Trigonometry – Key Relationships and Formulas Function Relationships sin θ cos θ tan θ tan θ 1 csc θ csc θ 1 sec θ sec θ 1 cot θ cot θ 1 sin θ 1 cos θ 1 tan θ sin θ cot θ cos θ cos θ sin θ cos tan 1 sec cot 1 csc sin Double Angle Formulas 2sin cos tan sin cos 2 cos 1 2 sin 2 cos 1 2 tan 1 tan tan 2 sin sin cos tan cot sec csc sin cos cos tan tan cot cot sec sec csc csc 1 cos sin 2 Cofunction Formulas (in Quadrant I) 2 2 2 1 1 1 1 1 cos 2 Triple Angle Formulas sin 3 3sin cos 2 cos 3 4 cos tan 3 3 tan tan 1 3 tan cos cos sin 3 cos Law of Sines Law of Cosines sin 2 cos 2 cos 2 cos Euler’s Formula sin cis cis csc sec 2 2 sin sin cos cos sin sin sin cos cos sin cos cos cos sin sin cos cos cos sin sin tan tan 1–tan tan tan tan 1 tan tan ∙ sin sin sin 2 ∙ sin sin sin 2 ∙ sin cos cos 2 ∙ cos cos cos 2 ∙ sin cos cos sin sin ∙ cos 2 ∙ cos 2 2 2 ∙ cos 2 2 ∙ sin 2 2 Mollweide’s Formulas mathguy.us Polar Multiplication and Division cis Let: ∙ tan Sum‐to‐Product Formulas 1 2 1 tan 2 cot 2 tan DeMoivre’s Formula cis cos 2 2 cos 2 2 cos 2 cos 2 sin 1 cos 2 1 cos ∙ cos cos 2 1 sin ∙ cos sin 2 1 sin cos ∙ sin 2 cos sin Law of Tangents cos 1 1 tan Arc Length 1 cos cos Product‐to‐Sum Formulas sin 1 cos 1 2 tan Power Reducing Formulas 4sin 2 tan 2 Angle Addition Formulas Half Angle Formulas Pythagorean Identities sin Opposite Angle Formulas cis cis cis cos sin sin 1 2 1 2 cos 1 2 1 2 2 Period Period 2 Period Period 2 Period 2 Period ∙ Amplitude: | | " " Period: Phase Shift: Vertical Shift: Harmonic Motion cos or sin 2 , 0 Trig Functions of Special Angles (Unit Circle) ° Rad 0⁰ 0 1 0 6 30⁰ 1/2 √3/2 √3/3 4 45⁰ √2/2 √2/2 1 3 60⁰ √3/2 1/2 √3 2 90⁰ 1 0 undefined 0 Rectangular/Polar Conversion Rectangular Polar , , cos sin tan cos sin or cos sin tan tan Vector Dot Product ∙ ∙ ∘ ∘ Vector Properties 0 0 0 1 2 1 2 1 2 sin sin sin 1 2 sin 1 2 1 1 2 2 3 3 1 1 1 1 ‖ ‖ | |‖ ‖ Unit Vector: ‖ ‖ Vector Cross Product u u u v x v v x ‖ ‖ ‖ ‖ sin θ x ‖ ‖ ‖ ‖ cos ‖ ‖ sin 1 2 ‖ ‖∠ ∘ ∘ Triangle Area Angle between Vectors u v x cos iff ‖ ∘ ∘ sin ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖ 0 ∥ iff x 0