PRÁCTICAS DE MACROECONOMÍA I Ejercicio 19 EJERCICIO 19. Tipo de cambio fijo De una economía abierta, con régimen de tipo de cambio fijo, conocemos las siguientes relaciones macroeconómicas: C = 0,8Yd r* = 10 T = 0,25Y X = 300 + 12R I = 300 – 8r IM = 50 – 8R + 0,1Y G = 400 e=4 L = 0,1Y – 5r P* = 1 M = endógena Movilidad de capitales PERFECTA P=1 A. Obtener los niveles de renta, tipo de interés y la oferta monetaria nominal en el equilibrio. B. Las autoridades desean situar el nivel de las exportaciones netas en 150 u.m. ¿Qué política de demanda hace posible tal objetivo? A. EQUILIBRIO INICIAL Tipo de cambio real; R = e ⋅ P * 4 ⋅1 = =4 P 1 Obtención de la IS: Y = DA Y = C + I + G + XN Y = C + I + G + X – IM Y = 0,8 (Y – 0,25Y) + 300 – 8r + 400 + 300 + 12R – (50 – 8R + 0,1Y) Y = 0,6Y + 300 – 8r + 400 + 250 + 20R – 0,1Y Y = 1030 + 0,5Y – 8r Y = 2060 – 16r ⇒ IS 151 PRÁCTICAS DE MACROECONOMÍA I Ejercicio 19 Obtención de la LM: M =L P Hay que tener en cuenta que con tipo de cambio fijo la oferta monetaria nominal, M, es endógena. M = 0,1Y – 5r 1 M = 0,1Y – 5r ⇒ LM Obtención de la BP = 0 Al existir perfecta movilidad de capitales la condición de equilibrio de balanza de pagos implica que r = r*, por tanto, r = 10 ⇒ BP = 0 Equilibrio inicial: LM : M = 0,1Y – 5r IS : Y = 2060 – 16r BP = 0 : r = 10 Resolviendo obtenemos Y = 1900; r = 10 y M = 140 Al resolver observamos que, en el caso de tipos de cambio fijos y perfecta movilidad de capitales, las ecuaciones de la IS y de la BP = 0 determinan la renta y el tipo de interés de equilibrio, mientras que la LM, únicamente, determina el valor de la oferta monetaria nominal. Si buscamos el valor de las exportaciones netas: XN = X – IM XN = 300 + 12R – (50 – 8R + 0,1Y) XN = 250 + 20R – 0,1Y XN = 250 + 20 XN = 140 152 4 ⋅1 – 0,1·1900 1 PRÁCTICAS DE MACROECONOMÍA I Ejercicio 19 REPRESENTACIÓN GRÁFICA: r e=pts/$ e LM a 10 BP=0 S$ 4 4 IS 1900 D$ Y Cant. $ B. AUMENTO DE LAS EXPORTACIONES NETAS El objetivo es alcanzar un nivel de exportaciones netas de 150 u.m., lo que significa un incremento de 10 u.m. respecto al apartado A. En el supuesto de tipo de cambio fijo y precios dados no se puede lograr una depreciación real por lo que la única vía para aumentar las exportaciones netas es reduciendo la demanda de importaciones mediante una contracción de la renta. La única forma efectiva de reducir la producción es a través de una política fiscal contractiva ya que la política monetaria es totalmente ineficaz con tipos de cambio fijo. Si el valor de las exportaciones netas ha de ser de 150 u.m. entonces: XN = X – IM XN = 300 + 12R – (50 – 8R + 0,1Y) XN = 150 = 250 + 20R – 0,1Y 150 = 250 + 20 4 ⋅1 – 0,1·Y 1 Y = 1800 Obtención de la nueva IS: Y = DA’ Y = C + I + G + ∆G + XN Y = C + I + G + ∆G + X – IM Y = 0,8 (Y – 0,25Y) + 300 – 8r + 400 + ∆G + 300 + 12R – (50 – 8R + 0,1Y) 153 PRÁCTICAS DE MACROECONOMÍA I Ejercicio 19 Si tenemos presente que Y = 1800; r = 10 y R = 4, entonces obtenemos: ∆ G = − 50 ⇒ Se debe realizar una política fiscal contractiva Si reemplazamos el valor de la renta y del tipo de interés en la ecuación de la LM obtendremos la oferta monetaria: M =L P M' = 0,1Y – 5r 1 M' = 0,1·1800 – 5·10 1 M’ = 130 ⇒ Se ha producido un descenso de la cantidad de dinero debido a la pérdida de reservas de divisas. REPRESENTACIÓN GRÁFICA: e r LM’ S$ LM 10 a c BP=0 4 b 1800 D$ 1900 Y EXPLICACIÓN DESPLAZAMIENTOS: ← → PFcontr ⇒ ∇G ⇒ IS ⇒ D$ ← 4 IS IS’ → ∇Reservas (1) ⇒ LM (2) ⇒ S$ (1+2) 154 S’$ (1+2) D’$ Cant. $ PRÁCTICAS DE MACROECONOMÍA I Ejercicio 19 COMENTARIOS: ← ∆dda. divisas Intervención ⇒ Déficit BP⇒ PFcontr⇒ ∇G ⇒ IS⇒ ∇Y ⇒ ∇IM ⇒ ∆XN ⇒ → BC ∇r ⇒ salidas capital D$ ← ∆ofta. divisas M BC vende ⇒ ∇reservas ⇒ ∇ Base ⇒ ∇ M ⇒ ∇ ⇒ LM ⇒ ⇒ → divisas P Monetaria S $ (1) Equilibrio interno (Y=DA; M/P=L) ∆r ⇒ entradas capital ∆ofta.→ divisas ⇒ ⇒ + ∇Y ⇒ ∇IM ⇒ ∆XN S$ (2) Equilibrio externo (BP=0; S $=D$ ) 155