TEMA 4: CINEMÁTICA DE FLUIDOS (RESUMEN)

Anuncio
José María Arroyo Cebeira
Departamento de Ciencias
TEMA 4: EJERCICIOS – CUESTIONES DE APLICACIÓN.
1- Calcular la densidad de un material, del cual sabemos que ocupa un volumen de 15 m3 y
tiene una masa de 15000kg . Si dicho material se divide en dos partes distintas, por ejemplo una
el doble que la otra. Calcular la nueva densidad de cada parte.
Solución:   1000 kg / m3 La densidad de cada parte es la misma.
2- ¿Cómo explicas que un faquir se tienda sobre un “lecho de alfileres” sin sufrir ningún
daño?
Solución: Concepto de presión.
3- ¿Es importante que los clavos sean muy finos por el lado que se debe de introducir en el
material donde se desean clavar?
Solución: Concepto de presión.
4- Realiza un cálculo aproximado del peso de la columna de aire que soporta una persona
erguida. Utiliza la formula que define la presión, el valor de la presión atmosférica y la superficie
aproximada de la cabeza de una persona adulta. Calcula también la masa de aire que hay sobre la
cabeza de una persona adulta.
Solución: 3756 N , 383 kg
5- Calcular la densidad del aire. Sabiendo que la altura de la atmósfera de es 10 kilómetros.
Solución: 1'22 kg / m3
6- Calcular la presión que ejerce el agua sobre un submarino sumergido en el mar a 300
metros de profundidad. La densidad del agua marina es   1030 kg / m3 .
Solución: 3'03 106 Pa
7- Los émbolos de una prensa hidráulica tiene secciones de 60 y 960 cm2 , respectivamente.
Se deposita una pesa de 5 kilos sobre el émbolo de menor superficie. Calcula qué fuerza ejercerá
el otro émbolo.
Solución: 784 N
8- Un mineral pesa 26’2 N en el aire, 20’3 N sumergido en el agua y 21’5 N sumergido en
un líquido desconocido. Halla:
a) La fuerza de empuje que sufre el mineral en el agua y en el líquido desconocido.
b) El volumen del mineral.
c) Su densidad.
d) La densidad del líquido desconocido.
Solución:
José María Arroyo Cebeira
Departamento de Ciencias
9- Un cilindro metálico se suspende en posición vertical de un dinamómetro. Las medidas
son de 4’7 N cuando el cilindro está en el aire y de 4’4 N cuando está sumergido hasta la mitad de
su longitud en agua. Calcula:
a) El volumen del cilindro.
b) Su masa y su densidad.
c) La fuerza de empuje sobre él si se sumerge totalmente en agua.
d) Su peso aparente cuando está totalmente sumergido en agua.
Solución:
10- La densidad del hielo es de 920 kg / m3 , y la del agua del mar, de 1030 kg / m 3 . Calcula
que fracción del volumen de un iceberg sobresale por encima del nivel del agua del mar.
Solución:
11- Un globo aerostático lleno de helio tiene un volumen de 900 centímetros cúbicos. Si la
densidad del aire es de 1'29 kg / m3 , y la del helio, de 0'18 kg / m3 , calcula:
a) El peso del globo.
b) La fuerza de empuje que ejerce la atmósfera sobre él.
c) La fuerza resultante sobre el globo.
Solución:
12- Una fosa marina tiene una profundidad de 10 kilómetros. Calcula:
a) El valor de la presión en el fondo de la fosa.
b) La fuerza que actuaría sobre un pez que tiene una superficie total de 500 cm2 .
La densidad del agua marina es   1030 kg / m3 .
Solución:
13- Un mineral de 200 gramos tiene un volumen de 40 cm3 . Calcula:
a) El peso del mineral.
b) El empuje que sufre si se sumerge completamente en agua.
José María Arroyo Cebeira
Departamento de Ciencias
c) Su peso aparente cuando se encuentra sumergido en agua.
Solución:
14- La presión sanguínea en las venas es de unos 20 mm de Hg . Para administrar por vía
intravenosa un medicamento, un enfermo cuelga el frasco con la disolución de medicamento de
un soporte a una cierta altura.
Si la densidad de la disolución es de 1'03 g / cm3 , calcula la altura mínima sobre el brazo del
paciente a la que debe estar colgado el frasco.
Solución:
15- Utilizando lo visto en clase, sobre equilibrio de sólidos en fluidos. Describe el
funcionamiento de los submarinos como aplicación del principio de Arquímedes.
Solución: Teoría.
Descargar