Subido por Fabio Orozco Arano

simulación de colas en excel

Anuncio
SIMULACIÓN DE COLAS EN EXCEL
Autor: Miguel Álvarez Amada
I.
INTRODUCCIÓN
Cuando consultamos la definición de “simular” en el Diccionario de la Real Academia Española de
la lengua vemos que su significado es “representar algo, fingiendo o imitando lo que no es”, por
tanto, dado un problema real podemos entender la simulación como el diseño de un modelo que lo
represente y poder realizar estudios sobre su comportamiento o evaluar nuevas técnicas sobre el
mismo.
Por ejemplo, cada vez más autoescuelas tienen un simulador de automóvil para ir “soltando” a los
conductores nóveles, ídem con las clases de pilotaje y podríamos seguir definiendo multitud de
ejemplos similares.
Una vez planteado el problema a resolver y encontrado el modelo, deberíamos obtener datos para
un estudio más riguroso, a través de ciertos indicadores, para podernos plantear cuestiones sobre la
eficiencia del servicio, tiempo de espera,...
El problema que se va a tratar en este artículo es una simulación de colas M/M/1. Situaciones en las
que podremos aplicar este problema: un sistema de lavado de coches, una tienda, una peluquería,
una sala de urgencias,…
II. TEORÍA EMPLEADA PARA LA SIMULACIÓN
El problema de partida va a ser el modelado de un sistema de colas como el ejemplo del lavado de
coches,
dónde
existe
una
“cola”
de
clientes
que
esperan
un
servicio
que
es
el
lavado
y
posteriormente, salen con el coche limpio.
CLIENTES
TREN LAVADO
1
Este sistema de colas se denomina M/M/1 dónde la primera M representa que el modelo aplicado a
las llegadas es un proceso de Poisson homogéneo, la segunda M indica lo mismo pero del tiempo de
proceso y el tercer 1 indica que sólo hay un servidor. Si quisiéramos modelizar el problema de un
supermercado con varias cajas sería más complejo.
El siguiente paso que deberíamos plantearnos es cuanto tiene que esperar un cliente, en general,
para poder lavar su coche que es el promedio del sistema (W), que estará compuesto, del tiempo
de atención para lavar el coche (Wq) y tiempo del servicio de lavado. También resulta útil conocer
cuantos elementos en promedio se encuentran en la cola, o sea la longitud de la cola (Lq) y en el
sistema o longitud (L). Un valor bastante importante es conocer la probabilidad de bloqueo (Pw)
que permite conocer el uso que se está haciendo de la máquina.
III. SIMULACIÓN EN EXCEL
Vamos a modelizar en Excel un problema de lavado en el que van llegando coches cada quince
minutos y el tiempo empleado en cada limpieza suele ser de unos doce minutos. A partir de estos
datos, simularemos el problema y obtendremos los principales indicadores del servicio.
Analizando los datos que tenemos, podemos deducir que no se saturará el sistema, ya que, el tiempo
de llegada de vehículos que es de quince minutos es superior al de lavado que es de doce.
El siguiente paso será construir una tabla que simulará los procesos de llegada de diez coche y la
limpieza de los mismos. Sea X la variable que mide el tiempo entre llegadas, tal y como se ha
expuesto
anteriormente,
Poisson, cuyo parámetro
la
distribución
que
mejor
ajusta
corresponde
con
una
distribución
de
λ es 3 coches / hora (cada 20 minutos llega uno). Aprovechando la relación
entre una Distribución de Poisson y la Exponencial, podemos modelar el tiempo entre llegadas con
una distribución exponencial, cuyo parámetro será 1 /
λ. Debido a que se puede obtener el valor de
la exponencial mediante una distribución uniforme (U(0,1)), utilizaremos la relación:
I )
x = −
1
ln(u ) con U(0,1)
λ
Por
tanto,
se
obtendrán
diez
valores
aleatorios
en
Excel
uno
por
cada
vehículo
que
llega
y
posteriormente, mediante la fórmula anterior, se obtendrá un valor de llegada de los diferentes
vehículos.
Distr. Poisson
Distr. Exponencial
Distr. Uniforme
2
Idéntico
razonamiento
emplearemos
con
respecto
al
lavado
de
vehículos,
utilizaremos
valores
aleatorios y mediante la relación anterior podremos representar el problema.
La tabla que representará el problema es la siguiente
donde:

Coche: número con el que identificaremos cada coche “cliente”

Aleatorio entre 0 y 1: Número aleatorio obtenido mediante la fórmula =ALEATORIO()

X = "T. entre llegadas": es el tiempo entre llegadas y se obtiene mediante la fórmula
=-$G$2*LN(B7), en la que utilizamos la fórmula I), fijando el valor de
λ para que al
arrastrar la fila no se modifique

Minuto Llegada: se construye sumando la anterior llegada y el tiempo entre llegadas, el
primero entra directamente (=C7) y para el siguiente habrá que sumar el tiempo entre
llegadas más el minuto de llegada anterior (=D7+C8)

Y = "T. de lavado": es el tiempo empleado en el lavado y se obtiene mediante la fórmula
=-$G$3*LN(E7)

Comienzo de lavado: Cuando un cliente llega se pueden dar dos opciones, la primera, es
3
que no haya cola, por tanto entra directamente y la segunda, es que tenga esperar. El primer
cliente entrará directamente (=D7) y el siguiente entrará directamente o tendrá que esperar
a que termine el anterior =MAX(D8;H7).

Tiempo en cola: es la diferencia entre el tiempo en el que entra al lavado y el tiempo en el
que ha llegado (=G7-D7)

Tiempo en el servicio: es el tiempo que ha estado un cliente en el sistema, es decir, la espera
más el lavado. (=F7+I7)
En este momento, podemos encontrar la tabla que resuma la información principal del sistema
donde:

Wq: es el tiempo promedio de la cola de espera, es decir, el tiempo total de espera en la cola
divido por el número de vehículos (=I17 / 10)

W: es el tiempo promedio del total empleado en el servicio, es decir, el tiempo total divido
por el número de vehículos.. (=J17 / 10)

Lq o longitud de la cola: es el cociente entre el tiempo de cola y tiempo total posible de la
cola , que coincidirá con la entrada del último vehículo en el tren de lavado(=I17/G16)

L o longitud: es el cociente entre el tiempo total en el servicio y el tiempo abierto
(=F17/H16)

Pw: es el cociente entre el tiempo ocupado el tren de lavado y el tiempo que está abierto
(=F17 / H16)
Una vez representado el problema, resulta especialmente interesante realizar nuevas simulaciones,
para ello, será tan fácil como ir a cualquier celda que contenga un valor aleatorio, copiarla y
volverla a pegar y se actualizarán todos los aleatorios del documento.
4
Otra ventaja que tiene el tener representado el problema es plantearnos nuevas situaciones. ¿Cómo
afectaría a nuestro sistema un cambio que permite disminuir el tiempo esperado de limpieza a 10
minutos?
Tabla resumen con la nueva situación que muestran una cola menor al disminuir el lavado.
5
BIBLIOGRAFÍA
Cristóbal-Cristóbal
J.A.
(1995)
,
INFERENCIA
ESTADISTICA.
Zaragoza.
Editorial
Prensas
Universitarias, 1998
Peña D. (2001), FUNDAMENTOS DE ESTADÍSTICA. Madrid. Editorial Alianza Editorial, 2001
http://es.wikipedia.org/wiki/Simulaci%C3%B3n
http://lema.rae.es/drae/?val=simulacion
http://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_Poisson
http://es.wikipedia.org/wiki/Distribuci%C3%B3n_exponencial
6
Descargar