ϕ2 = 1 + ϕ y 1/ϕ = ϕ − 1. Si
tres rectángulos áureos se solapan perpendicularmente en sus centros, los 12 vértices de los tres rectángulos
áureos coinciden exactamente con los vértices de un icosaedro, y con los centros de las caras pentagonales de
un dodecaedro [5]. Esta relación en la que los vértices de uno coincida con los centroides de las cara del otro,
y viceversa, hacen que el dodecaedro y el icosaedro sean denominados poliedros duales [11]. Algo similar
ocurre entre el cubo y el octaedro, también duales entre sı́. El tetraedro es dual consigo mismo.
Ası́, la geometrı́a, como extensión de las matemáticas, se aplica a casi cualquier ámbito de la vida.
Aunque parezca únicamente útil en la escuela, la matemática es una ciencia que revela lo extraordinario en
las cosas más simples. Quizás por eso se debe aprender con más dedicación. Hay muchos misterios en el
mundo que todavı́a no tienen una fórmula numérica que los descubra, pero que se esperan descubrir.
Para finalizar, y a manera de curiosidad, se presenta la relación entre el Triángulo de Pascal y la Serie
de Fibonacci. La figura 5 muestra los elementos del triángulo de Pascal en negro definidos como los números
n
combinatorios Cn,k =
según
k
n!
n
=
(15)
k
(n − k)! k!
Fig 5. El Triángulo de Pascal mostando como se obtiene la Serie de Fibonacci
a partir de la suma de los elementos en semi-diagonales.
ordenados según la fila n y la columna k (ambas a partir de 0) de manera romboidal. Estos números
combinatorios son usados en el desarrollo de las potencias del binomio de Newton
(a + b)n =
n n
k=0
k
an−k bk
(16)
Cumplen con las siguientes dos propiedades
2n =
n n
k=0
k
n
n−1
n−1
=
+
k
k−1
k
(17)
la primera de ellas, obtenida al hacer a = 1 y b = 1, dice que la suma de los elementos por filas da las
diferentes potencias de 2, y la segunda dice que la suma de dos seguidos de ellos en una misma fila da el del
medio de la fila de abajo. Con esta segunda propiedad se puede construir el trángulo de pascal completo a
6
partir del vértice de arriba (los elementos colindantes que no aparecen son nulos). Los elementos Fn de la
serie de Fibonacci se obtienen a partir del triángulo de Pascal como
n/2
Fn+1 =
k=0
n−k
k
√
ϕn = Fn ϕ + Fn−1 = Fn+1 + Fn /ϕ = ( 5 Fn + Ln )/2
√ n
√ n
1− 5
1+ 5
1
(−1)n+1
1
n
Fn = √
−
= √ ϕ +
2
2
ϕn
5
5
(18)
donde el sı́mbolo · significa la parte entera de la fracción interior (truncando los decimales). Lo que es
la suma de los elementos en las semi-diagonales rojas y cuyo resultado se muestra en la figura 5 también
en rojo al lado izquierdo [12]. Por lo que la proporción áurea serı́a ϕ = limn→∞ Fn /Fn−1 . La expresión
de la derecha-abajo de (18), conocida como la fórmula de François Édouard Anatole Lucas (1842-1891),
nos da los elementos de la sucesión de Fibonacci en función de ϕ, la proporción áurea, lo que permite
demostrar el lı́mite antes mencionado. La expresión de la derecha-arriba nos da las diferentes potencias de
ϕ en función del mismo ϕ y los últimos números de Fibonacci. También se introduce la sucesión de Lucas
Ln = ϕn + (−1/ϕ)n = {1, 3, 4, 7, 11, 18, 29, . . .}, similar a la sucesión de Fibonacci y con la misma fórmula de
recurrencia (1) y el mismo lı́mite, pero comenzando con 1 y 3 en lugar de 1 y 1 [13,§13].
Como nota curiosa, la ecuación (4) pertenece a la familia de las ecuaciones cuadráticas
x2 − p x − q = 0
(19)
de los Números Metálicos [11]. De manera que se tienen las siguientes soluciones positivas:
√
1 1 1
Oro p = 1, q = 1, x = ϕ = (1 + 5)/2 = 1 + 1+
1+ 1+ · · ·
√
1 1 1
Plata p = 2, q = 1, x = 1 + 2 = 2 + 2+
2+ 2+ · · ·
√
1 1 1
Bronce p = 3, q = 1, x = (3 + 13)/2 = 3 + 3+
3+ 3+ · · ·
1
1
1
donde al final se han expresado como fracciones continuadas de los elementos 1+
, 2+
, y 3+
, respectivamente.
√ √
√
Correpondientes a los radicales 5, 8, y 13 de sus expresiones algebraicas similares (p + Fp+a )/2. Tres
números de Fibonacci consecutivos.
Notación de las fracciones continuadas:
a0 +
b1 b2 b3
· · · = a0 +
a1 + a2 + a3 +
a1 +
b1
b2
a2 +
(20)
b3
.
a3 + . .
Es insólita la cantidad de propiedades que tienen los elementos de la serie de Fibonacci. Escojamos
cuatros elementos consecutivos de la sucesión de Fibonacci Fn−3 , Fn−2 , Fn−1 y Fn . El producto de los dos
de los extremos, el doble del producto de los dos centrales y la suma de los cuadrados de los dos centrales
2
2
( Fn−3 Fn , 2 Fn−2 Fn−1 , Fn−2
+ Fn−1
) forman una terna pitagórica [11], es decir, que
2
2
(Fn−3 Fn )2 + (2 Fn−2 Fn−1 )2 = (Fn−2
+ Fn−1
)2
Fn2 − Fn−1 Fn+1 = (−1)n−1
(21)
La segunda propiedad en (21) es que el elemento central al cuadrado y el producto de los dos vecinos se
diferencian en ±1.
7
REFERENCIAS:
[1] Ferris, T. La Aventura del Universo, de Aristóteles a la Teorı́a de los Cuantos: Una Historia sin
Fin. Grijalbo Mondadori (Barcelona, España), 1990.
[2] Ferris, T. Coming of Age in The Milky Way. William Morrow & Co (Nueva York), 1980.
[3] https://es.wikipedia.org/wiki/Icosaedro
[4] https://es.wikipedia.org/wiki/Pentagrama (geometrı́a)
[5] https://es.wikipedia.org/wiki/Número áureo
[6] https://es.wikipedia.org/wiki/Espiral logarı́tmica
[7] https://www.youtube.com/watch?v=dTWKKvlZB08, Golden Proof - Numberphile
[8] https://www.youtube.com/watch?v=Nu-lW-Ifyec, Fibonacci Mystery - Numberphile
[9] Livio, M. La Proporción Áurea, La Historia de Phi, el Número más Sorprendente del Mundo.
Editorial Planeta (Barcelona, España), 2006.
[10] Livio, M. The Golden Ratio, The Story of Phi, The World’s Most Astonishing Number. Broadway
Books (New York), 2002.
[11] VV.AA. La Magia de Las Matemáticas, Un Viaje Fascinante al Universo de Los Números. RBA
Libros (Barcelona, España), 2019.
[12] https://es.wikipedia.org/wiki/Triángulo de Pascal
[13] Gardner, M. Circo Matemático. Alianza Editorial, 1979.
Andrés L. Granados M., 09/Marzo/2016.
Revisado 11/Junio/2019.
8
Descargar