Logic or Logics? Andrés Sicard-Ramírez Formal methods seminar EAFIT University August 25, 2009 (Last modification: 17th January 2016) Motivation ' / Non-classical Classical p logic g logics Universal logic? O (New) problems/solutions Non-classical logics Is there a definition? Sources (Non-exhaustive!) Reject of the classic logic principles Reduction of the classic logical constants Expansion of the classical logical constants Reject of the classical properties of the consequence relation Modifications to the mathematical structure of the classical consequence relation Non-classical logics (cont.) Notation For 𝛼, 𝛽, 𝛿, … Δ, Γ, … ¬, ∧, ∨, → ⊢, ⊧, ⊩ Set of well-formed formulae Formulas Theories (⊆ For) logical connectives Consequence relations Reject of the principle of bivalence Principle of bivalence Every proposition is either true or false Many-valued logics The number of truth values is not restricted to only two (Rescher 1969). Truth values (Peña 1993, pp. 33-35). designed anti-designed designed and anti-designed neither designed nor anti-designed no designed no anti-designed Nicholas Rescher (1969). Many-Valued Logic. Lorenzo Peña (1993). Introducción A Las Lógicas No Clásicas. Reject of the principle of bivalence (cont.) Semantical universe 0: Minimal element, anti-designed and no designed 1: Maximal element, designed and no anti-designed ≤: partial order ∀𝛼 (0 ≤ /𝛼/ ≤ 1), where /𝛼/ is the truth-value of 𝛼 Reject of the principle of bivalence (cont.) Example (Kleene’s 𝐾3 logic (Epstein 1990)) ⎧1: True (designed) { Semantic universe ⎨ 12 : Undefined (anti-designed) {0: False (anti-designed) ⎩ 1 ¬ 0 ∧ 1 1 1 1 2 1 2 1 2 1 2 0 1 0 0 1 2 1 2 1 2 0 0 0 0 0 ∨ 1 1 2 0 1 1 1 1 1 2 0 1 → 1 1 2 1 2 1 2 1 2 1 0 0 A feature There is not 𝛼 such that ⊧𝐾3 𝛼. Richard L. Epstein (1990). The Semantic Foundations of Logic. 1 1 1 1 1 2 1 2 1 2 1 0 0 1 2 1 Reject of the principle of explosion Principle of explosion (pseudo-Scotus, ex contradictione sequitur quod libet) ∀Γ ∀𝛼 ∀𝛽 (Γ, 𝛼, ¬𝛼 ⊢𝐶𝐿 𝛽). Paraconsistent logics (Bobenrieth 1996; Carnielli and Marcos 2002) ∃Γ ∃𝛼 ∃𝛽 (Γ, 𝛼, ¬𝛼 ⊮𝑃 𝛽). M. Andrés Bobenrieth (1996). ¿Inconsistencias, Por Qué No? Walter A. Carnielli and João Marcos (2002). A Taxonomy of C-systems. Reject of the principle of explosion (cont.) Example (da Costa’s 𝐶1 logic) Bivalent semantic for 𝐶1 (Marcos 1999, p. 47): A valuation for 𝐶1 is a function 𝜐 ∶ For(𝐶1 ) → {0, 1} such that: 𝜐(𝛼 ∗ 𝛽) has classical behavior (∗ ∈ {∧, ∨, →}) 𝜐(𝛼) = 0 ⇒ 𝜐(¬𝛼) = 1, 𝜐(¬¬𝛼) = 1 ⇒ 𝜐(𝛼) = 1 A consequence The semantic for 𝐶1 is not truth-functionality: 𝜐(𝛼) = 1 ⇏ 𝜐(¬𝛼) = 1, 𝜐(𝛼) = 1 ⇏ 𝜐(¬𝛼) = 0. João Marcos (1999). Semânticas de Traduções Possíveis. Reject of the principle of explosion (cont.) Example (da Costa’s 𝐶1 logic (cont.)) A feature def The logic 𝐶1 admits a strong negation ∼ 𝛼 = ¬𝛼 ∧ 𝛼∘ , where ∘ is the well-behavior operator. The negation ∼ is a classical negation. Reject of the principle of the excluded third Principle of the excluded third ∀𝛼 (⊢𝐶𝐿 𝛼 ∨ ¬𝛼). Intuitionistic logics (Sørensen and Urzyczyn 2006; van Dalen 2004) Computational meaning of the logical constants Proofs are constructions (programs) Dirk van Dalen (2004). Logic and Structure. Morten-Heine Sørensen and Paul Urzyczyn (2006). Lectures on the Curry-Howard Isomorphism. Reject of the principle of the excluded third (cont.) The Brouwer-Heyting-Kolmogorov (BHK) interpretation A construction of 𝛼1 ∧ 𝛼2 𝛼1 ∨ 𝛼2 𝛼1 → 𝛼2 ⊥ ¬𝛼 ∃𝑥 ∈ 𝑈 .𝜙(𝑥) ∀𝑥 ∈ 𝑈 .𝜙(𝑥) Consists of A construction of 𝛼1 and a construction of 𝛼2 An indicator 𝑖 ∈ {1, 2} and a construction of 𝛼𝑖 A method (function) which takes any construction of 𝛼1 to a construction of 𝛼2 There is not construction A method (function) which takes any construction of 𝛼 into a nonexistent object An element 𝑎 ∈ 𝑈 and a construction of 𝜙(𝑎) A method (function) which takes any element 𝑥 ∈ 𝑈 to a construction of 𝜙(𝑥) Reject of the principle of the excluded third (cont.) A feature The proofs by contradiction are invalids Prove 𝛼 ¬𝛼 ⋮ ⊥ ¬𝛼 → ⊥ ≡ ¬¬𝛼 𝛼 But, disprove 𝛼 is valid 𝛼 ⋮ ⊥ 𝛼 → ⊥ ≡ ¬𝛼 Invalid! Expansion of the logical constants Modal logics (Hughes and Cressivell 1998) (□ ∶ necessity,♢ ∶ possibility) Temporal logics Epistemic logics Deontic logics G. E. Hughes and M. J. Cressivell (1998). A New Introduction to Modal Logic. Reduction of the logical constants Possible reductions (Rasiowa 1974) Positive logics Implicative logics … General question What is a logical constant? (for example {¬, ∧, ∨, →}) Helena Rasiowa (1974). An Algebraic Approach to Non-Classical Logics. A general definition of logic? Definition A logic 𝔏 is a structure 𝔏 =< For, ⊩> where the consequence relation ⊩⊆ 𝑃 (For) × For satisfies (Béziau 2000; Carnielli and Marcos 2002): Reflexivity: If 𝛼 ∈ Γ, then Γ ⊩ 𝛼 Monotony: If Γ ⊩ 𝛼 and Γ ⊆ Δ, then Δ ⊩ 𝛼 Transitivity: If Γ ⊩ 𝛼 and Δ, 𝛼 ⊩ 𝛽, then Γ, Δ ⊩ 𝛽 Jean-Yves Béziau (2000). What is Paraconsistent Logic? Walter A. Carnielli and João Marcos (2002). A Taxonomy of C-systems. Walter Carnielli and Mariana Matulovic (2015). The Method of Polynomial Ring Calculus and its Potentialities. A general definition of logic? Definition A logic 𝔏 is a structure 𝔏 =< For, ⊩> where the consequence relation ⊩⊆ 𝑃 (For) × For satisfies (Béziau 2000; Carnielli and Marcos 2002): Reflexivity: If 𝛼 ∈ Γ, then Γ ⊩ 𝛼 Monotony: If Γ ⊩ 𝛼 and Γ ⊆ Δ, then Δ ⊩ 𝛼 Transitivity: If Γ ⊩ 𝛼 and Δ, 𝛼 ⊩ 𝛽, then Γ, Δ ⊩ 𝛽 Remark: A ‘Tarksian logic’ is a logic whose consequence relation satisfies the above three properties (Carnielli and Matulovic 2015). Jean-Yves Béziau (2000). What is Paraconsistent Logic? Walter A. Carnielli and João Marcos (2002). A Taxonomy of C-systems. Walter Carnielli and Mariana Matulovic (2015). The Method of Polynomial Ring Calculus and its Potentialities. Reject of the properties of the consequence relation Non-reflexivity logics Alfabar logics (Krause and Béziau 1997) Example Let 𝔏 =< For, ⊩> be a logic such that Γ ⊩ 𝛼 iff exists Γ′ such that Γ′ ⊆ Γ and Γ′ is consistent, and Γ′ ⊢𝐶𝐿 𝛼. Therefore, 𝑝 ∧ ¬𝑝 ⊮ 𝑝 ∧ ¬𝑝. Non-monotonic logics “family of formal frameworks…in which reasoners draw conclusions tentatively, reserving the right to retract them in the light of further information.” (Strasser and Antonelli 2014) Non-transitive logics? Décio Krause and Jean-Yves Béziau (1997). Relativizations of the Principle of Identity. Christian Strasser and G. Aldo Antonelli (2014). Non-monotonic Logic. Modifications to the mathematical structure of the consequence relation Multiple consequence ⊩⊆ 𝑃 (For) × 𝑃 (For) Sub-structural logics (Restall 2004) Multi-set ≠ set: ({𝐴, 𝐴, 𝐵} ≠ {𝐴, 𝐵}), therefore 𝛼, 𝛼, 𝛽 ⊩ 𝛾 does not imply 𝛼, 𝛽 ⊩ 𝛾 𝛼, 𝛽 ⊩ 𝛾 does not imply 𝛽, 𝛼 ⊩ 𝛾 In general, a theory Γ has not to be a set Greg Restall (2004). An Introduction to Substructural Logics. Towards an universal logic? Béziau’s approach What is…? (Béziau 2002, 2000; Béziau, de Freitas and Viana 2001) Some questions Others approach to the consequence relations (e.g. visual inference) Equivalence criteria between semantics, syntax and algebra for a logic Jean-Yves Béziau, Renata Pereira de Freitas and Jorge Petrucio Viana (2001). What is Classical Propositional Logic? (A Study in Universal Logic). Jean-Yves Béziau (2000). What is Paraconsistent Logic? Jean-Yves Béziau (2002). Are paraconsistents negations negations? Towards an universal logic? (cont.) Some questions (cont.) Equivalence criteria between logics (e.g. Possible-translation semantics) Minimal properties of the logical connectives. (e.g. What is a negation?) Compatibility between the logical connectives High-order logic extensions Possible applications Mathematical theories construction (Mortensen 1995) Hypercomputation (Agudelo and Sicard 2004; Sylvan and Copeland 1998) “Or maybe paraconsistent logic will save us from the tricephalous CGC-monster (CGC for Cantor-Gödel-Church) by providing foundations for finite decidable complete mathematics.” (Béziau 1999, p. 16) Type : Type (Martin-Löf 1971, 1984) Chris Mortensen (1995). Inconsistent Mathematics. Richard Sylvan and Jack Copeland (1998). Computability is Logic-Relative. Juan C. Agudelo and Andrés Sicard (2004). Máquinas de Turing Paraconsistentes: Una Posible Definición. Jean-Yves Béziau (1999). The Future of Paraconsistent Logic. Per Martin-Löf (1971). A Theory of Types. Per Martin-Löf (1984). Intuitionistic Type Theory. Conclusions Tolerance principle in Mathematics (Newton da Costa, 1958): “Desde el punto de vista sintáctico-semántico, toda teoría es admisible, desde que no sea trivial. En sentido amplio, existe, en matemática, lo que no sea trivial.” (Bobenrieth 1996, p. 180) Logical pluralism (Bueno 2002) A new crisis? New opportunities? M. Andrés Bobenrieth (1996). ¿Inconsistencias, Por Qué No? Otávio Bueno (2002). Can a Paraconsistent Theorist be a Logical Monist? The category of the logics (bonus slides) Definition A category 𝐶 is given the following data: A class of objects 𝑂𝑏𝑗(𝐶) A class of arrows or morphisms 𝑀 𝑜𝑟(𝐶) The functions 𝑑𝑜𝑚, 𝑐𝑜𝑑 ∶ 𝑀 𝑜𝑟(𝐶) → 𝑂𝑏𝑗(𝐶) Notation: 𝑓 ∶ 𝐴 → 𝐵 ≡ 𝑓 ∈ 𝑀 𝑜𝑟(𝐶), 𝑑𝑜𝑚 𝑓 = 𝐴, 𝑐𝑜𝑑 𝑓 = 𝐵 For 𝐴 ∈ 𝑂𝑏𝑗(𝐶), the identity arrow 1𝐴 ∶ 𝐴 → 𝐴 A composition operator ∘ ∶ 𝑀 𝑜𝑟(𝐶) × 𝑀 𝑜𝑟(𝐶) → 𝑀 𝑜𝑟(𝐶) The category of the logics (cont.) These data are subject to the conditions: 𝑔 ∘ 𝑓 is defined iff 𝑐𝑜𝑑 𝑔 = 𝑑𝑜𝑚 𝑓 If 𝑔 ∘ 𝑓 is defined, then 𝑑𝑜𝑚(𝑔 ∘ 𝑓) = 𝑑𝑜𝑚 𝑓 and 𝑐𝑜𝑑(𝑔 ∘ 𝑓) = 𝑐𝑜𝑑 𝑔 For any 𝑓 ∶ 𝐴 → 𝐵, 1𝐵 ∘ 𝑓 = 𝑓 and 𝑓 ∘ 1𝐴 = 𝑓 For any 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷, ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 The category of the logics (cont.) Example (The category Set) 𝑂𝑏𝑗(Set): Sets 𝑀 𝑜𝑟(Set): functions The identity arrow 1𝐴 : The identity function The composition operator ∘: The composition of functions Technical remark The usual definition of a function 𝑓 ∶ 𝐴 → 𝐵 as a set 𝑓 ⊆ 𝐴 × 𝐵 which is single-valued and totally defined is not sufficient to uniquely determine 𝑐𝑜𝑑 𝑓. Therefore it is necessary to define 𝑓 as a triple (𝐴, 𝑔𝑟𝑎𝑝ℎ(𝑓), 𝐵). The category of the logics (cont.) Example (The category 3) 1𝐵 ?𝐵@ @@@ 𝑔 @@ @@ /𝐶 2𝐴 Q ℎ 𝑓 1𝐴 1𝐶 The category of the logics (cont.) Example Almost every known example of a mathematical structure with the appropriate structure-preserving map yields a category. Category Set Pfn Vect Top Poset CPO Lat Objects Sets Sets Vector spaces Topological spaces Posets Complete posets Lattices Morphisms Functions Partial functions Linear transforms Continuous functions Monotone functions Continuous functions Structure preserving homomorphisms The category of the logics (cont.) Example A deductive system ⊩𝐷 can be turned on a category D 𝑂𝑏𝑗(D): Formulas 𝑀 𝑜𝑟(D): Proofs The identity arrow 1𝐴 ∶ 𝐴 → 𝐴: A proof of 𝐴 ⊩𝐷 𝐴 The composition operator ∘: Transitivity of the ⊩𝐷 𝑓 ∶𝐴→𝐵 𝑔∶𝐵→𝐶 𝑔∘𝑓 ∶𝐴→𝐶 References Juan C. Agudelo and Andrés Sicard. Máquinas de Turing Paraconsistentes: Una Posible Definición. Matemáticas: Enseñanza Universitaria XII.2 (2004), pp. 37–51. eprint: http://revistaerm.univalle.edu.co. Jean-Yves Béziau. Are paraconsistents negations negations? In: Paraconsistency. The Logical Way to the Inconsistent. Ed. by Walter A. Carnielli, Marcello E. Coniglio and Ítala M. L. D’Ottaviano. Marcel Dekker, 2002, pp. 465–486. Jean-Yves Béziau. The Future of Paraconsistent Logic. Logical Studies 2 (1999). Jean-Yves Béziau. What is Paraconsistent Logic? In: Frontiers of Paraconsistent Logic. Ed. by Diderik Batens et al. Hertfordshire, England: Research Studies Press LTD., 2000, pp. 95–111. Jean-Yves Béziau, Renata Pereira de Freitas and Jorge Petrucio Viana. What is Classical Propositional Logic? (A Study in Universal Logic). Logical Studies 7 (2001). References M. Andrés Bobenrieth. ¿Inconsistencias, Por Qué No? Santafé de Bogotá: Tercer Mundo Editores, División Gráfica, 1996. Otávio Bueno. Can a Paraconsistent Theorist be a Logical Monist? In: Paraconsistency. The Logical Way to the Inconsistent. Ed. by Walter A. Carnielli, Marcello E. Coniglio and Ítala M. L. D’Ottaviano. Marcel Dekker, 2002, pp. 535–552. Walter A. Carnielli, Marcello E. Coniglio and Ítala M. L. D’Ottaviano, eds. Paraconsistency. The Logical Way to the Inconsistent. Marcel Dekker, 2002. Walter A. Carnielli and João Marcos. A Taxonomy of C-systems. In: Paraconsistency. The Logical Way to the Inconsistent. Ed. by Walter A. Carnielli, Marcello E. Coniglio and Ítala M. L. D’Ottaviano. Marcel Dekker, 2002, pp. 1–94. Walter Carnielli and Mariana Matulovic. The Method of Polynomial Ring Calculus and its Potentialities. Theoretical Computer Science 606.42–56 (2015). References Richard L. Epstein. The Semantic Foundations of Logic. Vol. 1. Propositional Logics. Kluwer Academic Publishers, 1990. G. E. Hughes and M. J. Cressivell. A New Introduction to Modal Logic. Routledge, 1998. Décio Krause and Jean-Yves Béziau. Relativizations of the Principle of Identity. Logic Journal of the IGPL 5.3 (1997), pp. 327–338. João Marcos. Semânticas de Traduções Possíveis. MA thesis. U. Estadual de Campinas, 1999. Per Martin-Löf. A Theory of Types. Tech. rep. University of Stockholm, 1971. Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. Chris Mortensen. Inconsistent Mathematics. Kluwer Academic Publishers, 1995. References Lorenzo Peña. Introducción A Las Lógicas No Clásicas. Instituto de Investigaciones Filosóficas. Colección: Cuadernos. México D.F.: Universidad Autónoma de México, 1993. Helena Rasiowa. An Algebraic Approach to Non-Classical Logics. Vol. 78. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1974. Nicholas Rescher. Many-Valued Logic. McGraw-Hill, 1969. Greg Restall. An Introduction to Substructural Logics. Taylor & Francis, 2004. Morten-Heine Sørensen and Paul Urzyczyn. Lectures on the Curry-Howard Isomorphism. Vol. 149. Studies in Logic and the Foundations of Mathematics. Elsevier, 2006. Christian Strasser and G. Aldo Antonelli. Non-monotonic Logic. The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.) 2014. Richard Sylvan and Jack Copeland. Computability is Logic-Relative. Philosophy Research Papers, University of Canterbury 5 (1998), pp. 1–16. References Dirk van Dalen. Logic and Structure. 4th ed. Springer, 2004.