Problemas 3, 3* y 4 sepM (examen de septiembre de matemáticas) Problema 1a var('n') an=n*exp(cos(n))*sin(1/n^2);limit(an,n=infinity) 0 Problema 1b g(x)=log(abs(x+1/2))+x;dg=diff(g(x),x);dg,g(0),g(1) (1/2*(2*x + 1)/abs(x + 1/2)^2 + 1, log(1/2), log(3/2) + 1) plot(g,-2,1,ymin=-3,ymax=1.5,thickness=2,figsize=[1.8,2]) Problema 2 y 8 f(x)=(x+1)/sqrt(2^2x^2);df=factor(diff(f(x),x));sf=factor(diff(df,x)) df,sf,solve(sf,x),find_root(sf,-1,0) (-(x + 4)/((x - 2)*(x + 2)*sqrt(-x^2 + 4)), 2*(x^2 + 6*x + 2)/((x 2)^2*(x + 2)^2*sqrt(-x^2 + 4)), [x == -sqrt(7) - 3, x == sqrt(7) 3], -0.35424868893540945) plot(f,-1.8,1.8,gridlines=true,figsize=[2,2]) g(x)=(2*x-1)*exp(-x);dg=factor(diff(g(x),x));sg=factor(diff(dg,x)) G=factor(integrate(g(x),x)) dg,sg,G (-(2*x - 3)*e^(-x), (2*x - 5)*e^(-x), -(2*x + 1)*e^(-x)) g(1),g(3/2),g(2),g(5/2); N(g(1)),N(g(3/2)),N(g(2)),N(g(5/2)) (e^(-1), 2*e^(-3/2), 3*e^(-2), 4*e^(-5/2)) (0.367879441171442, 0.446260320296860, 0.406005849709838, 0.328339994495595) -integrate(g,x,0,1/2),integrate(g,x,1,infinity) (2*e^(-1/2) - 1, 3*e^(-1)) d1=plot(g,x,0,0.5,ymin=-1.5,ymax=0.5,thickness=2,fill=true) d2=plot(g,x,1,5,ymin=-1.5,ymax=0.5,thickness=2,fill=true) d3=plot(g,x,-0.2,5,ymin=-1.5,ymax=0.5,thickness=2) plot(d1+d2+d3,figsize=[5,2]) Problema 5 limit((sin(x)*cos(x)-arctan(x))/log(1+x^3),x=0) -1/3 Problema 6a var('n');bn=2^n*n^(100)/factorial(n-1) N(sum(bn,n,1,10)),N(sum(bn,n,1,56)),N(sum(bn,n,1,57)) (2.82220678648798e97, 2.24380306779007e127, 2.24380306857409e127) var('n');cn=(7-sin(n))/sqrt(n^3+n) N(sum(cn,n,1,10)),N(sum(cn,n,1,100)) (10.7428126401201, 13.6800758130844) (con 1000 ya tarda mucho) Problema 6b integrate(f(x),x),integrate(f,x,0,1) (-sqrt(-x^2 + 4) + arcsin(1/2*x), 1/6*pi - sqrt(3) + 2) . sin(3*pi/2),integral(arctan(x)/(1+x^4),x,-1,1) (-1, 0)