Tabla de Integrales Z 1. Z 4. Z 7. un du = 1 un+1 + C , n 6= −1 n+1 Z 2. Z sec2 (u) du = tan(u) + C 8. 15. 1. 3. 5. Z p Z p Z Z 3. du u 1 = arctan a2 + u2 a a Z p 1. csc2 (u) du = − cot(u) + C 9. sec(u) tan(u) du = sec(u) + C Z tan(u) du = − ln |sec(u)| + C 11. cos(u) du = sin(u) + C Z cot(u) du = ln |sen(u)| + C 12. Z sec(u) du = ln |sec(u) + tan(u)| + C Z 6. Z csc(u) cot(u) du = − csc(u) + C eu du = eu + C Z sin(u) du = − cos(u) + C 5. Z 13. 3. Z 1 au + C a du = ln(a) u Z 10. Z 1 du = ln(u) + C u csc(u) du = ln |csc(u) − cot(u)| + C 14. Z +C 16. a2 + u2 du = p up 2 a2 a + u2 + ln u + a2 + u2 + C 2 2 2. a2 − u2 du = u up 2 a2 arcsin a − u2 + +C 2 2 a 4. u2 − a2 du = p up 2 a2 u − a2 − ln u + u2 − a2 + C 2 2 6. u ea u du = 1 (a u − 1) ea u + C + C a2 ea u sin (b u) du = Z du 1 u + a ln = +C a2 − u2 2a u−a ea u (a sin(b u) − b cos(b u)) + C a2 + b2 17. du 1 u − a ln = +C u2 − a2 2a u+a Z p du √ = ln u + a2 + u2 + C 2 2 a +u Z u du √ = arcsin a a2 − u2 Z +C p du √ = ln u + u2 − a2 + C u2 − a2 Z ln(u) du = u ln(u) − u + C 2. Z 4. (c) Departamento de Matemáticas. ITESM, Campus Monterrey 1 ea u cos (b u) du = ea u (a cos(b u) + b sin(b u)) + C a2 + b2