Guía de probabilidad y estadística segundo parcial Probabilidad condicional Se presenta cuando la ocurrencia de un evento A se ve afectada por la probabilidad de que el evento B suceda. Es decir, se presenta con eventos dependientes: 𝐴 𝑃(𝐴 ∩ 𝐵) 𝑃( ) = 𝐵 𝑃(𝐵) Teorema de Bayes La interpretación más aceptada del teorema de Bayes, es que su estructura permite el cálculo de probabilidades después de haber sido realizado un experimento (probabilidades a posteriori), basándose en el conocimiento de la ocurrencia de ciertos eventos que dependan del evento estudiado, o sea, se parte de probabilidades conocidas antes de efectuar el experimento (probabilidades a priori), las cuales son afectadas por las probabilidades propias del experimento (las que aparecen durante la ocurrencia del evento). Continuando nuestro análisis sobre el teorema de Bayes, la probabilidad condicional de Ai dado B, para cualquier i, es: Aplicando en el numerador la Regla de Multiplicación P(AiÇB) = P(Ai) P(B|Ai) y en el denominador el Teorema de Probabilidad Total P(B) = P(A1) P(B | A1) + P(A2) P(B | A2) + . . . + P(An) P(B | An), obtenemos la ecuación que representa al: Teorema de Bayes Ejemplo 3. 11. Referente al problema de la fábrica que produce dos tipos de reguladores A y B visto anteriormente en la aparte corresponde al Teorema de Probabilidad Total, cabe hacer el siguiente análisis: si se selecciona un regulador al azar de la producción de la fábrica y se ve que funciona bien ¿Cuál es la probabilidad de que sea del tipo B? Solución: En este caso el estudio se restringe a los reguladores que funcionan bien, por lo que ese evento actúa como espacio muestral reducido, o sea como evento condición. Por lo tanto, el planteamiento de la pregunta es P(B | F). Los datos que se tienen son : P(A) = 0.75 P(F | A) = 0.95 P(B) = 0.25 P(F | B) = 0.98 De acuerdo al Teorema de Bayes: Podemos observar que el denominador corresponde al resultado obtenido al aplicar el Teorema de Probabilidad Total, lo cual debe ser así, ya que la probabilidad condicional establece que . De esta forma podemos ver que la Probabilidad total es el denominador de la fórmula del Teorema de Bayes. También podemos observar que aplicando los conceptos de la Regla de Multiplicación y del Teorema de Probabilidad Total llegamos al planteamiento del teorema de Bayes, Veamos: