controles 1 de MII - 12/13 Problemas 2-2* E > f:=x->piecewise(x<0,1-cos(x),0<=x, cos(x)-1): plot([f(x),-f(x)],x=-13..13,thickness=2,gridlines=true); eval([f(4*Pi/3)+f(-2*Pi/3),-f(4*Pi/3)-f(-2*Pi/3)]); Problemas 1-1* E > e1:=y*diff(u(x,y),y)-(x-2)*diff(u(x,y),x)-u(x,y)=-2*x: normal(pdsolve(e1,u(x,y)));s1:=x+2*y+2: normal(eval([subs(u(x,y)=s1,e1),subs(y=-1,s1)])); x2 C _F1 y x K 2 u x, y = xK2 K2 x = K2 x, x 2 1 (1) > e1:=y*diff(u(x,y),y)-(x+1)*diff(u(x,y),x)-u(x,y)=2*x: normal(pdsolve(e1,u(x,y)));s1:=y-x+1: normal(eval([subs(u(x,y)=s1,e1),subs(x=1,s1)])); 2 Kx C _F1 y 1 C x u x, y = 1Cx 2 x = 2 x, y K5 5 K1 10 x K2 0, 0 (2) Problema 1 C > ec:=diff(u(x,y),y)+diff(u(x,y),x)-u(x,y)=-x-y: normal(pdsolve(e1,u(x,y)));sc:=y+x+2: normal(eval([subs(u(x,y)=sc,ec),subs(y=-2,sc)])); Kx2 C _F1 y 1 C x u x, y = 1Cx Kx K y = Kx K y, x K10 (6) > sw:=t->(f(x+t)+f(x-t))/2:so:=t->sw(t)+1-cos(t)*cos(x): plot([so(Pi),sw(Pi)],x=0..16,thickness=[3,2]);with(plots): animate(plot,[so(t),x=0..16],t=0..15,thickness=3,frames=61); 2 1 0 (3) 2 K1 4 6 8 x 10 12 14 16 K2 Problemas 3-3* E > ef:=diff(u(x,t),t)-2/t^3*diff(u(x,t),x$2)=0: dsolve({diff(u(t),t)=-2*k^2/t^3*u(t),u(1)=exp(-k^2/2)},u(t)): expand(simplify(%));sf:=t/sqrt(3*t^2-2)*exp(-x^2/(6-4/t^2)): normal(eval([subs(u(x,t)=sf,ef),subs(t=1,sf)])); K u t =e 3 2 k 2 e t = 15.000 2 1.5 1 0.5 0 k2 t2 1 K x2 2 0 = 0, e (4) > ef:=diff(u(x,t),t)-1/t^2*diff(u(x,t),x$2)=0: dsolve({diff(u(t),t)=-k^2/t^2*u(t),u(1)=exp(-k^2/4)/sqrt(2)}, u(t)):expand(simplify(%)); sf:=sqrt(t)/sqrt(5*t-4)*exp(-x^2/(5-4/t)): normal(eval([subs(u(x,t)=sf,ef),subs(t=1,sf)])); 1 u t = 2 K 2 e 0 = 0, eKx 5 2 k 4 2 e 0 2 4 6 8 x 10 12 14 16 > sw:=t->(-f(x+t)-f(x-t))/2:so:=t->sw(t)+cos(t)*cos(x): plot([so(Pi),sw(Pi)],x=0..16,thickness=[3,2]); animate(plot,[so(t),x=0..16],t=0..15,thickness=3,frames=61); 2 k2 t 1 0 (5) K1 2 4 6 8 x 10 12 14 16 t = 15.000 1 0.5 0 K0.5 K1 2 4 6 8 x 10 12 14 16 Problema 2 C > f:=x->piecewise(x<-4,0,-4<=x and x<=-1,-(x+1)*(x+4), -1<x and x<1,0,1<=x and x<=4,(x-1)*(x-4),4<x,0): plot(f(x),x=-6..6,thickness=2,gridlines=true); eval((f(3)+f(-1))/2); 2 1 K6 K4 0 K2 2 4 6 x K1 K2 K1 (7) > so:=t->(f(x+t)+f(x-t))/2: plot([so(3)],x=0..8,-1.2..1,thickness=3,gridlines=true); 1 0.5 0 1 2 3 4 x K0.5 5 6 7 8 K1 > with(plots): animate(plot,[so(t),x=0..9],t=0..4.8,thickness=3,frames=49); t = 4.8000 1 0 1 2 3 4 5 x K1 K2 6 7 8 9 controles 2 de MII - 12/13 Problemas 2-2* E > ee:=x^2*diff(y(x),x$2)+x*diff(y(x),x)+p^2*y(x): dsolve({ee=0,D(y)(1)=0},y(x)); dsolve({subs(p=0,ee)=x^2-3/2*x,D(y)(1)=0,D(y)(2)=0},y(x)); dsolve({subs(p=0,ee)=x-exp(1)+1,D(y)(1)=0,D(y)(exp(1))=0},y(x)); y x = _C2 cos p ln x Problemas 1-1* E > Order:=5:es:=3*x*diff(y(x),x$2)+2*diff(y(x),x)+4*y(x)=0: dsolve(es,y(x));dsolve(es,y(x),series); 1 4 1 4 y x = _C1 x1 / 6 BesselJ , 3 x C _C2 x1 / 6 BesselY , 3 x 3 3 3 3 y x = _C1 x1 / 3 1 K x C C 2 2 4 3 4 x K x C x4 C O x5 7 105 1365 C _C2 1 K 2 x y x = xC 4 2 2 3 2 4 x K x C x C O x5 5 15 165 > es:=3*x*diff(y(x),x$2)-2*diff(y(x),x)+4*y(x)=0: dsolve(es,y(x));dsolve(es,y(x),series); 5 4 5 4 y x = _C1 x5 / 6 BesselJ , 3 x C _C2 x5 / 6 BesselY , 3 3 3 3 y x = _C1 x5 / 3 1 K y x = (8) 1 1 2 2 3 2 xC x K x C x4 C O x5 2 11 231 3927 3 x C _C2 1 C 2 x (9) Problema 1 C C 1 6 x C O x7 36 C x Kx2 K C _C2 x ln x (10) 3 4 11 6 x K x C O x7 8 216 > A1:=sin(x/2):A:=n->cos(n*(x+Pi)/2): n1:=int(x*A1,x=-Pi..Pi):d1:=int(A1^2,x=-Pi..Pi): [n1,d1,n1/d1,int(x*A(n),x=-Pi..Pi) assuming n::integer]; plot([A1,A(2),A(3)],x=-Pi..Pi,thickness=2); 8 4 K1 C K1 n 8, p, , 2 p n 3p 4 K p 2 0 (11) (12) 3p 4 p 1.6 1.8 2 x nC1 e 1 0 K1 1.4 1 2 C 2 K1 ,K 2 2 n2 p C 1 0.5 p 2 x K ln x C _C2 > A:=n->cos(n*Pi*ln(x)):n0:=int(1,x=1..exp(1)): d0:=int(1/x,x=1..exp(1)):c0:=n0/d0:[n0,d0,c0]; M:=int(A(n)^2/x,x=1..exp(1)) assuming n::integer: N:=int(A(n),x=1..exp(1)) assuming n::integer:cn:=N/M:[M,cn]; plot([A(0),A(1),A(2),A(3)],x=1..exp(1),thickness=2); K1 Ce, 1, K1 Ce 0.5 p 4 2 K1 1 0 p K 4 K0.5 1.2 K0.5 > e2:=p->diff(y(x),x$2)+p^2*y(x):cc:={D(y)(-Pi)=0,D(y)(Pi)=0}: [dsolve({e2(0)=0} union cc,y(x)), dsolve({e2(1/2)=0} union cc,y(x)), dsolve({e2(1/3)=x} union cc,y(x))]; 1 1 y x = _C2, y x = _C1 sin x , y x = K54 sin x C9 x 2 3 K 1 e ln x 2 0.5 1 4 1 C x2 C x 4 Problema 2 C Kp K 1 > Order:=7:es:=x^2*diff(y(x),x$2)+(1/4-4*x^2)*y(x)=0: dsolve(es,y(x));dsolve(es,y(x),series); y x = _C1 x BesselI 0, 2 x C _C2 x BesselK 0, 2 x x 2 1 2 ln 2 1 C 2 K1 n C 1 ln 2 , K 2 2 ln 2 2 C n2 p 4 3 4 4 K4 x C x K x C O x5 3 21 y x = _C1 1 ln x 2 > A:=n->cos(n*Pi*ln(x)/ln(2)): n0:=int(1,x=1..2):d0:=int(1/x,x=1..2):c0:=n0/d0:[n0,d0,c0]; M:=int(A(n)^2/x,x=1..2) assuming n::integer: N:=int(A(n),x=1..2) assuming n::integer:cn:=N/M:factor([M,cn]); plot([A(0),A(1),A(2),A(3)],x=1..2,thickness=2); 1 1, ln 2 , ln 2 2 1 4 1 6 1 C x2 C x C x C O x7 4 36 1 2 3 x C ln x K x C _C2 4 2 K0.5 K1 1.2 1.4 1.6 1.8 x 2 2.2 2.4 2.6 > plot([u(x,1/4),u(x,1/2),u(x,3/4),u(x,1),u(x,5/4)], x=0..1/2,thickness=2); plot([d(x,1/4),d(x,1/2),d(x,3/4),d(x,1),d(x,5/4)], x=0..1/2,thickness=2); Problema 3* E > g:=s->piecewise(s<-2,1,s>-2 and s<-1,-1,-1<s and s<0,1, 0<s and s<1,-1,1<s and s<2,1,2<s and s<3,-1,s>3,1): plot(g(s),s=-3..4,thickness=2,discont=true); 1.2 1.0 0.8 0.6 0.4 0.2 1 0.5 K3 K2 K1 1 K0.5 2 s 3 4 K1 > w:=(2*n-1)*Pi:yn:=sin(w*x):S:=k->sum(-4/w*yn,n=1..k): plot([g(x),S(5),S(20)],x=-1..2,thickness=[2,1,1], color=[black,blue,red],discont=true); 1 1.2 1 0.8 0.6 0.4 0.2 0 0.5 0 K1 1 x K0.5 2 K1 0.1 0.2 0 0.1 0.2 x x 0.3 0.4 0.5 0.3 0.4 0.5 > with(plots):animate(plot,[d(x,t),x=0..1/2],t=0..5/4, thickness=3,frames=51); t = 1.2500 > u:=(x,t)->t-sum(2/w^2*sin(2*w*t)*sin(w*x),n=1..20): d:=(x,t)->t+int(g(s),s=x-2*t..x+2*t)/4: plot([u(1/2,t),d(1/2,t)],t=0..1,thickness=2); 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0 0.2 0.4 0.6 t 0.8 1 0 0.1 0.2 0.3 x 0.4 0.5 Problema 3 C > w:=(2*n-1):yn:=cos(w*x):cn:=8*(-1)^(n+1)/w/Pi:dn:=cn/w^2: S:=k->sum(cn*yn,n=1..k):plot([S(5),S(20)],x=-Pi/4..3*Pi/4); > u:=(x,t)->8/Pi*sum((-1)^(n+1)/w^3* (1-exp(-2*w^2*t))*cos(w*x),n=1..20): plot([u(x,0.1),u(x,0.3),u(x,0.6),u(x,1),u(x,3)], x=0..Pi/2,thickness=2); 2 2 1 1.5 p K 4 p K 8 0 p 8 K1 p 4 3p 8 x p 2 5p 8 3p 4 1 0.5 K2 0 > 4/Pi*int(yn*(Pi^2/4-x^2),x=0..Pi/2) assuming n::integer: factor([%,%-dn]); Se:=sum(cn/w^2*yn,n=1..20):de:=Pi^2/4-x^2: plot([Se,de],x=0..Pi/2,thickness=2);plot(Se-de,x=0..Pi/2); 8 K1 n C 1 ,0 3 2 nK1 p 2 1.5 1 p 16 p 8 3p 16 5p 16 3p 8 7p 16 p 2 > plot(u(0,t),t=0..3,thickness=2); 2 1.5 1 0.5 0 0 1 2 3 t 0.5 0 p 4 x p 16 p 8 3p 16 p 4 x 5p 16 3p 8 7p 16 p 2 > with(plots): animate(plot,[u(x,t),x=0..Pi/2],t=0..3, thickness=3,frames=61); t = 3.0000 2 0.0001 0 K0.0001 K0.0002 K0.0003 1.5 1 p 16 p 8 3p 16 p 4 x 5p 16 3p 8 7p 16 p 2 0.5 0 p 16 p 8 3p 16 p 4 x 5p 16 3p 8 7p 16 p 2