Trigonometric Identities Sum and Difference Formulas sin (x + y) = sin x cos y + cos x sin y sin (x − y) = sin x cos y − cos x sin y cos (x + y) = cos x cos y − sin x sin y cos (x − y) = cos x cos y + sin x sin y tan (x + y) = tan x+tan y 1−tan x tan y q θ sin 2θ = ± 1−cos 2 tan 2θ = 1−cos x sin x tan (x − y) = Half-Angle Formulas q θ cos 2θ = ± 1+cos 2 tan 2θ = tan x−tan y 1+tan x tan y q θ tan 2θ = ± 1−cos 1+cos θ sin θ 1+cos θ Double-Angle Formulas sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ cos 2θ = 2 cos2 θ − 1 cos 2θ = 1 − 2 sin2 θ tan 2θ = 2 tan θ 1−tan2 θ Product-to-Sum Formulas sin x sin y = 12 [cos (x − y) − cos (x + y)] cos x cos y = 21 [cos (x − y) + cos (x + y)] sin x cos y = 12 [sin (x + y) + sin (x − y)] Sum-to-Product Formulas sin x + sin y = 2 sin x+y cos x−y sin x − sin y = 2 sin x−y cos x+y 2 2 2 2 x−y x+y x−y cos x + cos y = 2 cos x+y cos cos x − cos y = −2 sin sin 2 2 2 2 The Law of Sines sin A sin B sin C = = a b c Suppose you are given two sides, a, b and the angle A opposite the side A. The height of the triangle is h = b sin A. Then 1. If a < h, then a is too short to form a triangle, so there is no solution. 2. If a = h, then there is one triangle. 3. If a > h and a < b, then there are two distinct triangles. 4. If a ≥ b, then there is one triangle. The Law of Cosines a2 = b2 + c2 − 2bc cos A b2 = a2 + c2 − 2ac cos B c2 = a2 + b2 − 2ab cos C