pauta de corrección segunda prueba parcial

Anuncio
UNIVERSIDAD DE ATACAMA
FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
ESTADÍSTICA Y PROBABILIDAD
PAUTA SEGUNDA PRUEBA PARCIAL
Profesor: Hugo S. Salinas.
Primer Semestre 2009
1. Resolver los siguientes problemas:
a) Se lanza un dado consecutivamente hasta que aparezca por primera vez un 1. Supongamos
que en el primer lanzamiento no hemos obtenido un 1. Calcular la probabilidad de que
sean necesarios más de tres lanzamientos para conseguir el 1 por primera vez.
Solución:
Sea X : número de lanzamientos hasta obtener un 1. Luego X es una variable aleatoria
(v.a.) Geométrica con p = 1/6, donde x = 1, 2, . . . , entonces:
P ({X > 3} ∩ {X > 1})
P (X > 1)
P (X > 3)
1 − P (X ≤ 3)
=
=
P (X > 1)
1 − P (X ≤ 1))
3
P
1−
(5/6)x−1 (1/6)
x=1
= 0.694
=
1 − (5/6)0 (1/6)
P (X > 3|X > 1) =
Es decir, el 69 % de las veces es necesario lanzar más de tres veces para conseguir el 1
cuando el primer lanzamiento no hemos obtenido un 1.
b) Un vendedor de enciclopedias sabe que la probabilidad de obtener un cliente en cada visita
es 0.3. Si este vendedor detiene sus ventas cuando logra vender la décima enciclopedia en
el dı́a. ¿Cuál es la probabilidad de que, a lo largo de un mes de 30 dı́as, no tenga que hacer
más de 40 visitas diarias?. (Asumir independencia entre las visitas diarias).
Solución:
Sea X : número de visitas diarias necesarias hasta vender 10 enciclopedias diariamente.
Luego X es una v.a. Binomial Negativa (Pascal) con p = 0.3 y r = 10, donde x = 10, 11, . . .,
entonces:
P (X < 40) = P (X = 10) + P (X = 11) + . . . + P (X = 49)
39
X
=
P (X = x)
=
x=11
39 X
x=11
SEGUNDA PRUEBA PARCIAL
x−1
(0.7)x−10 (0.3)10
10 − 1
1
c) En el juego del KINO se tienen 25 bolitas y se extraen 14 de ellas. Se sabe que el premio
menor (recuperar el dinero) se obtiene a los 10 aciertos. ¿Cuál es la probabilidad de obtener
algún premio en el juego (al menos se recupere el dinero).
Solución:
Sea X : número de aciertos que resultan al extraer 14 números (sin reposición) de un
total de 25. Luego X es una v.a. Hipergeométrica con N = 25, D = 14 y n = 14, donde
x = 0, 1, 2, . . . , 14, entonces:
P (X ≥ 10) = P (X = 10) + P (X = 11) + . . . + P (X = 14)
11 14
14
X
x
14−x
=
25
=
14
x=10
14 11
14 11
+
+
10
4
11
3
25
14
... +
14
14
11
0
330330 + 60060 + 5005 + 154 + 1
= 0.0887
4457400
Es decir, existe un 8.87 % de posibilidad de ganar algún premio.
d ) Del problema c). ¿Cuántos cartones deberı́as jugar para aspirar a ganar algún premio?
Solución:
Sea Y : número de cartones a jugar hasta conseguir algún premio. Luego Y es una v.a.
Geométrica con p = 0.0887 donde y = 1, 2, 3, . . ., entonces:
1
1
= 11.27
E(Y ) = =
p
0.0887
Es decir, se deben jugar 11 cartones aproximadamente.
e) Cierto banco ha comprobado que la probabilidad de que un cliente con fondos extienda
un cheque con fecha equivocada es de 0.001. En cambio, todo cliente sin fondos pone una
fecha errónea en sus cheques. El 90 % de los clientes del banco tienen fondos.
Si llegan 6 cheques con fecha equivocada, ¿cuál es la probabilidad que al menos uno de
estos haya sido emitido por un cliente con fondos?
Solución:
Para un cliente del banco, se obtiene:
=
P (fecha equivocada | con
P (fecha correcta | con
P (fecha equivocada | sin
P (fecha correcta | sin
P (con
P (sin
fondos)
fondos)
fondos)
fondos)
fondos)
fondos)
=
=
=
=
=
=
0.001
0.999
1
0
0.9
0.1
Sea Z : número de cheques equivocados emitidos por clientes con fondos, de un total de 6
cheques. Luego Z es una v.a. Binomial con n = 6 y p = P (con fondos | fecha equivocada).
Primero debemos calcular P (con fondos | fecha equivocada), en efecto:
P (con fondos )P (fecha equivocada | con fondos)
P ( fecha equivocada)
(0.9)(0.001)
=
= 0.0089
(0.9)(0.001) + (0.1)(1)
P (con fondos | fecha equivocada) =
SEGUNDA PRUEBA PARCIAL
2
Por lo tanto:
P (Z ≥ 1) = 1 − P (Z = 0)
6
= 1−
(0.0089)0 (0.9911)6 = 0.052
0
Es decir, de los 6 cheques que llegan con fecha equivocada, existe un 5.2 % que al menos
uno de estos haya sido emitido por un cliente con fondos.
2. En un programa de TV se decide votar por la persona que quieres que abandone el concurso.
Se sabe que tienes una probabilidad del 20 % de que la lı́nea no esté ocupada. Supongamos
que cada llamada que realizas es independiente.
a) ¿Cuál es la probabilidad de que la primera llamada que entre sea la décima que realizas?
Solución:
Sea X : la lı́nea está ocupada hasta que la llamada entra por primera vez. Luego X es una
v.a. Geométrica con parámetro p = 0.2 donde x = 1, 2, . . ., entonces:
P (X = 9) = (1 − 0.2)9 (0.2) = 0.027
b) ¿Cuál es la probabilidad de que sea necesario llamar 10 veces para votar dos veces por el
concursante?
Solución:
Sea Y : la lı́nea está ocupada hasta que la llamada entra dos veces. Luego Y es una v.a.
Pascal (Binomial negativa) con paramétros p = 0.2 y r = 2 donde y = 2, 3, . . ., entonces:
8+2−1
9
8
2
P (Y = 8) =
(0.8) (0.2) =
(0.8)8 (0.2)2 = 9(0.8)8 (0.2)2 = 0.060
8
8
c) Supongamos que compras una tarjeta que permite realizar 15 llamadas telefónicas al concurso. Si agotas tus llamadas, ¿cuál es la probabilidad de votar al menos tres veces?
Solución:
Sea Z : número de llamadas exitosas. Luego Z es una v.a. Binomial con parámetros p = 0.2
y n = 15 donde z = 0, . . . , 15, entonces:
P (Z ≥ 3) = 1 − P (Z ≤ 2)
= 1 − [P (Z = 0) + P (Z = 1) + P (Z = 2)]
15
15
15
0
15
1
14
= 1−
(0.2) (0.8) −
(0.2) (0.8) −
(0.2)2 (0.8)13
0
1
2
= 1 − (0.8)15 − 15(0.2)(0.8)14 − 105(0.2)2 (0.8)13 = 0.6019
d ) La telefonista del programa de TV contesta en promedio 12 llamadas cada 15 minutos.
i. ¿Cuál es la probabilidad de que exactamente 10 llamadas sean recibidas en el periodo
de 15 minutos?.
Solución:
Cada 15 minutos el programa contesta λ = 12 llamadas en promedio. X es una v.a.
Poisson con λ = 12 donde x = 0, 1, . . ., entonces:
P (X = 10) =
SEGUNDA PRUEBA PARCIAL
3
1210 e−12
= 0.1048
10!
ii. ¿Cuál es la probabilidad de que a lo más 5 llamadas sean recibidas por la telefonista
en 5 minutos?.
Solución:
En 15 minutos el programa contesta 12 llamadas, entonces en 5 minutos contesta 4
llamadas. Y es una v.a. Poisson con λ = 4, entonces:
P (Y ≤ 5) =
5
X
4y e−4
y!
y=0
= e−4
5
X
4y
y=0
y!
16 64 256 1024
1+4+
+
+
+
= e
2
26
24
120
643
= e−4
= 0.7851
15
−4
iii. ¿Cuántas llamadas se espera contestar durante el perı́odo de una hora?
Solución:
Se espera contestar 48 llamadas en 1 hora.
e) Se sabe que durante el perı́odo de una hora 100 personas intentaron comunicarse de las
cuales solamente 40 pudieron efectivamente votar por el concursante. Al extraer una muestra aleatoria de tamaño 20 de los números registrados. ¿Cuál es la probabilidad de que
exactamente 8 llamadas seleccionadas hayan votado por el participante?
Solución:
X : número de llamadas que hacen la votación de entre 20 números registrados. X es una
v.a. Hipergeométrica con N = 100, D = 40 y n = 20 donde 0 ≤ x ≤ 20, entonces:
40 60
P (X = 8) =
8
12
100
20
= 0.20078
3. La frecuencia de la radiación electromagnética emitida por un teléfono móvil sigue una distribución normal con media 1200 MHz y desviación estándar 300 MHz.
Sea X ∼ N (1200, 3002 ) y Z ∼ N (0, 1).
a) Calcular la probabilidad de que la frecuencia de la onda emitida sea superior a 1500 MHz.
Solución:
1500 − 1200
P (X > 1500) = P Z >
= P (Z > 1)
300
= 1 − P (Z ≤ 1) = 1 − 0.8413 = 0.1587
b) Calcular la probabilidad de que la frecuencia se mantenga entre 1000 y 1200 MHz.
Solución:
1000 − 1200
2
P (1000 < X < 1200) = P
<Z<0 =P − <Z<0
300
3
= P (−0.67 < Z < 0) = P (Z < 0) − P (Z < −0.67)
= P (Z < 0) − 1 + P (Z < 0.67) = 0.5 − 1 + 0.7486 = 0.2486
SEGUNDA PRUEBA PARCIAL
4
c) Sabiendo que la frecuencia emitida es inferior a los 1600 MHz, calcular la probabilidad de
que se mantenga por encima de los 1000 MHz.
Solución:
Primero calculamos
1600 − 1200
4
P (X < 1600) = P Z <
=P Z<
= P (Z < 1.33) = 0.9082
300
3
1000 − 1200
= P (Z < −0.67) = 1−P (Z < 0.67) = 1−0.7486 = 0.2514
P (X < 1000) = P Z <
300
Entonces:
P ({X > 1000} ∩ {X < 1600})
P (1000 < X < 1600)
=
P (X < 1600)
P (X < 1600)
P (X < 1600) − P (X < 1000)
0.9082 − 0.2514
=
=
P (X < 1600)
0.9082
0.6568
=
= 0.7232
0.9082
P (X > 100|X < 1600) =
d ) El 0.8 % de los teléfonos móviles presentan una frecuencia tan alta que afectan a radios,
televisores, computadoras, etc. Calcular la frecuencia a partir de la cual un teléfono interfiere en otros aparatos eléctricos.
Solución:
P (X > a)
a − 1200
P Z>
300
a − 1200
1−P Z ≤
300
a − 1200
P Z≤
300
Por tabla tenemos que
a−1200
300
= 0.008
= 0.008
= 0.008
= 0.992
= 2.41, entonces a − 1200 = 723. Por lo tanto a = 1923.
4. La destiladora Concha y Toro produce entre 200 y 300 galones de vino diarios. La distribución
uniforme es la que mejor describe este proceso.
Sea X ∼ U (200, 300)
a) ¿Cuánto vino se produce al dı́a en promedio?
Solución:
Si X ∼ U (200, 300) entonces E(X) = 200+300
= 250. Por lo tanto se producen 250 galones
2
al dı́a en promedio.
b) ¿Cuál es la cantidad de variabilidad en el número de galones de vino producidos de un dı́a
a otro?
Solución:
√
2
V arX = (300−200)
= 833.33 entonces D.E. = 833.33 = 28.87. Por lo tanto hay una
12
diferencia de 28.87 galones diarios con respecto a la producción media.
SEGUNDA PRUEBA PARCIAL
5
c) ¿En qué porcentaje de los dı́as puede esperarse que la producción caiga entre 220 y 270
galones?
Solución:
Z 270
270 − 220
50
1
dt =
=
= 0.5
P (220 < X < 270) =
100 220
100
100
El 50 % de las veces la producción diaria cae entre 220 y 270 galones.
d ) ¿Cuál es la probabilidad de que la producción de mañana sea mayor que 280 galones?
Solución:
Z 300
300 − 280
20
1
dt =
=
= 0.2
P (X > 280) =
100 280
100
100
Hay un 20 % de posibilidad que la producción de mañana sea mayor que 280 galones.
SEGUNDA PRUEBA PARCIAL
6
Descargar