Práctica 4 Ingeniería Técnica Industrial Matematicas II Trayectorias ortogonales P04ED0.nb 2 Desarrollo de la práctica Trayectorias ortogonales Dos familias uniparamétricas de curvas G1 (x, y, c1 ) = 0, G2 (x, y, c2 ) = 0, se dicen que son trayectorias ortogonales, si todas las curvas de una familia cortan perpendicularmente a todas las curvas de la otra familia. El método para calcular la familia de trayectorias ortogonales a la familia uniparamétrica G (x, y, c) = 0 consiste en encontrar, en primer lugar, la ecuación diferencial asociada a la familia y' = f (x, y) y, a continuación, plantear y resolver la ecuación asociada a la familia ortogonal que vendrá dada por y' = -1 / f (x, y) Nota: Es normal, en este tipo de ejercicios, el que una o ambas familias de curvas vengan dadas en su forma implícita. Para la representación gráfica de una curva dada en su forma implícita necesitamos cargar, previamente, la librería <<Graphics`ImplicitPlot` y así poder utilizar la instrucción ImplicitPlot, cuya sintaxis es: ImplicitPlot[ expresión, {x, xmin , xmax }] Representa la función dada en forma implícita para valores de x en el intervalo [xmin, xmax ] ImplicitPlot[ expresión, {x, xmin , xmax}, {y, ymin , ymax }] Representa la función dada en forma implícita para valores de (x, y) en el rectángulo [xmin, xmax ]×[ymin, ymax]. In[1]:= << Graphics`ImplicitPlot` P04ED0.nb 3 Ejemplo Encuentre las trayectorias ortogonales a la familia de circunferencias que pasan por los puntos (-1, 0) y (1, 0). Q., M., S. Pág 60, 2.17 x2 + Hy - cL2 = c2 + 1 Se comprueba facilmente que las ecuaciones de estas circunferencias vienen dadas por 1º Representación gráfica de la familia de circunferencias x2 + Hy - cL2 = c2 + 1 In[5]:= Clear@"Global`∗"D; familia1 = x2 + Hy − cL2 c2 + 1; grafica1 = ImplicitPlot@Evaluate@Table@familia1, 8c, −3, 3, 1<DD, 8x, −5, 5<D; 6 4 2 -3 -2 -1 1 2 3 -2 -4 -6 2º Obtención de la ecuación diferencial asociada a la familia de curvas P04ED0.nb 4 In[10]:= ecuacion1 = familia1 ê. y → y@xD derivada1 = D@ecuacion1, xD Out[10]= x2 + HyHxL - cL2 n c2 + 1 Out[11]= 2 x + 2 HyHxL - cL y£ HxL n 0 In[12]:= parametro = Solve@derivada1, cD êê Simplify Out[12]= x 99c Ø ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ + yHxL== y£ HxL In[17]:= ED1 = ecuacion1 ê. parametro@@1DD êê Simplify Out[17]= 2 x yHxL x2 n yHxL2 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ + 1 y£ HxL que es la ecuación diferencial de la familia de circunferencias que pasan por los puntos (-1, 0) y (1, 0). 3º Ecuación diferencial de la familia de trayectorias ortogonales La familia de trayectorias ortogonales se obtiene sustituyendo y' Ø -1 / y' ED2 = ED1 ê. y '@xD → −1 ê y '@xD Out[18]= x2 n yHxL2 - 2 x y£ HxL yHxL + 1 ecuacion2 = DSolve@ED2, y@xD, xD è!!!!!!!!!!!!!!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!! 99yHxL Ø - -x2 + c1 x - 1 =, 9yHxL Ø -x2 + c1 x - 1 == Out[20]= Elevando al cuadrado una de las expresiones anteriores se tiene x2 + y2 = c x - 1, que podemos escribir, finalmente, como Hx - êê c L2 + y2 = êê c 2 - 1, que se trata de una familia de circunferencias ortogonales a la familia original. P04ED0.nb 5 4º Representación gráfica de la familia de circunferencias Hx - êê c L2 + y2 = êê c2 - 1 In[21]:= familia2 = Hx − kL2 + y2 k2 − 1 grafica2 = ImplicitPlot@Evaluate@Table@familia2, 8k, −5, 5, 1<DD, 8x, −10, 10<, 8y, −5, 5<, PlotStyle → RGBColor@1, 0, 0DD; Out[21]= Hx - kL2 + y2 n k 2 - 1 4 2 -10 -5 5 10 -2 -4 5º Representación conjunta de ambas familias Mediante el comando Show representamos de manera simultánea varias funciones, cuyas gráficas se han dibujado previamente mediante un comando Plot In[23]:= Show@8grafica1, grafica2<D; 6 4 2 -10 -5 5 -2 -4 -6 10 P04ED0.nb 6 Ejercicios Ejercicio propuesto 1 Encuentre las trayectorias ortogonales a la familia de todas las circunferencias con centro en el origen. Solución: y = k x Ejercicio propuesto 2 Encuentre las trayectorias ortogonales de la familia de hiperbolas rectangulares y = c / x. Solución: x2 - y2 = k Ejercicio propuesto 3 Las curvas equipotenciales de un determinado campo electrostático se puede aproximar por las elipses x2 - 2 c x + 2 y2 = 0. Encuentre las líneas de fuerza. Solución: y = k H 3 x2 + y2 L2 Nota: la ecuación diferencial resultante (homogénea) es conveniente resolverla a mano. Ejercicios Resueltos