Solución de Modelos de Programación Lineal I

Anuncio
MÉTODO SIMPLEX
PROFESORA: LILIANA DELGADO HIDALGO
[email protected]
2. Método de Enumeración De Soluciones Básicas
Ya se ha afirmado que la solución óptima (en general)
de un modelo de Programación Lineal está en uno de
los vértices de la región factible. Esto se puede ver
geométricamente de una forma clara. Pero, es más
adecuado establecer la transición de la Geometría al
Álgebra, para tratar de manejar problemas de un
mayor número de variables. Para esto, inicialmente se
estudian modelos de Programación Lineal en su forma
estándar.
1
2. MÉTODO ENUMERACIÓN DE SOLUCIONES BÁSICAS
2.1 Forma Estándar de los Modelos de P.L.
Características:
1. La función objetivo debe ser de maximización (aunque no
siempre es necesaria esta condición)
2. El sistema de restricciones debe estar conformado por un
conjunto de igualdades restrictivas, donde los términos
independientes bi (lado derecho de la restricción) deben ser
mayores a iguales que cero (0).
3. Todas las variables de decisión deben tener la condición de Nonegatividad.
Por lo tanto, un modelo de P.L. en su forma estándar tendrá la forma
siguiente:
Z = C1X
MAX
+ C2X
1
2
+ C3X
3
+ ... + C n X
n
Sujeto a:
A 11 X
1
+ A 12 X
A
1
+ A
X
21
.
.
.
A
.
.
.
m 1
X
j
X
1
.
.
.
+ A
22
+ ... + A 1 n X
2
X
+ ... + A
2
.
.
.
m 2
X
2 n
.
.
.
2
+ ... + A
= b1
n
X
= b
n
.
.
.
.
.
.
mn
X
n
2
.
.
.
= b
m
≥ 0 ; j = 1 , 2 , 3 ,..., n
2
m = número de restricciones
n = número de variables de decisión
• Por lo general, se cumple que m < n y, por lo tanto,
el sistema de igualdades tiene infinitas soluciones
(las infinitas soluciones de la región factible).
• Para llevar cualquier modelo de Programación Lineal
a la forma estándar puede hacerse uso (de ser
necesario) de las siguientes transformaciones:
2. Transformaciones Para Llegar A La Forma Estándar
1.
2.
3.
4.
Si la función objetivo es de minimización, analíticamente MIN (Z), puede
definirse Z* = –Z y cambiar la función objetivo a MAX (–Z), ó,
equivalente, MAX (Z*).
Si alguno de los términos bi del lado derecho de las restricciones es
menor que cero (0), entonces se multiplica por (-1) a ambos lados de la
desigualdad (o igualdad)
Si se tiene restricciones de desigualdad ( ≤ ), se puede sumar una
variable a la restricción, denominada “variable de holgura”, para
establecer la igualdad. Si la restricción es del tipo ( ≥ ), entonces se resta
una variable a la restricción, denominada “variable de exceso” para
establecer la igualdad.
Si existe alguna variable que NO tiene restricción de no-negatividad,
entonces se le reemplaza por la diferencia de dos variables positivas.
Xj es variable libre (Xj puede ser mayor, igual ó menor que cero)
Entonces donde aparece Xj, cambiarla por:
3
2. Transformaciones Para Llegar A La Forma Estándar
Ejemplo: Convertir a la forma estándar el siguiente modelo de
Programación Lineal:
MIN Z = 3X1 + 4X 2 − 3X 3 + 8X 4
Sujeto a:
+ 2+ 3 3 ≤7
1
2
2 2 + 8 3 − 3 4 = −8
3 1 + 4 2 + 7 4 ≥ −7
3
4
1 + 2+ 3 ≥5
+
2
=
10
5
3
4
( 1 , 2 , 3 ) ≥ 0; 4 libre
1
2. Transformaciones Para Llegar A La Forma Estándar
Las transformaciones a realizar son:
a. La función objetivo se cambia a maximización.
MIN Z = 3X1 + 4X 2 − 3X3 + 8X4
MAX Z´ = −Z = −3X1 − 4X 2 + 3X 3 − 8X 4
b. En la restricción R1 debe sumarse una variable de holgura.
1
1
+
+
2
2
+ 3 3 ≤7
1
+ 3 3 + "1 = 7
c. En la restricción R2 debe multiplicarse a ambos lados de la igualdad por
(-1), pero no deben adicionarse variables de holgura ó exceso.
2
+ 8 3 − 3 4 = −8
2
−2 2 − 8 3 + 3X 4 = 8
2
4
2. Transformaciones Para Llegar A La Forma Estándar
d. En la restricción R3 debe multiplicarse primero por (-1) a ambos lados de la
desigualdad, y luego adicionar la variable de holgura correspondiente.
3
1
−3
−3
1
+ 4
−4
1
−4
+7
2
2
2
4
−7
−7
4
≥ −7
3
≤ 7
3
+ "2 = 7
4
3
e. En la restricción R4 debe restarse una variable de exceso.
1
+
1
f.
+
+
2
2
3
+
3
≥5
4
− "3 = 5
La restricción R5 no necesita ninguna transformación.
3
+ 2
4
= 10
5
2. Transformaciones Para Llegar A La Forma Estándar
MAX Z´ = −Z = −3X1 − 4X2 + 3X3 − 8X 4
Sujeto a:
1 + 2 + 3 3 + "1 = 7
−2 2 − 8 3 + 3X4 = 8
−3 1 − 4 2 − 7 4 + "2 = 7
1 + 2 + 3 − "3 = 5
3 + 2 4 = 10
( 1 , 2 , 3 ) ≥ 0; 4 libre
g. Si existe alguna variable que no
tiene
restricción
de
nonegatividad (variable libre),
entonces se le reemplaza por la
diferencia de dos variables
positivas.
x4= x’4 - x’’4
−
MAX Z´ = −Z = −3X1 − 4X2 + 3X 3 − 8(X +
4 − X4 )
Sujeto a:
1 + 2 +3 3 + 5 =7
−
−2 2 − 8 3 + 3(X+
4 − X4 ) = 8
−3 1 − 4 2 − 7(X4+ − X4− ) + 6 = 7
1 + 2 + 3 − 7 =5
+
−
3 + 2(X 4 − X 4 ) = 10
5 , 6 , 7 son las variables de holgura
+ −
1 , 2 , 3, X 4 , X4 , 5 , 6 , 7 ≥ 0
5
2. Transformaciones Para Llegar A La Forma Estándar
EJEMPLO:
Maximizar Z = 2x1 + 3x2 + x3
Sujeto a:
x1 + x2 + x3 = 10
-2x1 + 3x2 + 2x3 ≤ -5
7x1 - 4x2 + 5x3 ≤ 6
x1 + 4x2 + 3x3 ≥ 8
x1 no restringida, x2 ≤ 0, x3 ≥0
2. Transformaciones Para Llegar A La Forma Estándar
Maximizar Z = 2x1 + 3x2 + x3
Sujeto a: x1 + x2 + x3 = 10
-2x1 + 3x2 + 2x3 ≤ -5
Maximizar Z = 2x1 + 3x2 + x3
1
7x1 - 4x2 + 5x3 ≤ 6
x1 + 4x2 + 3x3 ≥ 8
x1 no restringida, x2 ≤ 0, x3 ≥0
Sujeto a: x1 + x2 + x3 = 10
2x1 - 3x2 - 2x3 ≥ 5
7x1 - 4x2 + 5x3 ≤ 6
2
x1 + 4x2 + 3x3 ≥ 8
x1 no restringida, x2 ≤ 0, x3 ≥0
3
Maximizar Z = 2x1 – 3x’2 + x3
4a
Sujeto a: x1 + x2 + x3 = 10
Sujeto a: x1 – x’2 + x3 = 10
2x1 - 3x2 - 2x3 – S1 = 5
2x1 + 3x’2 - 2x3 – S1 = 5
7x1 + 4x’2 + 5x3 + S2 = 6
x1 - 4x’2 + 3x3 – S3 = 8
x1 no restringida, x’2 ≥ 0, x3 ≥ 0, S1≥0, S2≥0,
S3≥0
Maximizar Z = 2x1 + 3x2 + x3
x2=-x’2
7x1 - 4x2 + 5x3 + S2 = 6
x1 + 4x2 + 3x3 – S3 = 8
x1 no restringida, x2 ≤ 0, x3 ≥0, S1≥0, S2≥0,
S3≥0
6
2. Transformaciones Para Llegar A La Forma Estándar
Maximizar Z = 2x1 – 3x’2 + x3
Sujeto a: x1 – x’2 + x3 = 10
4b
2x1 + 3x’2 - 2x3 – S1 = 5
7x1 + 4x’2 + 5x3 + S2 = 6
x1 - 4x’2 + 3x3 – S3 = 8
x1= x’1 - x’’1
x1 no restringida, x’2 ≥ 0, x3 ≥ 0, S1≥0, S2≥0,
S3≥0
Maximizar Z = 2x’1 – 2x’’1 - 3x’2 + x3
Forma Estándar donde:
S1 y S3
S2
Sujeto a: x’1 – x’’1 – x’2 + x3 = 10
2x’1 – 2x’’1 + 3x’2 - 2x3 – S1 = 5
Variables de Exceso
7x’1 – 7x’’1 + 4x’2 + 5x3 + S2 = 6
Variable de Holgura
x’1 – x’’1 - 4x’2 + 3x3 – S3 = 8
x’1≥ 0, x’’1 ≥ 0, x’2 ≥ 0, x3 ≥ 0, S1≥0, S2≥0, S3≥0
FUENTES:
1. Vidal, Carlos Julio (2005). Introducción A La
Modelación Matemática Y Optimización.
2. Bravo, Juan José. Notas de Clase: Método
Simplex.
3. Ramírez, Luis Felipe (2009). Notas de Clase:
Método Simplex.
4. Toro, Héctor Hernán. Notas de Clase. Método
Simplex
7
Descargar