Anexo D Tabla de Integrales (PUEDE SUMARSE UNA CONSTANTE ARBITRARIA A CADA INTEGRAL) 1. 2. 3. 4. 5. 6. 7. 8. 9. Z Z Z Z Z Z Z Z Z xn dx = 1 xn+1 n+1 (n �= −1) 1 dx = log | x | x ex dx = ex ax dx = ax log a sen x dx = − cos x cos x dx = sen x tan x dx = − log |cos x| cot x dx = log |sen x| Ø µ ∂Ø Ø Ø 1 1 sec x dx = log |sec x + tan x| = log ØØtan x + π ØØ 2 4 227 228 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Tabla de Integrales Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Ø Ø Ø 1 ØØ Ø csc x dx = log |csc x − cot x| = log Øtan xØ 2 arcsen x x √ 2 dx = x arcsen + a − x2 a a arccos x x √ dx = x arccos − a2 − x2 a a arctan (a > 0) (a > 0) ° ¢ x x a dx = x arctan − log a2 + x2 a a 2 sen2 mx dx = 1 (mx − sen mx cos mx) 2m cos2 mx dx = 1 (mx + sen mx cos mx) 2m (a > 0) sec2 x dx = tan x csc2 x dx = −cot x Z senn−1 x cos x n − 1 sen x dx = − + senn−2 x dx n n Z cosn−1 x sen x n − 1 n cos x dx = + cosn−2 x dx n n Z tann−1 x n tan x dx = − tann−2 x dx (n �= 1) n−1 Z cotn−1 x n cot x dx = − cotn−2 x dx (n �= 1) n−1 Z tan x secn−2 x n − 2 n sec x dx = + secn−2 x dx (n �= 1) n−1 n−1 Z cot x csc n−1 x n − 2 n csc x dx = + cscn−2 x dx (n �= 1) n−2 n−1 n senh x dx = cosh x cosh x dx = senh x 229 26. 27. 28. 29. 30. 31. 32. Z Z tanh x dx = log |cosh x| coth x dx = log |sen hx| Z sech x dx = arctan (senh x) Z 1 1 senh2 x dx = senh 2x − x 4 2 Z Z Z Z Ø x ØØ 1 cosh x + 1 Ø csch x dx = log Øtanh Ø = − log 2 2 cosh x − 1 1 1 cosh2 x dx = senh 2x + x 4 2 sech2 x dx = tanh x x x √ dx = xsenh−1 − x2 − a2 (a > 0) a a √ £ ° ¢ § Ω Z xcosh−1 xa − √x2 − a2 £cosh−1 ° xa ¢ > 0, a > 0§ −1 x 34. cosh dx = xcosh−1 xa + x2 − a2 cosh−1 xa < 0, a > 0 a Z Ø Ø x x a 35. tanh−1 dx = xtanh−1 + log Øa2 − x2 Ø a a 2 Z ≥ ¥ √ 1 x √ 36. dx = log x + a2 + x2 = sen h−1 (a > 0) a a2 + x2 Z 1 1 x 37. dx = arctan (a > 0) 2 2 a +x 2 a Z √ x√ 2 a2 x 38. a2 − x2 dx = a − x2 + arcsen (a > 0) 2 2 a Z ° 2 ¢3 ¢√ x° 2 3a4 x 39. a − x2 2 dx = 5a − 2x2 a 2 − x2 + arcsen (a > 0) 8 8 a Z 1 x √ 40. dx = arcsen (a > 0) a a2 − x2 Ø Ø Z Øa + xØ 1 1 Ø 41. dx = log ØØ a2 − x2 2a a − xØ 33. senh−1 230 42. Tabla de Integrales Z 1 (a2 − x2 ) Z √ 3 2 dx = a2 √ x a2 − x2 Ø Ø √ x√ 2 a2 Ø Ø 2 2 2 43. ± dx = x ± a ± log Øx + x ± a Ø 2 2 Z Ø Ø √ 1 x Ø Ø √ 44. dx = log Øx + x2 − a2 Ø = cosh−1 (a > 0) a x2 − a 2 Ø Ø Z Ø x Ø 1 1 Ø Ø 45. dx = log Ø x(a + bx) a a + bx Ø Z x2 a2 √ 3 2 (3bx − 2a) (a + bx) 2 46. x a + bx dx = 15b2 Z √ Z √ a + bx 1 √ 47. dx = 2 a + bx + a dx x x a + bx √ Z x 2 (bx − 2a) a + bx √ 48. dx = 3b2 a + bx Ø√ Ø 8 Ø a+bx−√ aØ Z < √1 log Ø √ √ Ø (a > 0) 1 a a+bx+ q a √ 49. dx = : √2 arctan a+bx (a > 0) x a + bx −a −a 50. 51. Z √ Z Z √ Ø Ø √ Ø a + a2 − x2 Ø a2 − x2 Ø dx = a2 − x2 − a log ØØ Ø x x √ ¢3 1° x a2 − x2 dx = − a2 − x2 2 3 √ ¢√ x° 2 a4 x x2 a2 − x2 dx = 2x − a2 a2 − x2 + arcsen 8 8 a √ Ø Ø Z Ø a + a 2 − x2 Ø 1 1 Ø Ø √ 53. dx = − log Ø Ø a x x a2 − x2 Z √ x √ 54. dx = − a2 − x2 a2 − x2 Z x2 x√ 2 a2 x √ 55. dx = − a − x2 + arcsen (a > 0) 2 2 2 2 a a −x Ø Ø Z √ 2 Ø a + √x2 + a2 Ø √ x + a2 Ø Ø 56. dx = x2 + a2 − a log Ø Ø Ø Ø x x 52. (a > 0) 231 57. Z √ Z ≥x¥ √ √ x2 − a 2 a dx = x2 − a2 − a arccos = x2 − a2 − arcsec x |x| a (a > 0) √ ¢3 1° 2 x x2 ± a2 dx = x ± a2 2 3 Ø Ø Z Ø Ø 1 1 x Ø √ √ 59. dx = log ØØ a x x2 + a2 a + x2 + a2 Ø Z 1 1 a √ 60. dx = arccos (a > 0) a |x| x x2 − a 2 √ Z 1 x2 ± a2 √ 61. dx = ± a2 x x2 x2 ± a2 Z √ x √ 62. dx = x2 ± a2 x2 ± a 2 Ø Ø ( Z 2 Ø 2ax+b−√ Ø √ 1 √b −4ac Ø (b2 > 4ac) log 1 Ø 2 −4ac 2 −4ac b 2ax+b+ b 63. dx = ax2 + bx + c √ 2 arctan √2ax+b (b2 < 4ac) 4ac−b2 4ac−b2 Z Z Ø 2 Ø x 1 b 1 Ø Ø 64. dx = log ax + bx + c − dx 2 2 ax + bx + c 2a 2a ax + bx + c ( √ √ Z √1 log |2ax + b + 2 a ax2 + bx + c| (a > 0) 1 a √ 65. dx = −2ax−b √1 arcsen √ (a < 0) ax2 + bx + c −a b2 −4ac 58. Z √ Z 2ax + b √ 2 4ac − b2 1 √ 66. + bx + c dx = ax + bx + c + dx 4a 8a ax2 + b + c √ Z Z x ax2 + bx + c b 1 √ √ 67. dx = − dx 2 2 a 2a ax + bx + c ax + bx + c Ø √√ 2 Ø ( Z Ø 2 c ax +bx+c+bx+2c Ø −1 √ log 1 Ø Ø (c > 0) x c √ 68. dx = bx+2c √1 arcsen √ (c < 0) x ax2 + bx + c −c |x| b2 −4ac ax2 ∂q 1 2 2 2 69. x + dx = x − a (a2 + x2 )3 5 15 q Z √ 2 2 ∓ (x2 ± a2 )3 x ±a 70. dx = x4 3a2 x3 Z sen(a − b)x sen(a + b)x 71. sen ax sen bx dx = − 2(a − b) 2(a + b) Z 3 √ x2 a2 µ ° a2 �= b2 ¢ 232 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. Tabla de Integrales Z Z Z Z Z Z Z Z Z Z Z Z Z Z sen ax cos bx dx = cos(a − b)x cos(a + b)x − 2(a − b) 2(a + b) cos ax cos bx dx = sen(a − b)x sen(a + b)x − 2(a − b) 2(a + b) ° a2 �= b2 ° ¢ a2 �= b2 ¢ sec x tan x dx = sec x csc x cot x dx = −csc x Z cosm−1 x senn−1 +x m − 1 cos x sen x dx = + cosm−2 x senn x dx = m+n m+nZ senn−1 x cosm+1 x n−1 = − + cosm x senn−2 x dx m+n m+n Z 1 n n n x sen ax dx = − x cos ax + xn−1 cos ax dx a a Z 1 n n n x cos ax dx = x sen ax − xn−1 sen ax dx a a Z xn eax n n ax x e dx = − xn−1 eax dx a a ∑ ∏ 1 n n+1 log ax x log(ax) dx = x − n+1 (n + 1)2 Z xn+1 m m m n x (log ax) dx = (log ax) − xn (log ax)m−1 dx n+1 n+1 m n eax sen bx dx = eax (a sen bx − b cos bx) a2 + b2 eax cos bx dx = eax (b sen bx + a cos bx) a2 + b2 sech x tanh x dx = −sech x csch x coth x dx = −csch x