TABLA DE DERIVADAS FUNCIÓN DERIVADA EJEMPLO y=k y´= 0 y =8 y´= 0 y = xn y´= nx n −1 y = x5 y´= 5 x 4 y´= n ⋅ u n −1 ⋅ u´ y = (2 x + 1) 3 y´= 3( 2 x + 1) 2 ⋅ 2 y = 5x y´= y = un (u = f (x) ) y= u y´= y= u y´= y = eu u' 2 u u´ y´= 5 2 5x 6x y = 3x 2 y´= u´⋅e u y = e3x +1 y = au y´= u´⋅a u ⋅ La y = 53 x−4 y = Lu y´= u´ u y = L x2 + 7x ) y´= 2x + 7 x2 + 7x y = log a u y´= u´ ⋅ log a e u y = log 2 (5 x + 7 ) y´= 5 ⋅ log 2 e 5x + 7 y = sen(u ) y´= u´⋅ cos(u ) y = sen5 x y´= 5 ⋅ cos 5 x y = cos(u ) y´= −u´⋅sen(u ) y = cos 3x 2 y´= −6 x ⋅ sen3 x 2 y = tg (u ) y´= u´⋅ sec 2 (u ) y = tg 7 x y´= 7 ⋅ sec 2 7 x m mm u m −1 5 2 ( ) 4 5 ⋅ 5 3x 2 y´= 6 x ⋅ e 3 x 2 +1 y´= 3 ⋅ 5 3 x −4 ⋅ L5 ( REGLAS DE DERIVACIÓN y = k ⋅u y´= k ⋅ u´ y = 3x 5 y´= 15 x 4 y =u+v−w y´= u´+ v´− w´ y = 3x 2 − 2 x + 5 y = 6x − 2 y = u ⋅v y´= u´⋅v + u ⋅ v´ y = x 2 ⋅ cos x y´= 2 x cos x − x 2 senx u y= v u´⋅v − u ⋅ v´ y´= v2 2x 2 y= 3 x −1 [ f (g (x) )]′ f ´(g ( x) ) ⋅ g´(x) y = 2x 2 + 1 ( y´= ) 5 ( ) 4 x x 3 − 1 − 2 x 2 ⋅ 3x 2 ( (x ) −1 3 ) 4 2 y´= 5 2 x 2 + 1 ⋅ 4 x