DERIVADAS DE LAS FUNCIONES USUALES FUNCIONES y = k , k ≡ cte. y=x y=u+v y =u⋅v y= u v DERIVADAS y' = 0 y' = 1 y ' = u' + v ' y ' = u '⋅ v + u ⋅ v ' y' = FUNCIONES DERIVADAS u = u ( x) , v = v( x) , es decir, se trata de funciones. u '⋅ v ' − v '⋅ u ' v2 y = xn , n ∈ ℜ y ' = n ⋅ x n −1 y = un y ' = n ⋅ u n −1 ⋅ u ' y=n x y' = y=n u y' = y = Ln ( x ) y' = 1 x 1 y ' = ⋅ log a e x y = Ln ( u ) 1 u' ⋅u' = u u 1 y ' = ⋅ u ' ⋅ log a e u y = ex y' = e x y = eu y ' = eu ⋅ u ' y = ax y ' = a x ⋅ Ln a y = au y ' = a u ⋅ u ' ⋅ Ln a y = sen ( x ) y ' = cos ( x ) y = sen ( u ) y ' = cos ( u ) ⋅ u ' y = cos ( x ) y ' = − sen ( x ) y = cos ( u ) y ' = − sen ( u ) ⋅ u ' y = tg x y' = y = tg ( u ) y' = y = co tg x y' = − y = cotg ( u ) y' = − y = sec x y ' = sec ( x ) ⋅ tg ( x ) y = sec ( u ) y ' = sec ( u ) ⋅ tg ( u ) ⋅ u ' y = cose c x y ' = − cosec ( x ) ⋅ cotg ( x ) y = cosec ( u ) y ' = − cosec ( u ) ⋅ cotg ( u ) ⋅ u ' y = log a x y = arc sen x y' = y = arccos x y' = y = arc tg x y' = 1 n ⋅ n x n −1 1 cos 2 ( x) 1 sen 2 ( x) 1 1 − x2 −1 1 − x2 1 1 + x2 = 1 + tg 2 ( x ) y = log a ( u ) ⋅u' n ⋅ n u n −1 y' = y = arcsen ( u ) y' = y = arc cos ( u ) y' = y = arctg ( u ) 1 y' = 1 cos 2 ( u ) ⋅u' 1 sen 2 ( u ) 1 1 − u2 −1 1 − u2 ⋅u' ⋅u' ⋅u' 1 ⋅u' 1 + u2