Ra Asignatura Carrera Año Académico Unidad No. II Profesor : : : : : Finanzas II. Ingeniería en sistemas. III Año Costo de capital y estructura de capital MSc. Mauricio Navarro Zeledón. Unidad II: Costo de capital y estructura de capital. 1. Descripción general del costo de capital. El costo de capital es un concepto financiero de suma importancia, pues constituye un vínculo esencial entre las decisiones de inversión a largo plazo de la empresa y la inversión de los propietarios, según lo determinan los inversionistas en el mercado. Se trata, en efecto del “número mágico” empleado para decidir si una inversión corporativa propuesta producirá un aumento o disminución en el valor accionario de la empresa. Por supuesto que sólo resultarían recomendables aquellas inversiones de las que se espera un incremento en el precio por acción [VPN (al costo de capital) > 0, o TIR > el costo de capital] El costo de capital puede definirse como la tasa de rendimiento que debe ser percibida por una empresa sobre su inversión proyectada, con el objeto de mantener inalterado el valor de mercado de sus acciones. Asimismo, se considera como la tasa de rendimiento requerida por los proveedores del mercado de capitales para atraer sus fondos hacia la empresa. Si se mantiene el riesgo constante, la aplicación de proyectos con una tasa de rendimiento por encima del costo de capital, se incrementará el valor de la empresa y viceversa. Supuestos básicos. El costo de capital es un concepto dinámico afectado por una diversidad de factores económicos y empresariales. Con el fin de aislar la estructura básica del costo de capital, se realizan algunos supuestos básicos con respecto al riesgo y los impuestos. a. Riesgo empresarial –el riesgo de que la empresa no sea capaz de cubrir sus costos de operación- se supone inalterado. Este supuesto implica que la aceptación de un proyecto determinado por parte de la empresa, deja inalterada la capacidad de la misma para cubrir los costos de operación. b. Riesgo financiero –el riesgo de que la empresa no sea capaz de cumplir con sus obligaciones financieras requeridas (intereses, pagos de arrendamientos, dividendos de acciones preferentes)- se supone inalterado. Este supuesto implica que los proyectos son financiados de forma tal, que la capacidad de la empresa para cumplir con sus costos de financiamiento requeridos queda inalterada. c. Los costos después de impuestos se consideran relevantes. Es decir, el costo de capital se mide sobre una base después de impuestos. Observe que este supuesto es congruente con el método empleado en la toma de decisiones del presupuesto de capital. El costo de capital se estima en una fecha determinada. Refleja el promedio esperado del costo futuro de los fondos a largo plazo, con base en la mejor información disponible. Esta noción es compatible con el uso del costo de capital para la toma de decisiones de inversión financiera a largo plazo 2. Costo de la deuda a largo plazo. El costo de la deuda a largo plazo (bonos), ki es el costo presente después de impuestos de la obtención de fondos a largo plazo mediante préstamos. Por comodidad, se supone aquí que los fondos se obtienen a través de la emisión y venta de bonos. Además, se supone que los bonos pagan intereses anuales en vez de semestrales. Valores netos de realización. La mayoría de los pasivos a largo plazo de las corporaciones se deben a la venta de bonos. Los valores netos de realización de la venta de un bono, o de cualquier valor, son los fondos recibidos realmente por dicha venta. Los costos de emisión –el costo total de emisión y venta de un valor – reducen los valores netos de realización de un bono, sea éste vendido con prima, con descuento o en su valor nominal. Ejemplo. Aceros S.A. importante fabricante de productos ferreteros, planea la venta de bonos por $ 10 millones, a 20 años y a 9% (tasa establecida de interés anual), cada bono tiene un valor nominal de $ 1,000. Puesto que los bonos de riesgo similar perciben rendimientos mayores que la tasa de 9% la empresa debe vender los bonos en $ 980, a fin de compensar por menor la tasa establecida de interés. Los costos de emisión pagados, al banquero de inversiones son 2% del valor nominal del bono (2% x $ 1,000), es decir, de $ 20. Los valores netos de realización para la empresa procedentes de cada bono son, en consecuencia, de $ 960 ($ 980 - $ 20). Costo de la deuda antes de impuestos. El costo de la deuda antes de impuestos, kd, de un bono, puede obtenerse mediante uno de tres métodos: cotización, cálculo o aproximación. Cotizaciones de costos. Cuando los valores netos de realización de un bono equivalen a su valor nominal, el costo antes de impuestos será igual a la tasa establecida de interés. Por ejemplo, un bono con una tasa establecida de interés del 10%, con valores netos de realización iguales a $ 1,000 del valor nominal del bono, tendría un costo antes de impuestos, kd de 10%. Cálculo del costo. Esta técnica encuentra el costo antes de impuestos de la deuda mediante el cálculo de la TIR sobre los flujos de efectivo del bono. Desde el punto de vista del emisor, se puede referir este valor como el costo al vencimiento de los flujos de efectivo relacionados con la deuda. El costo al vencimiento puede obtenerse con una calculadora financiera, una computadora o mediante las técnicas de tanteo (ensayo error). Este costo representa el costo porcentual anual antes de impuestos de la deuda de la empresa. Ejemplo. En el ejemplo anterior se encontró que los valores netos de realización de un bono de $ 1,000 a 20 años, con una tasa establecida de interés de 9% eran de $ 960. Si bien los flujos de efectivo de la emisión de bonos no sigue un patrón convencional, el cálculo del costo anual resulta bastante sencillo. En realidad, el patrón de flujos de efectivo es exactamente contrario al de un patrón convencional, en cuanto a que éste consiste en una entrada inicial (valores netos de realización), seguida por una serie de desembolsos anuales (los pagos de intereses). En el último año, cuando se paga la deuda, también tiene lugar un desembolso que representa al reembolso del principal. Los flujos de efectivo relacionados con la emisión de Aceros S.A. son los siguientes: Fin de año 0 1 – 20 20 Flujo de efectivo $ 960 ( $ 90 ) ( $ 1,000) La entrada inicial de $ 960 va seguida por salidas de interés anual de $ 90 (9% de tasa establecida de interés x valor nominal de $ 1,000) respecto a la vida de 20 años del bono. En el año 20 tiene lugar un desembolso de $ 1,000, representando el desembolso del principal. El costo antes de impuestos de la deuda puede determinarse encontrando la TIR, la tasa de descuento que iguala el valor presente de las salidas de efectivo con la entrada inicial. Tanteo (ensayo error). Como se sabe, el descuento de los flujos de efectivo futuro de un bono a su tasa establecida de interés resultará en su valor nominal de $ 1,000, la tasa de descuento requerida para hacer que el valor de los bonos de Aceros S.A. sea igual a $ 960 debe ser mayor que la tasa establecida de interés de 9%. (Recuérdese que cuanto mayor sea la tasa de descuento, menor será el valor presente y viceversa). Mediante el uso de computadora el costo antes de impuestos (costo al vencimiento) es 9.452%. Aproximación del costo. El costo de la deuda antes de impuestos, kd, de un bono con valor nominal de $ 1,000 puede obtenerse de manera aproximada mediante la ecuación: Donde. I = interés anual pagado (unidades monetarias) Nd = valores netos de realización de la venta de la deuda (bonos). n = número de años para el vencimiento del bono. Ejemplo. Al sustituir los valores correspondiente del ejemplo de Aceros S.A. en la anterior ecuación se obtiene: 3. Costo de las acciones preferentes. Las acciones preferentes representan un tipo especial de interés sobre la propiedad de la empresa. Los accionistas preferentes deben recibir sus dividendos establecidos antes de la distribución de cualesquiera utilidades a los accinistas comunes. Como las acciones preferentes constituyen una forma de propiedad, se espera que los ingresos provenientes de su venta sean mantenidos durante un período infinito. Dividendos de las acciones preferentes. La mayor parte de los dividendos de las acciones preferentes son establecidos como un monto en unidades monetarias: “x unidades monetarias por año”. Cuando los dividendos se presentan de esta manera, es frecuente referirse a las acciones como a acciones preferentes de “x unidades monetarias”. En consecuencia, se espera que “una acción preferente de $ 4 debe pagar a los accionistas preferentes dividendos de $ 4 anuales. Algunas ocasiones los dividendos de las acciones preferentes se establecen como una tasa porcentual anual. Dicha tasa representa un porcentaje del valor nominal de la acción, valor equivalente al dividendo anual. Por ejemplo, de una acción preferente a 8%, con un valor nominal de $ 50, se esperaría que pagase dividendos anuales de $ 4 por acción (0.08 x $ 50 valor nominal = $ 4). Antes de calcular el costo de las acciones preferentes, deben convertirse cualesquiera dividendos establecidos como porcentajes a dividendos anuales en unidades monetarias) Cálculo del costo de las accciones preferentes. El costo de las acciones preferentes, kp, se calcula al dividir los dividendos anuales de ete tipo de acciones, Dp, entre los valores netos de realización procedentes de su venta, Np. Los valores netos de realización representan la cantidad de dinero recibida por concepto de los costos de emisión requeridos para emitir y vender las acciones. En la siguiente ecuación se expresa el costo de las acciones preferentes, kp, en términos del dividendo anual monetario, Dp, y de los valores netos de realización procedentes de la venta de las acciones, Np. Ejemplo. Aceros S.A. planea la emisión de un paquete de acciones preferentes a 10% (dividendo anual), de las cuales se espera vender en su valor nominal de $ 87 por acción. Se espera que el costo de emisión y venta de las acciones sea de $ 5 por unidad. La empresa desearía determinar el costo de paquete accionario. El primer paso consiste en calcular la cantidad en dólares de los dividendos preferentes, puesto que tales dividendos se establecen como un porcentaje del valor nominal de las acciones de $ 87. El dividendo anual es de $ 8.70 (0.10 x $ 87). Los valores netos de realización provenientes de la venta propuesta se calculan al sustraer los costos de emisión al precio de la venta, con lo que se obtiene un valor de acción por acción de $ 82. Al sustituir el dividendo anual, Dp, de $ 8.70, y los valores netos de realización, Np, de $ 82, en la ecuación anterior se obtiene el costo de las acciones preferentes, de 10.6% ($ 8.70 / $ 82). 4. Costo de las acciones comunes. El costo de las acciones comunes es el rendimiento requerido por los inversionistas de mercado sobre las acciones. Existen dos formas de financiamiento de las acciones comunes (1) utilidades retenidas y (2) nuevas emisiones de acciones comunes. Como primer paso para calcular ambos casos, debe estimarse el costo de capital de las acciones comunes. Cálculo del costo de capital de las acciones comunes. El costo de capital de las acciones comunes, ks, es la tasa a la cual los inversionistas descuentan los dividendos esperados de la empresa a fin de determinar el valor de sus acciones. Se encuentran disponibles dos técnicas para medir el costo de capital de las acciones comunes. Uan emplea el modelo de valuación de crecimiento constante; la otra se base en el modelo de asignación de precio del activo de capital (MAPAC). Empleo del modelo de valuación de crecimiento contante (de Gordon) Este modelo se basa en la premisa (ampliamente aceptada) de que el valor de una acción es igual al valor presente de todos los dividendos futuros, que se espera proporcione ésta a lo largo de un período infinito. La expresión clave que se utiliza en la siguiente ecuación: Donde Po = Valor de las acciones comunes. D1 = Dividendo por acción especial esperado al final del año 1. ks = Rendimiento requerido sobre las acciones comunes. g = Tasa constante de crecimiento en dividendos. Al resolver la anterior ecuación para despejar ks se obtiene la siguiente expresión del costo de capital de las acciones comunes: La anterior ecuación indica que el costo de capital de las acciones comunes puede calcularse al dividir los dividendos esperados al cabo del año 1 entre el precio actual de las acciones, y sumando esto la tasa de crecimiento esperada. Puesto que los dividendos de las acciones comunes pagados a partir de los ingresos después de impuestos, no es necesario realizar el ajuste fiscal. Ejemplo. Aceros S.A. desea determinar su costo de capital de las acciones comunes ks. El valor de mercado, Po, de sus acciones comunes es de $ 50 por unidad. La empresa espera pagar un dividendo, D1, de $ 4 al final del año siguiente, en 2013. Los dividendos pagados sobre las acciones en circulación, durante los seis años anteriores (2007-2012) fueron los siguientes: Año 2007 2008 2009 2010 2011 2012 Dividendo $ 3.80 3.62 3.47 3.33 3.12 2.97 Calculando la tasa de crecimiento anual de dividendos, g. Ésta resulta aproximandamente de 5% (con más exactitud es de 5.05%). Al sustituir D1 = $ 4, Po = $ 50 y g = 5% en la ecuación se obitiene el costo de capital de las acciones comunes: El costo de capital de las acciones comunes, de 13%, representa el rendimiento requerido por los accionistas actuales sobre la inversión, a fin de dejar inalterado el precio de mercado de las acciones en circulación de la empresa. Empleo del modelo de asignación de precio del activo de capital (MAPAC). El modelo de asignación del activo de capital (MAPAC) describe la relación existente entre el rendimiento requerido, o costo de capital de las acciones comunes, ks, y el riesgo no diversificable de la empresa medido por el coeficiente beta, b. La expresión básica del MAPAC, se representa en la siguiente ecuación: Donde RF = tasa de rendimiento libre de riesgo. km = rendimiento de mercado; rendimiento sobre la cartera del mercado de activos. Mediante el MAPAC, el costo de capital de las acciones comunes es el rendimiento requerido por los inversionistas, como compensación por el riesgo no diversificable de la empresa, el cual es medido por el coeficiente, b. Ejemplo. Aceros S.A., la cuál calculó en el ejemplo anterior el costo de su capital de las acciones comunes, ks, usando el modelo de valuación de crecimiento constante, desea calcular este costo, por medio del modelo de asignación de precio de activo de capital. Con base en la información obtenida a partir de los asesores de inversiones de la empresa y de sus propios análisis, se ha determinado que la tasa libre de riesgo, RF, es igual a 7%, que el coeficiente de beta, b, de la empresa es de 1.5, y el rendimiento de mercado, km, de 11%. Al sustituir dichos valores en la anterior ecuación, la compañía estima que el costo de capital de las acciones comunes, ks, es el siguiente: El costo de capital de 13% del capital de las acciones comunes equivalentes al obtenido con el modelo de valuación de crecimiento constante, representa el rendimiento requerido de los inversionistas en las acciones comunes de Aceros S.A. Costo de las utilidades retenidas. Si las utilidades no fueran retenidas, serían distribuidas en pago, como dividendos, a los accionistas comunes. En consecuencia, el costo de las utilidades retenidas, kr, es, para la empresa, similar al costo de una emisión totalmente suscrita equivalente de acciones comunes adicionales. Esto significa que las utilidades retenidas incrementan el capital contable de la misma manera que una nueva emsión de acciones comunes. Los accionistas encuentran aceptable la retención de utilidades, por parte de la empresa, sólo si esperan que ésta llegue a ganar, al menos, el rendimiento que requieren éstos sobre los fondos reinvertidos. Al considerar las utilidades retenidas como una emisión totalmente suscrita de acciones comunes adicionales, se puede establecer el costo de utilidades retenidas para la empresa, kr, equiparable al costo de capital de las acciones comunes, como se proporcionó en las anteriores ecuaciones: No hay necesidad de realizar ajuste alguno por el costo de emisión sobre el costo de las utilidades retenidas, puesto que, mediante las utilidades retenidas, la empresa adquiere capital sin incurrir en costos de este tipo. Ejemplo. El costo de las utilidades retenidas de Aceros S.A. se calculó en los ejemplos anteriores, puesto que éste es igual al costo de capital de las acciones comunes. En consecuencia, kr, equivale a 13.0%. Como se mostrará en la sección siguiente, el costo de las utilidades retenidas es siempre menor que el costo de una nueva emisión de acciones comunes, debido a la ausencia del costo de emisión en los casos en que se financian proyectos con utilidades retenidas. Costo de nuevas emisiones de acciones comunes. El propósito es calcular el costo de capital total de la empresa es determinar el costo después de impuestos de los nuevos fondos requeridos para el financiamiento de proyectos. Debe prestarse atención, en consecuencia, al costo de una nueva emisión de acciones comunes, kn. Tal costo se determina al calcular el costo de las acciones comunes, después de considerar tanto el monto de la subvaluación como los costos de emisión asociados. Por lo general, a fin de vender una nueva emsión de acciones, tendrá que recurrirse a una subvaluación; es decir, vendería a un precio por debajo del de mercado actual, Po. Además, los costos de emisíon pagados y de la venta de la nueva emisión reducirán los ingresos. El costo de las nuevas emisiones puede calcularse al determinar los valores netos de realización después de los costos de subvaluación y de emisión, mediante la expresión del modelo de valuación de crecimiento constante, para obtener el costo de las acciones comunes existentes, ks, que será como punto de partida. Si se deja a Nn representar los valores netos de realización por la venta de las nuevas acciones comunes, después de considerar los costos de subvaluación y de emisión, el costo de la nueva emisión, kn, puede expresarse de la forma siguiente: Como los valores netos de realización por la venta de las nuevas acciones comunes, Nn, serán menos que el precio del mercado actual, Po, el costo de las nuevas emisiones kn, serán siempre mayor que el costo de las emisiones existentes, ks, el cual, como se señalo, es equivalente al costo de utilidades retenidas, kr. El costo de las nuevas acciones comunes suele ser mayor que cualquier otro costo de financiamiento a largo plazo. Debido a que los dividendos de las acciones comunes se pagan a partir de los flujos de efectivo después de impuestos, no resulta necesario llevar a cabo ajuste alguno. Ejemplo. En el ejemplo que incluyó el modelo de valuación de crecimiento constante se emplearon para calcular el costo de capital de acciones comunes de Aceros S.A., los valores del dividendo esperado, D1, de $ 4; el precio de mercado actual, Po, de $ 50 y la tasa de crecimiento de dividendos esperada, g, de 5%. El valor obtenido del costo mencionado inicialmente fue de 13.0%. A fin de determinar el costo de las nuevas acciones comunes, kn, Aceros S.A. con ayuda de sus asesores ha estimado que las nuevas acciones puede ser vendidas en promedio a $ 47. La subvaluación de $ 3 resulta necesaria, debido a la naturaleza competitiva del mercado. Un segundo costo relacionado con la nueva emisión es la tarifa de suscripción de $ 2.50 por acción, la cual se pagaría para cubrir los costos de emisión y de venta de la nueva emisión. En consecuencia, se espera que los costos totales de subvaluación y emisión por acción sean de $ 5.50. Al restar el costo de subvaluación y de emisión de $ 5.50 por acción al precio actual, Po, de $ 50, se obtienen los valores netos de realización esperados, Nn de $ 44.50 por acción ($ 50.00 – $ 5.50). Si se sustituyen D1 = $ 4, Nn = $ 44.50 y g = 5% en la ecuación siguiente, se obtiene el siguiente costo de las nuevas emisiones comunes, kn: El costo de las nuevas acciones, kn, de Aceros S.A., es por tanto de 14.0%. Este es el valor que se usará en el cálculo subsecuente del costo de capital total de la empresa. 5. Costo de capital promedio ponderado (CCPP).