333202CB05_AN.qxd 1/1/70 09:40 AM Page 1 1 Precalculus with Limits, Answers to Section 5.1 Chapter 5 sec Section 5.1 (page 379) 1. sin x 2. cos u 6. sec2 u 10. tan u 3 cos x 4. csc u 8. csc u 1 2 1 2 3 cos x 2 3 tan x 3 tan x 23 csc x 3 csc x 2 sec x 2 sec x cot x 3 3 2 3. sin 2 2 cos 2 tan 1 sec 2 csc 2 cot 1 Copyright © Houghton Mifflin Company. All rights reserved. 3. cot u 7. cos u 2. sin x 2 5 13 12 cos x 13 5 tan x 12 13 sec x 12 13 csc x 5 12 cot x 5 5. sin x 7. sin 5 3 2 cos 3 tan 5 2 csc x 35 5 25 cot 5 1 9. sin x 3 22 cos x 3 2 tan x 4 csc x 3 32 sec x 4 csc Vocabulary Check (page 379) 1. tan u 5. cot2 u 9. cos u 5 3 5 sec x 4 4 cot x 3 3 2 3 23 3 3 5 4 cos 5 3 tan 4 5 sec 4 5 csc 3 4 cot 3 tan x 15 sec x 4 415 csc x 15 15 cot x 15 1 12. sin 5 26 cos 5 6 tan 12 56 sec 12 csc 5 25 5 5 cos 5 11. sin tan 2 4. sin csc 5 2 sec 5 1 cot 2 13. sin 1 10 15 4 1 cos x 4 cot x 22 cot x 3 6. sin 10. sin x cot 26 14. sin 1 cos 0 cos 0 tan is undefined. tan is undefined. cot 0 csc 1 csc 1 sec is undefined. sec is undefined. cot 0 10 310 cos 10 1 tan 3 19. e 23. f cot 3 26. d 27. csc 28. sin 29. cos2 30. 1 31. cos x csc 10 sec 3 5 4 cos x 5 3 tan x 4 8. sin x 10 3 15. d 16. a 17. b 18. f 20. c 21. b 22. c 24. a 25. e 32. cot 33. sin x 34. cos 2 x 35. 1 36. sin2 37. tan x 38. sin x 39. 1 sin y 40. sec t 41. sec 42. 2 sec 43. cos u sin u 2 44. csc sec 45. 47. sin 2 x tan 2 x 48. 1 50. cos x 2 51. sin 2 sec 4 x 46. cos2 x 49. sec x 1 x 52. sin 4 x 333202CB05_AN.qxd 1/1/70 09:40 AM Page 2 2 Precalculus with Limits, Answers to Section 5.1 (Continued) 53. 55. 57. 59. 62. 65. sin 2 x cos 2 x 54. 56. 58. 61. 64. 66. cot2 xcsc x 1 1 2 sin x cos x 60. 9 cos 2 x 4 cot2 x 63. 2 sec x 2 cot 2 x 1 cos y 67. 3sec x tan x sec2 x tan2 x tan2 xsec x 1 1 2 csc 2 x cot x 5sec x tan x x 1.2 1.4 y1 5.3319 11.6814 y2 5.3319 11.6814 12 68. tan 4 x csc x 1 2 0 69. x 0.2 0.4 0.6 0.8 1.0 y1 0.1987 0.3894 0.5646 0.7174 0.8415 y2 0.1987 0.3894 0.5646 0.7174 0.8415 x 1.2 1.4 y1 0.9320 0.9854 y2 0.9320 0.9854 1 y1 y2 72. x 0.2 0.4 0.6 0.8 1.0 y1 0.0428 0.2107 0.6871 2.1841 8.3087 y2 0.0428 0.2107 0.6871 2.1841 8.3087 x 1.2 1.4 y1 50.3869 1163.6143 y2 50.3869 1163.6143 1 1200 2 0 0 y1 y2 2 0 0 Copyright © Houghton Mifflin Company. All rights reserved. 70. y1 y2 x 0.2 0.4 0.6 0.8 1.0 y1 0.0403 0.1646 0.3863 0.7386 1.3105 73. csc x 74. cot x 75. tan x y2 0.0403 0.1646 0.3863 0.7386 1.3105 76. sec 77. 3 sin 78. 8 sin 79. 3 tan 80. 2 tan 81. 5 sec x 1.2 1.4 82. 10 sec 83. 3 cos 3; sin 0; cos 1 y1 2.3973 5.7135 84. 6 cos 3; sin ± y2 2.3973 5.7135 3 85. 4 sin 22; sin 6 2 ; cos 2 2 ; cos 86. 10 sin 53; sin 87. 0 ≤ ≤ 2 0 0 89. 0 ≤ < y1 y2 71. 3 , < < 2 2 2 lncsc t sec t 1 2 3 2 2 2 ; cos 88. 1 2 3 ≤ ≤ 2 2 90. 0 < < 91. ln cot x 92. ln tan x 94. 0 x 0.2 0.4 0.6 0.8 1.0 93. y1 1.2230 1.5085 1.8958 2.4650 3.4082 95. (a) csc 2 132 cot 2 132 1.8107 0.8107 1 y2 1.2230 1.5085 1.8958 2.4650 3.4082 (b) csc 2 2 2 cot2 1.6360 0.6360 1 7 7 333202CB05_AN.qxd 1/1/70 09:40 AM Page 3 3 Precalculus with Limits, Answers to Section 5.1 (Continued) 112. Not an identity because 96. (a) tan 3462 1 sec 3462 1.0622 (b) tan 3.12 1 sec 3.12 1.0017 97. (a) cos90 80 sin 80 0.9848 1 1 sin 113–114. Answers will vary. 115. x 25 116. 4z 12z 9 (b) cos 0.8 sin 0.8 0.7174 2 117. 6x 8 x 5x 8 118. 32x 1 x4 98. (a) sin250 sin 250 0.9397 119. 120. (b) sin 12 sin12 0.4794 5x2 8x 28 x2 4x 4 xx2 5x 1 x2 25 121. x2 122. 99. tan y y 2 3 100. Answers will vary. 1 101. True. For example, sinx sin x. x 102. False. A cofunction identity can be used to transform a tangent function so that it can be represented by a cotangent function. 103. 1, 1 104. 1, 1 105. , 0 1 110. Not an identity because sin k tan k cos k 5 1 cos 5 cos Copyright © Houghton Mifflin Company. All rights reserved. 111. An identity because sin 1 sin 1 x 1 3 −1 −2 −3 −2 123. 124. 108. Not an identity because cot ± csc2 1 109. Not an identity because −1 −1 106. 0, 107. Not an identity because cos ± 1 sin2 −3 3 y y 4 5 3 4 2 3 1 π 2 −2 3π 2π 2 1 x −π −1 −3 −2 −4 −3 π 2π x 333202CB05_AN.qxd 1/1/70 09:40 AM Page 4 4 Precalculus with Limits, Answers to Section 5.2 Section 5.2 (page 387) 44. (a) (b) 1 Vocabulary Check (page 387) 1. identity 4. cot u 7. csc u 2. conditional equation 5. cos2 u 6. sin u 8. sec u 1–38. Answers will vary. 39. (a) (b) 3. tan u −2 2 −1 Identity (c) Answers will vary. 45. (a) (b) 3 5 −5 −2 5 y2 y1 2 −3 −5 Not an identity Identity (c) Answers will vary. 46. (a) (c) Answers will vary. 40. (a) (b) (b) 3 3 −2 −2 2 2 −5 Not an identity −1 Identity (c) Answers will vary. 41. (a) (b) 5 y2 y1 −2 2 −1 Copyright © Houghton Mifflin Company. All rights reserved. Not an identity (c) Answers will vary. 42. (a) (b) 5 − −5 Not an identity (c) Answers will vary. 43. (a) (b) 5 −2 2 −1 Identity (c) Answers will vary. (c) Answers will vary. 47–50. Answers will vary. 52. 1 53. 2 54. 2 56. (a) Answers will vary. (b) 10 20 51. 1 55. Answers will vary. 30 40 50 4.20 s 28.36 13.74 8.66 5.96 60 70 80 90 s 2.89 1.82 0.88 0 (c) Greatest: 10; Least: 90 (d) Noon 57. False. An identity is an equation that is true for all real values of . 58. True. An identity is an equation that is true for all real values in the domain of the variable. 59. The equation is not an identity because sin ±1 cos2 . 7 Possible answer: 4 60. The equation is not an identity because tan ± sec 2 1. 3 Possible answer: 4 61. 2 3 26 i 62. 21 20i 63. 8 4i 5 ± 53 64. 9 46i 65. 3 ± 21 66. 2 67. 1 ± 5 68. 141 ± 7 333202CB05_AN.qxd 1/1/70 09:40 AM Page 5 5 Precalculus with Limits, Answers to Section 5.3 43. 2 6n, 2 6n Section 5.3 (page 396) 44. 2 8n, 2 8n 45. 2.678, 5.820 Vocabulary Check (page 396) 1. general 2. quadratic 1–6. Answers will vary. 8. 10. 7 11 2n, 2n 6 6 2 n 3 2 12. n, n 3 3 3. extraneous 2 4 7. 2 n, 2n 3 3 2 2n , 2n 3 3 9. 5 n, n 6 6 11. 3 13. n, 2n 2 5 2 14. n, n, n, n 6 6 3 3 15. 2 n, n 3 3 n 3 n 17. , 8 2 8 2 19. 2 n, n 3 3 16. n 2 n 18. , 9 3 9 3 n , n 3 4 3 , , 2 2 23. 0, , Copyright © Houghton Mifflin Company. All rights reserved. 25. 5 7 11 , , , 6 6 6 6 5 , , 3 3 24. 3 2 4 , , , 2 2 3 3 26. 5 , 3 3 30. 7 3 11 , , 6 2 6 5 7 11 , , , 6 6 6 6 32. 5 , 3 3 33. 2 34. 5 , 4 4 7 4n, 4n 2 2 41. 1 4n 51. 0, 2.678, 3.142, 5.820 52. 0.515, 2.726, 3.657, 5.868 53. 0.983, 1.768, 4.124, 4.910 54. 0.524, 0.730, 2.412, 2.618 55. 0.3398, 0.8481, 2.2935, 2.8018 56. 0.5880, 2.0344, 3.7296, 5.1760 57. 1.9357, 2.7767, 5.0773, 5.9183 58. 1.7794, 4.5038 59. 5 , , arctan 5, arctan 5 4 4 5 60. arctan2 , arctan2 2, , 4 4 5 , 3 3 62. 5 , 6 6 (b) 3 2 0.7854 4 5 3.9270 4 36. −3 Maximum: 0.7854, 1.4142 Minimum: 3.9270, 1.4142 64. (a) 2 5 n, n 3 6 n 5 n 38. , 12 2 12 2 40. 8 10 4n, 4n 3 3 42. 3 4 n (b) 3 2 0 31. 39. 50. 4.917 0 5 29. , , 3 3 n 37. 12 3 49. 0.860, 3.426 22. 0, 28. 0 5 n, n 6 6 48. 0.524, 2.618 63. (a) 27. No solution 35. 47. 1.047, 5.236 61. n 2 4 20. , 2n, 2n 4 2 3 3 21. 0, 46. 0.785, 2.356, 3.665, 3.927, 5.498, 5.760 −3 0.5236 6 1.5708 2 5 2.618 6 3 4.7124 2 Maximum: 0.5236, 1.5 Maximum: 2.6180, 1.5 Minimum: 1.5708, 1 65. 1 Minimum: 4.7124, 3 66. 0.739 67. (a) All real numbers x except x 0 (b) y-axis symmetry; Horizontal asymptote: y 1 (c) Oscillates (d) Infinitely many solutions (e) Yes, 0.6366 68. (a) All real numbers x except x 0 (b) y-axis symmetry (c) y approaches 1. (d) Four solutions: ± , ± 2 333202CB05_AN.qxd 1/1/70 09:40 AM Page 6 6 Precalculus with Limits, Answers to Section 5.3 (Continued) 78. (a) 69. 0.04 second, 0.43 second, 0.83 second 70. (b) 1.96 seconds 4 10 3 4 0 6 f 10 0 g −4 For 3.5 ≤ x ≤ 6, the approximation appears to be good. −4 (c) 3.46, 8.81 3.46 is close to the zero of f in the interval 0, 6 . 71. February, March, and April 72. January, October, November, December 73. 36.9, 53.1 74. 1.9 75. (a) Between t 8 seconds and t 24 seconds (b) 5 times: t 16, 48, 80, 112, 144 seconds 79. True. The first equation has a smaller period than the second equation, so it will have more solutions in the interval 0, 2. 80. False. There is no value of x for which sin x 3.4. 81. 1 82. 3 83. C 24 84. C 19 6 a 54.8 a 15.4 4 b 50.1 c 5.0 76. (a) Unemployment rate y 8 2 85. sin 390 t 2 4 6 1 2 86. sin600 cos 390 (b) 1 tan 390 (c) The constant term, 5.45 3 cos600 2 3 87. sin1845 (e) 2010 Copyright © Houghton Mifflin Company. All rights reserved. (b) 0.6 < x < 1.1 2 −2 A 1.12 2 cos1845 1 2 tan600 3 3 (d) 13.37 years 0 2 8 10 12 14 Year (0 ↔ 1990) 77. (a) 3 2 2 2 88. sin1410 2 cos1410 tan1845 1 tan1410 89. 1.36 91. Answers will vary. 90. 30 feet 1 2 3 2 3 3 333202CB05_AN.qxd 1/1/70 09:40 AM Page 7 7 Precalculus with Limits, Answers to Section 5.4 Section 5.4 (page 404) 11 2 3 1 12 4 11. sin Vocabulary Check (page 404) cos tan u tan v 1 tan u tan v 2 11 3 1 12 4 tan 11 2 3 12 tan u tan v 1 tan u tan v 12. sin 1. sin u cos v cos u sin v 2. cos u cos v sin u sin v 3. 4. sin u cos v cos u sin v 5. cos u cos v sin u sin v 1. (a) 2. (a) 3. (a) 2 6 4 (b) 6 2 (b) 4 2 6 (b) 4 4. (a) 6 2 (b) 4 1 2 2 2 3 2 2 1 2 2 1 2 5. (a) 1 2 (b) 3 1 2 6. (a) 2 6 4 (b) 2 3 2 7. sin 105 cos 105 2 4 3 1 2 4 1 3 tan 105 2 3 8. sin 165 Copyright © Houghton Mifflin Company. All rights reserved. 6. 2 4 cos 165 3 1 2 4 3 1 tan 165 2 3 9. sin 195 2 4 cos 195 1 3 2 4 3 1 tan 195 2 3 10. sin 255 cos 255 2 4 2 4 3 1 1 3 tan 255 2 3 7 2 3 1 12 4 cos 7 2 1 3 12 4 tan 7 2 3 12 2 17 3 1 12 4 13. sin cos 17 2 1 3 12 4 tan 17 2 3 12 12 2 2 14. sin 12 cos 1 3 4 3 1 4 12 2 3 tan 15. sin 285 cos 285 2 2 4 3 1 4 3 1 tan 285 2 3 16. sin105 cos105 2 4 2 4 3 1 1 3 tan105 2 3 17. sin165 2 cos165 4 3 1 2 4 1 3 tan165 2 3 333202CB05_AN.qxd 1/1/70 09:40 AM Page 8 8 Precalculus with Limits, Answers to Section 5.4 (Continued) 2 18. sin 15 4 3 1 2 cos 15 4 1 3 cos 2 13 1 3 12 4 tan 13 2 3 12 7 2 3 12 2 13 3 1 12 4 cos x sin x Copyright © Houghton Mifflin Company. All rights reserved. 24. sin 190 30. cos3x 2y 31. 3 2 3 36. 3 34. 37. 12 cos 35 3 2 2 2 63 65 40. 33 65 42. 65 33 43. 65 56 45. 3 5 46. 4 5 39. 16 65 63 16 16 44. 63 41. 4 (b) 2 cos 4 (b) 13 cos3 1.1760 4 89. 2 cos 90. 52 52 sin cos 2 2 (b) 2 cos 2 92. (a) All real numbers x except x 0 (b) h 0.01 0.02 0.05 f h 0.504 0.509 0.521 gh 0.504 0.509 0.521 h 0.1 (b) 5 cos 2 0.6435 88. (a) 2 sin 2 25. tan 239 29. tan 3x 56 38. 65 87. (a) 13 sin 3 0.3948 28. 35. 1 5 7 , 4 4 sin x cos cos x sin cos x 2 2 2 86. (a) 5 sin2 0.9273 5 2 3 1 12 4 33. 71. 27. sin 1.8 2 67. cos 5 70. , 3 3 cos x cos sin x sin sin x 2 2 2 85. (a) 2 sin 26. tan 80 32. 66. cos x 69. 2 81– 84. Answers will vary. tan 2 55–64. Answers will vary. 80. True. 5 3 2 12 23. cos 40 53. 0 79. False. 5 2 22. sin 1 3 12 4 cos 117 125 78. False. cosu ± v cos u cos v sin u sin v 13 tan 2 3 12 x x1 x2 x2 1 50. 77. False. sinu ± v sin u cos v ± cos u sin v 2 13 cos 3 1 12 4 2 x 2 1 x2 4x2 1 5 3 76. Answers will vary. 21. sin 52. 49. 7 5 72. 0, , , 73. , 74. 0, 3 3 4 4 5 75. (a) y sin 2t 0.6435 12 5 1 (b) feet (c) cycle per second 12 2 7 cos 1 3 12 4 tan 51. 1 68. tan 2 7 3 1 12 4 117 44 65. sin x 13 2 19. sin 1 3 12 4 48. 54. tan 15 2 3 20. sin 44 47. 117 0.2 0.5 f h 0.542 0.583 0.691 gh 0.542 0.583 0.691 4 91. Proof 333202CB05_AN.qxd 1/1/70 09:40 AM Page 9 9 Precalculus with Limits, Answers to Section 5.4 (Continued) (c) sin 2 2 −3 97. f 1x (d) As h → 0, the function f h approaches 0.5 and the function gh approaches 0.5. 94. 15 x 15 5 98. f 1x 8x 7 99. Because f is not one-to-one, f 1 does not exist. 3 −2 2 −3 Copyright © Houghton Mifflin Company. All rights reserved. 96. (a) and (b) Answers will vary. 3 −2 93. 15 95. sin 2 1 4 4 100. f 1x x 2 16 101. 4x 3 102. 3x 2 103. 6x 3 104. x 2 10x 333202CB05_AN.qxd 1/1/70 09:40 AM Page 10 10 Precalculus with Limits, Answers to Section 5.5 1 29. 83 4 cos 2x cos 4x Section 5.5 (page 415) 30. Vocabulary Check (page 415) 1. 2 sin u cos u 2. cos2 u 3. cos2 u sin2 u 2 cos2 u 1 1 2 sin2 u 1 cos u 4. tan2 u 5. ± 2 sin u 1 cos u 6. sin u 1 cos u 7. 12cosu v cosu v u 2 v cosu 2 v uv uv 10. 2 sin sin 2 2 1. 6. 17 1 2. 4 17 17 15 7. 17 8 15 3. 17 8. 32. 1 128 3 33. 1 16 1 cos 2x cos 4x cos 2x cos 4x 34. 1 16 1 cos 2x cos 4x cos 2x cos 4 x 35. 417 17 36. 37. 1 4 38. Copyright © Houghton Mifflin Company. All rights reserved. 41. sin 75 7 3 11 , , , 2 6 2 6 11. 12. 3 3 5 7 , , , , , 2 2 4 4 4 4 13. 0, 14. 7 11 , , 2 6 6 15. 5 13 17 , , , 12 12 12 12 2 4 , 3 3 5 7 3 11 , , , , , 2 6 6 6 2 6 3 17. 0, , , 2 2 5 3 7 3 18. 0, , , , , , , 4 2 4 4 2 4 19. 3 sin 2x 20. 3 cos 2x 22. cos 2x 23. sin 2u 21. 4 cos 2x 24 25 7 25 24 tan 2u 7 25. sin 2u 24 25 cos 2u 8 5. 15 5 9. 0, , , 3 3 10. 5 3 16. , , , 6 2 6 2 45 9 1 cos 2u 9 24. sin 2u tan 2u 45 cos 2u 15 17 tan 2u 24 7 8 tan 2u 15 42 28. sin 2u 3 7 cos 2u 9 42 tan 2u 7 17 17 17 4 40. 4 1 2 2 3 42. sin 165 122 3 cos 75 122 3 cos 165 122 3 tan 75 2 3 tan 165 3 2 2 2 1 cos 112 30 22 2 43. sin 112 30 1 2 tan 112 30 1 2 44. sin 67 30 1 1 2 2 45. sin 2 2 2 8 2 cos 1 2 2 8 2 tan 67 30 1 2 tan 2 1 8 46. sin 1 2 3 12 2 47. sin 3 1 2 2 8 2 cos 1 2 3 12 2 cos 3 1 2 2 8 2 tan 2 3 12 tan 3 2 1 8 cos 67 30 48. sin 1 2 2 2 7 1 2 3 12 2 49. sin u 526 2 26 cos 7 1 2 3 12 2 cos u 26 2 26 tan 7 2 3 12 tan u 5 2 8 26. sin 2u 17 7 cos 2u 25 421 27. sin 2u 25 17 cos 2u 25 421 tan 2u 17 4 cos 4x cos 8x 39. 17 8 4. 17 15 8 cos 2x 28 cos 4x 16 cos 2x cos 4x cos 8x 1 31. 81 cos 4x 8. 12sinu v sin u v 9. 2 sin 1 128 35 48 50. sin u 5 2 5 51. sin u 2 89 1788 89 89 1788 cos u 25 2 5 cos u 2 tan u 1 2 2 tan u 8 89 2 5 89 333202CB05_AN.qxd 1/1/70 09:40 AM Page 11 11 Precalculus with Limits, Answers to Section 5.5 (Continued) 83. u 1 10 3 cos 2 2 5 52. sin 10 310 5 u 1 2 2 53. sin 10 cos u 310 2 10 3 1 84. 2 10 u 2 10 2 2 0 u 314 54. sin 2 14 u 70 cos 2 14 u 35 tan 2 5 55. sin 3x −2 5 3 7 3 88. 0, , , , , , , 4 2 4 4 2 4 57. tan 4x 58. sin x1 2 5 60. 0, , 3 3 59. 2 2 −2 1 2 0 5 , 6 6 2 0 −2 1 2 2 0 −1 144 169 91. 92. 93. 95–110. Answers will vary. 3 111. −2 Copyright © Houghton Mifflin Company. All rights reserved. −2 63. 3 sin sin 0 2 64. 2 sin 7 sin 6 2 66. 3sin 60 sin 30 67. 12 sin 10 sin 2 68. 32 cos cos 5 69. 52cos 8 cos 2 70. 12 cos 2 cos 6 73. 1 2 sin 94. 36 65 112. 2 3 −2 2 −3 113. −3 114. 3 −2 71. 4 13 −3 65. 5cos 60 cos 90 1 2 cos 2 0 −2 25 169 3 2 2 0 3 62. 0, , 2 2 0 3 3 5 7 90. 0, , , , , , , 2 2 4 4 4 4 2 −2 5 , , 3 3 2 0 89. 61. 2 85. 2 86. 2 3 5 3 7 87. 0, , , , , , , 4 2 4 4 2 4 u tan 3 2 u tan 3 10 2 56. cos 2x 3 1 2y cos 2x 72. 1 2 sin 2 x sin 2y 75. 2 cos 4 sin 76. 2 sin 2 cos 77. 2 cos 4x cos 2x 78. 2 sin 3x cos 2 x 79. 2 cos sin 80. 2 cos cos 2 cos 2 82. 2 sin x cos 0 2 −3 −3 115. 116. 2 sin 2 81. 2 sin sin − 2 y 74. 12cos 2 cos 2 121 cos 2 3 y 2 2 1 1 π 2π x π −1 −1 −2 −2 2π x 333202CB05_AN.qxd 1/1/70 09:41 AM Page 12 12 Precalculus with Limits, Answers to Section 5.5 (Continued) 128. (a) 117. 2x1 x2 118. 2x 2 1 120. (a) A 100 sin cos 2 2 119. 23.85 2 −2 −2 (b) gx sin 2x (b) A 50 sin The area is maximum when 2. 129. (a) (c) Answers will vary. y 6 121. (a) (b) 0.4482 (−1, 4) (c) 760 miles per hour; 3420 miles per hour (d) 2 sin1 1 1 2 3 4 5 −2 (c) Midpoint: 2, 3 (b) Distance 210 130. (a) y 12 2 sinu cosu (6, 10) 10 8 2sin u cos u 6 4 2 sin u cos u. x −3 − 2 − 1 −1 sin 2u sin2u u 2 (5, 2) 2 1 M 123. False. For u < 0, 124. False. sin 5 3 122. x 2r1 cos 2 1 cos u u when is in the second 2 2 quadrant. 125. (a) 2 (b) 4 −6 −4 x 2 −2 4 6 8 10 (−4, − 3) 7 (c) Midpoint: 1, 2 (b) Distance 269 131. (a) y 3 ( 43 , 52) 2 2 0 Copyright © Houghton Mifflin Company. All rights reserved. 0 Maximum: , 3 126. (a) 1 (0, 12 ) 7 3 11 (b) , , , 2 6 2 6 2 1 132. (a) 127. (a) 1 3 Minima: 2 , 3 , 2 , 1 Maxima: 6 , 2 , 1 4 3 7 3 cos 4x (c) 1 2 sin 2 x cos 2 x 11 3 , 6 2 −2 (b) 2 cos 4 x 2 cos 2 x 1 (d) 1 12 sin 2 2 x (e) No. There is often more than one way to rewrite a trigonometric expression. (c) Midpoint: 23, 32 y −3 2 2 (b) Distance 313 2 0 x −1 ( 13 , 23) x −1 1 −1 (−1, − 32 ) − 2 1 (b) Distance 6233 1 5 (c) Midpoint: 3, 12 133. (a) Complement: 35; supplement: 125 (b) No complement; supplement: 18 333202CB05_AN.qxd 1/1/70 09:41 AM Page 13 13 Precalculus with Limits, Answers to Section 5.5 (Continued) 136. (a) Complement: 0.62; supplement: 2.19 134. (a) No complement; supplement: 71 (b) No complement; supplement: 0.38 (b) Complement: 12; supplement: 102 17 4 135. (a) Complement: ; supplement: 9 18 Copyright © Houghton Mifflin Company. All rights reserved. (b) Complement: 11 ; supplement: 20 20 137. September: $235,000; October: $272,600 138. 15.7 gallons 139. 127 feet 333202CB05_AN.qxd 1/1/70 09:41 AM Page 14 14 Precalculus with Limits, Answers to Review Exercises Review Exercises (page 420) 1. sec x 4. cot x 2. csc x 5. cot x 3. cos x 6. sec x 213 8. sin 13 313 cos 13 13 csc 2 3 cot 2 3 7. tan x 4 5 csc x 3 5 sec x 4 4 cot x 3 9. cos x 51. sin 285 2 1 10. cos 9 2 tan x 1 csc x 2 sec x 2 cot x 1 4 2 4 3 1 3 1 tan 285 2 3 52. sin 345 cos 345 2 4 1 3 2 4 1 3 tan 345 2 3 53. sin 25 2 3 1 12 4 95 csc 20 cos 25 2 3 1 12 4 sec 9 tan 25 2 3 12 tan 45 cot 5 54. sin 20 11. sin2 x 12. sec csc 13. 1 14. cos2 x 15. cot 16. tan u sec u 17. cot2 x 18. 1 cos 19. sec x 2 sin x 20. 2 tan2 x 2 sec x tan x 1 21. 2 tan2 22. 1 sin x 23–32. Answers will vary. Copyright © Houghton Mifflin Company. All rights reserved. cos 285 2 2 19 3 1 12 4 19 2 3 1 12 4 19 2 3 12 55. sin 15 56. cos 165 58. tan47 3 59. 52 5 47 tan 57. tan 35 33. 2 2n, 2n 3 3 34. 5 2n, 2n 3 3 60. 960 5077 1121 61. 1 57 36 52 35. n 6 36. 5 2n, 2n 3 3 62. 127 15 52 63. 1 57 36 52 37. 2 n, n 3 3 38. 5 n, n 6 6 64. 960 5077 1121 65–70. Answers will vary. 40. 5 , , 6 2 6 71. 7 , 4 4 72. 73. 11 , 6 6 74. 0, 39. 0, 2 4 , 3 3 41. 0, , 2 42. 0 3 9 11 43. , , , 8 8 8 8 2 4 5 44. 0, , , , , 3 3 3 3 3 5 7 9 11 13 15 45. 0, , , , , , , , 8 8 8 8 8 8 8 8 46. No solution 47. 0, 48. 24 75. sin 2u 25 3 , 2 2 50. 3 7 , , arctan5 , arctan5 2 4 4 cos 2u 35 tan 2u 43 78. 2 −2 4 2 −2 49. arctan4 , arctan4 2, arctan 3, arctan 3 4 76. sin 2u 5 7 cos 2u 25 tan 2u 24 7 77. 3 2 −2 1 cos 4x 1 cos 4x 3 4 cos 2x cos 4x 81. 41 cos 2x 79. 2 −1 1 cos 6x 2 1 cos 2x 82. 2 80. 333202CB05_AN.qxd 1/1/70 09:41 AM Page 15 15 Precalculus with Limits, Answers to Review Exercises (Continued) 83. sin75 12 cos75 1 2 102. (a) V sin 2 3 1 (b) V 2 sin cubic meters 2 3 Volume is maximum when 2. tan75 2 3 103. cos 15 1 2 −2 1 19 2 3 12 2 1 1 104. y 210 sin8t arctan 3 1 105. 210 feet 19 1 2 3 cos 12 2 17 1 2 3 12 2 17 1 2 3 12 2 87. sin cos 17 tan 2 3 12 u 88. sin 2 u cos 2 89 8 289 89 8 289 108. False. Using the sum and difference formula, sinx y sin x cos y cos x sin y. u 10 2 10 109. True. 4 sinx cosx 4sin x cos x u 310 10 2 4 sin x cos x 22 sin x cos x u 1 tan 2 3 2 sin 2x 110. True by the product-to-sum formula 178889 89 111. Reciprocal identities: 178 178889 89 Copyright © Houghton Mifflin Company. All rights reserved. cos u 90. sin 2 u 70 2 14 cos u 35 tan 2 5 91. cos 5x u 2 21 7 12 6 125 93. 1 sin 2 3 1 95. 2cos 2 cos 8 96. 2sin 5 sin 97. 2 cos 3 sin 5 cos 2 2 100. 2 cos x sin 4 1 1 1 , cos , tan , csc sec cot csc 1 1 1 , sec , cot sin cos tan 6 99. 2 sin x sin Quotient identities: tan sin cos , cot cos sin Pythagorean identities: sin2 cos2 1, 1 tan2 sec2 , 1 cot2 csc2 112. No. For an equation to be an identity, the equation must 1 be true for all real numbers x. sin 2 has an infinite number of solutions but is not an identity. 113. 1 ≤ sin x ≤ 1 for all x 94. 3cos30 cos 60 98. 2 cos 15 35 u 7 tan 2 35 5 92. tan 3x sin 178 u 89 8 tan 2 5 u 314 89. sin 2 14 106. 4 cycles per second 107. False. If 2 < < , then cos2 > 0. The sign of cos2 depends on the quadrant in which 2 lies. 19 2 3 tan 12 cos 2 0 2 3 tan 15 2 3 86. sin 2 2 3 84. sin 15 1 2 85. sin cos cubic meters 2 2 6 101. 15 or 12 114. (a) 49.91479, 59.86118 (b) 54.735616 115. y1 y2 1 116. y1 1 y2 117. 1.8431, 2.1758, 3.9903, 8.8935, 9.8820 118. 3.1395, 2.0000, 0.4378, 2.0000 333202CB05_AN.qxd 1/1/70 09:41 AM Page 16 16 Precalculus with Limits, Answers to Chapter Test Chapter Test (page 423) 15. 2sin 6 sin 2 313 2. 1 3. 1 4. csc sec 13 213 cos 13 13 csc 3 13 sec 2 2 cot 3 3 5. 0, < ≤ , < < 2 2 2 3 6. 7–12. Answers will vary. 1. sin −2 16. 2 cos 17. 0, 7 sin 2 2 7 3 , , 4 4 18. 5 3 , , , 6 2 6 2 19. 5 7 11 , , , 6 6 6 6 20. 5 3 , , 6 6 2 21. 2.938, 2.663, 1.170 25. t 0.26 minute 0.58 minute −3 y1 y2 13. 1 10 15 cos 2x 6 cos 4x cos 6x 16 1 cos 2x Copyright © Houghton Mifflin Company. All rights reserved. 14. tan 2 0.89 minute 2 6 4 23. sin 2u 45 , tan 2u 43, cos 2u 35 24. Day 123 to day 223 2 22. 1.20 minutes 1.52 minutes 1.83 minutes 333202CB05_AN.qxd 1/1/70 09:41 AM Page 17 17 Precalculus with Limits, Answers to Problem Solving Problem Solving (page 427) 1. (a) cos ± 1 sin tan ± 1 sin2 1 sin2 cot ± sin 1 sec ± 1 sin2 1 csc sin 2 –3. Answers will vary. sin2 sin 2 1 cos 0.6 W cos 8. (a) F sin 12 (b) 550 tan (b) sin ± 1 1 cos2 tan ± cos 1 csc ± 1 cos2 1 sec cos cos cot ± 1 cos2 cos2 (c) Maximum: 0 Minimum: 90 0 90 0 9. (a) 20 4. (a) p1t sin524 t p2t 12 sin1048 t 0 0 p3t sin1572 t 1 3 10. (a) High tides: 6:12 A.M., 6:36 P.M. Low tides: 12:00 A.M., 12:24 P.M. (b) The water depth never falls below 7 feet. (c) 70 p5t 15 sin2620 t p6t 16 sin3144 t 1.4 1.4 p1(t) −0.006 p2(t) 0.006 −0.006 0.006 − 1.4 − 1.4 1.4 1.4 p3(t) −0.006 −0.006 − 1.4 p6(t) Copyright © Houghton Mifflin Company. All rights reserved. 5 4 2 (b) ≤ x ≤ ≤ x ≤ 6 6 3 3 3 (c) < x < , < x < 2 2 2 5 (d) 0 ≤ x ≤ , ≤ x ≤ 2 4 4 11. (a) 12. (a) n 0.006 (b) 76.5 sin u cos v cos w sin u sin v sin w 1 1 p3: 786 p6: 1572 1 p5: 1310 cos u sin v cos w cos u cos v sin w 1 p is periodic with period 262 . (b) tanu v w (c) 0, 0, 0.00096, 0, 0.00191, 0 0.00285, 0, 0.00382, 0 (d) Maximum: 0.00024, 1.19524 Minimum: 0.00357, 1.19525 6. y 1 cos cos 2 2 7. sin 2 1 cot 3 2 2 13. (a) sinu v w − 1.4 5. u v w 24 0 0.006 − 1.4 1.4 1 (b) p1: 262 1 p2: 524 0 p5(t) 0.006 −0.006 365 (b) t 91, t 274; Spring Equinox and Fall Equinox (c) Seward; The amplitudes: 6.4 and 1.9 (d) 365.2 days 1 2 64 v0 sin tan u tan v tan w tan u tan v tan w 1 tan u tan v tan u tan w tan v tan w 14. (a) cos 3 cos 4 sin2 cos (b) cos 4 cos4 6 sin2 cos2 sin4 2 15. (a) (b) 233.3 times per second 15 1 cos 2 0 1 0