CONFERENCIA NOMINATIVA DR. SALVADOR ZUBIRÁN Medicina genómica. Mitos y realidades Rubén Lisker* * Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Genomic medicine. Myths and reality ABSTRACT Genomic medicine is simply the routine use of genomic analysis, preferably by direct DNA studies, to improve the quality of medical care. A likely consequence will be to increase the predictive and prevention capacities of medicine, including common diseases, such as cancer, diabetes and others. The most common variability of the genome are the SNPs (single nucleotide polymorphisms), every person having between 3 and 10 million of them. SNPs may or not be harmless, and studies are in progress in cases and controls studies to answer the question of whether they determine why some persons have a given disease and others do not, and if they have something to do with that the individual variation in the response to drugs. We discuss in the same context the haplotype map project (HapMap) as a tool to facilitate the study of possible associations of genome changes and common diseases. We discuss the most successful effort in gene therapy, that of severe combined immunodeficiency, in which 17 out of 18 patients responded well to the procedure, although 2 of them developed late side effects in the form of acute leukemia, very likely related to the therapy. The ethical social and legal problems of genomic medicine are discussed very lightly and several references are given to readers interested in this matter. RESUMEN Una definición adecuada de medicina genómica, es sencillamente el uso rutinario del análisis genómico, de preferencia mediante el análisis directo del DNA, para mejorar la calidad de la atención médica. Un efecto importante será la capacidad de predecir y prevenir diversas enfermedades, incluyendo las comunes como cáncer, hipertensión, diabetes y otras. El tipo más común de variabilidad en el genoma son los SNPs (single nucleotide polymorphisms), teniendo cada persona entre tres y 10 millones. Esta variabilidad puede o no ser inocua y se realizan estudios de casos y controles para contestar la pregunta de si estas variaciones explican el porqué una persona y no otra tienen una enfermedad dada, y si intervienen en la respuesta individual a los medicamentos. En el mismo sentido se discuten los mapas de haplotipos (HapMap) que se emplean como una herramienta para facilitar la investigación sobre posibles asociaciones entre cambios en el DNA y enfermedades frecuentes. Se analizan los resultados de la terapia génica en la inmunodeficiencia severa combinada, por ser el ejemplo más exitoso de este procedimiento. Dio buenos resultados en 17 de 18 enfermos tratados, pero dos de ellos desarrollaron como complicación tardía cuadros muy similares a la leucemia aguda. Los problemas éticos, sociales y legales se discuten de manera muy somera, proporcionando al lector interesado algunas referencias sobre el particular. Key words. Genomic medicine. Disease prediction and prevention. SNPs. Pharmacogenomics. Gene therapy. Palabras clave. Medicina genómica. Predicción y prevención de enfermedades. SNPs. Farmacogenómica. Terapia génica. El término genomics fue acuñado por Mckusick y Ruddle1 en 1987, en el primer número de la revista Genomics, que abrieron con un documento cuyo título fue: Una nueva disciplina, un nombre nuevo y una nueva revista. Años después, Guttmacher y Collins2 propusieron que el inicio de la era genómica fuera el 14 de abril de 2003, día en que el proyecto internacional del genoma humano anunció la terminación de la secuencia completa de dicho genoma. A esta fecha sólo le faltaron 11 días para coincidir con el 50 aniversario de la descrip- ción por Watson y Crick de la estructura de doble hélice del DNA.3 La genética médica, a pesar de no ser bien entendida por el gremio médico, quien la consideró muchos años como una especialidad un tanto esotérica,4 en realidad lleva años de tener un papel importante en la atención de relativamente pocos pacientes, la mayoría con enfermedades raras. La genómica, seguramente menos comprendida aun que la genética, promete ser una disciplina fundamental en el cuidado de numerosos enfermos, con padeci- 554 Revista de Investigación Clínica / Vol. 56, Núm. 4 / Julio-Agosto,Lisker 2004 R. / pp 554-560genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560 Medicina Versión completa de este artículo disponible en internet: www.imbiomed.com.mx mientos comunes, tales como el cáncer del colon y recto5 y las enfermedades de Alzheimer y Parkinson.6 ¿En qué difieren la genética y la genómica? La primera estudia a los genes y sus efectos, y lo hace uno por uno de manera individual. La genómica es más ambiciosa y estudia las funciones e interacciones de numerosos genes de manera simultánea, incluyendo, además, sus relaciones con factores ambientales. Esto nos conduce a pensar que se trata de un quehacer difícil y complejo. Sin embargo, Beaudet,7 en su discurso de salida como presidente de la Asociación Americana de Genética Humana, planteó que la medicina genómica es sencillamente el uso rutinario del análisis genotípico (pruebas genéticas), de preferencia mediante el estudio directo del DNA, para mejorar la calidad de la atención médica. En otras palabras, es el uso de viejas y nuevas técnicas bajo la perspectiva de los nuevos conocimientos del genoma humano. La definición de prueba genética, en opinión de Burke,8 no se limita al análisis del DNA sino incluye también al estudio del RNA, así como el de cromosomas, proteínas y metabolitos, que permiten identificar alteraciones heredadas que tienen repercusiones clínicas. Lo dicho desmitifica la idea de que la medicina genómica es muy compleja y que sólo la gente iluminada puede entender. Estoy de acuerdo con Beaudet7 de que en realidad no es más que la utilización de nuevos conocimientos y técnicas, para mejorar nuestro quehacer diario. Lo que sí es muy laborioso es la adquisición de los nuevos conocimientos, que requiere un gran esfuerzo en investigación, como mostraré más adelante. Quiero hacer énfasis ahora, en que no todo es genético, y que las diversas características, normales o patológicas de los organismos vivos, resultan de la interacción entre su estructura genética y el medio ambiente. Además, no se debe olvidar la importancia de la relación médico paciente y de los aspectos psicológicos de cada enfermo, recordando que más que enfermedades hay enfermos, cada uno con su manera individual de reaccionar ante el mismo agente agresor. desde hace algún tiempo. Debemos enfrentar no sólo el reto de identificar genes que producen enfermedades, sino también identificar genes que aumentan la susceptibilidad de padecer enfermedades. CONSECUENCIAS DE LA MEDICINA GENÓMICA El conocimiento de la secuencia de nucleótidos de nuestro genoma muestra algunos datos interesantes, entre ellos, que tenemos alrededor de 3 mil 200 millones de pares de bases en cada complemento haploide y que hay entre 30 y 40 mil genes, que codifican unas 100 mil proteínas. No más del 2% del genoma codifica proteínas y más del 50% está formado por secuencias repetitivas cuya función no se conoce, si bien se piensa que están involucradas en la re- Se va a incrementar el papel de la genética en la práctica médica. Se podrán diagnosticar in utero la totalidad de las enfermedades mendelianas sencillas, y es probable que pasemos del diagnóstico seguido de tratamiento, a la predicción seguida de prevención,9 lo cual ya se realiza de manera parcial Identificación de genes que producen enfermedades En la actualidad hay dos situaciones en función de las posibilidades de tratamiento: 1. Enfermedades cuyas manifestaciones clínicas se pueden evitar si se identifican de manera oportuna, como la galactosemia y la fenilcetonuria. 2. Enfermedades en que el diagnóstico no lleva, cuando menos en la actualidad, a medidas preventivas útiles, como la enfermedad de Huntington o la fibrosis quística del páncreas. Identificación de genes que incrementan el riesgo de enfermedades La presencia del gen anormal indica que la persona tiene mayor posibilidad que la población general de padecer alguna enfermedad, más no hay certeza de ello. Un buen ejemplo son las mujeres con cambios en los genes denominados BRCA-1 y BRCA-2, que tienen mucha mayor posibilidad de desarrollar cáncer de mama y ovario, que quienes no los tienen. El problema es qué hacer con la información. Algunos piensan que lo recomendable es realizar mastografías periódicas desde una edad temprana (35 o 40 años), con la esperanza de detectar el tumor lo más precoz posible. Otros recomiendan mastectomía bilateral, sin que haya consenso sobre la edad para hacerla, lo cual nos conduce al dilema de una cirugía mayor para quitar tejido sano, con el objeto de evitar una enfermedad cuya aparición no es segura. Lo que sí se sabe es que esta cirugía reduce de manera considerable la morbilidad y mortalidad de esta enfermedad.10 EL GENOMA HUMANO. VARIABILIDAD Lisker R. Medicina genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560 555 gulación de la actividad genética.4 Nuestro genoma muestra gran parecido con el de otras especies, al grado de que la diferencia entre nosotros y el chimpancé es del orden del 1%, y la de los humanos, entre sí, de 0.1%.11 Esta última cifra parecería pequeña, pero en realidad permite cuando menos 3 millones de cambios, lo que seguramente explica nuestra individualidad. Esto me recuerda que la primera referencia escrita sobre individualidad genética y su importancia médica, la hizo Garrod en 1931,12 al señalar que las diátesis, entendidas como predisposiciones a padecer enfermedades, no son más que reflejo de nuestra individualidad bioquímica. Los tipos más frecuentes de variabilidad genética son los que conocemos como SNPs, (del inglés Single Nucleotide Polymorphisms). Son pequeños cambios genéticos que ocurren cuando un solo nucleótido substituye a otro en una secuencia de DNA. Los SNPs ocurren con una frecuencia mayor a una por cada 1,000 bases y se piensa que hay entre 3 y 10 millones en el genoma de todas las personas. Se está investigando si tienen importancia como factores de riesgo de enfermedades y su utilidad para predecir la respuesta individual a fármacos. En otras palabras, se quiere contestar la pregunta de si estas variaciones en el genoma explican el porqué unas personas y no otras, padecen una enfermedad dada y si la variabilidad en la respuesta a medicamentos depende en alguna medida de este fenómeno. Factores de riesgo SNPs Se han investigado tanto enfermedades monogénicas (las determinadas por un solo par de genes), como las poligénicas o multifactoriales, caracterizadas etiológicamente por la intervención de varios pares de genes y el medio ambiente. Los SNPs13 pueden considerarse como mutaciones o polimorfismos. La mutación es un cambio poco frecuente en la población que suele tener efectos contrarios a la salud. Un ejemplo es el cambio en el codón (de GAG a GTG) que codifica para el aminoácido número 6 de la cadena beta de la hemoglobina, lo cual hace que en lugar de estar un ácido glutámico en ese sitio, esté una valina. Ello altera las propiedades de la hemoglobina y produce la anemia de células falciformes si el sujeto es un homocigoto a la mutación. 14 En cambio, los polimorfismos son cambios relativamente frecuentes en la secuencia del DNA (presentes en más del 1% de la población), que habitualmente no tienen efectos fenotípicos indeseables. La diferencia entre mutación y polimorfismo no es siempre clara, por ejemplo, 5% de la población blanca en los EUA es portador (heterocigoto) de un cambio en el gen que produce en el estado homocigoto la fibrosis quística del páncreas. Por su frecuencia y aparente ausencia de efectos fenotípicos en el heterocigoto pudiera considerarse como un polimorfismo; sin embargo, la frecuencia del gen anormal es mayor que la esperada en pacientes con asma, bronquitis crónica y ausencia congénita bilateral de vas deferens, sugiriendo todo ello que sí tienen efectos deletéreos, y por tanto podrían considerarse como mutaciones. Por cierto, conviene recordar que se han descrito más de 800 mutaciones diferentes en el gen de la fibrosis quística, cuya frecuencia difiere en diferentes poblaciones y que explican en parte la variabilidad clínica de la enfermedad. Enfermedades monogénicas. La hemocromatosis es una enfermedad en que se acumula hierro en el organismo, dañando principalmente al corazón, hígado y páncreas. Mata a los enfermos si no se tratan oportunamente con flebotomías repetidas. Se hereda en forma autosómica recesiva 15 y se ha identificado como gen responsable al llamado HFE. En un estudio de 178 pacientes, publicado en 1996,16 se informó que 83% eran homocigotos y 5% heterocigotos para la mutación conocida como C282Y. En estos últimos se encontró otra mutación en el mismo gen HFE, la H63D, por lo que en rigor también tenían dos genes mutados y eran doble heterocigotos. Se pensó que la identificación de estos genes en etapa preclínica podría contribuir de alguna manera a evitar la aparición de la enfermedad, pero estudios subsecuentes mostraron que sólo 1% de los individuos homocigotos para estas mutaciones manifiestan el padecimiento, por lo que no se justifican los estudios de tamiz en la población general.17 En pacientes con trombosis venosas repetidas,18 se han identificado dos SNPs, uno en el factor V de la coagulación sanguínea denominado G1961A (la llamada variante Leiden) y otro en el gen que codifica para la protrombina conocido como G20210A. Las mujeres heterocigotas para este último tienen un riesgo cercano a ocho veces mayor de desarrollar trombosis venosas si usan anticonceptivos orales, y en el embarazo de las doble heterocigotas, su riesgo es 107 veces mayor al de mujeres normales. 556 Lisker R. Medicina genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560 Enfermedades multifactoriales. Se investigan ya enfermedades poligénicas comunes como la diabetes, la hipertensión arterial, la cefalea y otras. Los estudios de casos y controles se emplean para averiguar si determinados SNPs son más frecuentes en unos u otros como una manera expedita de averiguar si son factores de riesgo en dichas enfermedades. Esto demanda un buen número de SNPs distribuidos en todo el genoma para confiar en los resultados pero que, de ser positivos, abren la posibilidad de poder tomar medidas preventivas eficaces. En la actualidad se conocen los loci de genes de susceptibilidad para varias enfermedades, entre ellos: 19q13 y 12q en la enfermedad de Alzheimer; 19p13 y Xq24 en migraña; 12q y 2q en diabetes tipo 2; y 3q21 en psoriasis.19 En nuestro instituto, se desarrollan cuatro estudios de casos y controles de cefalea, cirrosis hepática por alcoholismo, enfermedad de Alzheimer y malformaciones congénitas. La tarea es laboriosa pues se estudian unos 300 mil SNPs distribuidos por todo el genoma, para investigar su posible asociación con estas enfermedades. Estos estudio se realizan en colaboración con una compañía norteamericana -Pearlgen- quien se encarga de identificar los SNPs. Farmacogenómica La variabilidad en la respuesta a medicamentos no sólo es de origen genético, sino que depende, entre otros, de factores como edad, sexo, estado funcional hepático y renal y tipo y gravedad de enfermedad. Se buscan en la actualidad diferencias heredadas entre individuos que permitan predecir la respuesta a sus medicamentos, tanto en términos de eficiencia como de toxicidad. La meta de llegar a una medicina totalmente personalizada está aún lejana,19,20 pero ya es posible individualizar algunos tratamientos farmacológicos, con base en datos genómicos, para evitar medicamentos letales o inútiles en un individuo en particular, como en pacientes con leucemia aguda que reciben 6-mercaptopurina. La importancia de los factores hereditarios en la respuesta al uso de fármacos se identificó desde mediados del siglo pasado.21 En esa época se identificaron casos de apnea prolongada después de administrar un relajante muscular, la succinilcolina, utilizado rutinariamente para entubar a los enfermos quirúrgicos. Este relajante es metabolizado normalmente por la pseudocolinesterasa sérica y cuando existe el estado homocigoto para la variante denominada atípica, el medicamento puede persistir durante horas en la circulación. También es historia vieja la ocurrencia de crisis hemolíticas consecutivas a la administración de un antipalúdico, la primaquina, en sujetos con deficiencia de la glucosa-6-fosfato deshidrogenasa eritrocítica, la cual es común en la cuenca del mediterráneo y en el África ecuatorial. Un último ejemplo es la neuropatía periférica inducida por la isoniacida, utilizada en el tratamiento de la tuberculosis. Ella se debe a diferencias hereditarias en la capacidad de acetilar a la isoniacida. Estas y otras observaciones constituyeron el campo de la farmacogenética dedicado al estudio de variaciones (polimorfismos) de los genes encargados de codificar enzimas necesarias para el metabolismo de ciertos fármacos.22 La farmacogenómica, por otra parte, difiere de la farmacogenética, ya que el nuevo campo trata de estudiar a todos los genes involucrados en el metabolismo de un fármaco, y no sólo a uno de ellos. Además, analiza la variación genética de receptores de medicamentos en las células blanco, lo cual puede determinar asimismo su eficacia.23 Hay ejemplos claros de que una vía metabólica tiene que ver con el metabolismo de uno o varios grupos de medicamentos. Uno de ellos son las variantes del gen de la enzima tiopurina metiltransferasa, que metaboliza a los compuestos que contienen dos azufres. Éstos en circunstancias normales no tienen ninguna importancia, pero los pacientes con el defecto manejan lentamente varias drogas antileucémicas, v.gr. mercaptopurina, tioguanina o azatiopurina. Esta lentitud puede llevar a toxicidad en la médula ósea y el hígado con resultados fatales.13 De hecho, se recomienda ahora identificar dichas variantes enzimáticas antes de que los enfermos reciban estos medicamentos y la FDA considera la posibilidad de etiquetar medicamentos para ser utilizados por sujetos con determinado perfil genético. Un segundo ejemplo de enzimas que metabolizan varios fármacos, son los de la familia P450. Estas enzimas oxidantes se producen en el hígado e inactivan diversos productos químicos. De los 57 genes de esta familia identificados en humanos, hay dos muy importantes en el manejo de medicamentos:13,24 uno es el que codifica para la enzima CYP3A4 que está involucrada con el metabolismo de alrededor de la mitad de los medicamentos que recetan los médicos; el otro gen es el de la enzima CYP2D6, que metaboliza la cuarta parte de las drogas recetadas. Las variantes de estos genes determinan el grado de actividad enzimática, clasificando a las personas como con capacidad enzimática pobre, normal y elevada. Dependiendo de la etnia,25 hasta 17% de la población Lisker R. Medicina genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560 557 puede tener variantes que afectan la velocidad metabólica y por consiguiente hacer variar los niveles circulantes de varios antihipertensivos, antiarrítmicos, antidepresivos, neurolépticos y de otros fármacos como la codeína.13 Es evidente que el desarrollo tecnológico permitirá estudios genotípicos en posibles usuarios de medicamentos. Ello hará posible establecer la dosis óptima para cada persona, lo cual tendrá un impacto positivo en la calidad de vida de los enfermos. MAPAS DE HAPLOTIPOS (HAPMAP) En 1995 se pidió apoyo a la UNESCO para realizar el proyecto HGDP (del inglés Human Genome Diversity Project), que permitiera conocer la composición genética de diferentes poblaciones. Se planteó obtener sangre de grupos aborígenes de todo el mundo, con objeto de estudiar un buen número de marcadores genéticos en todos ellos, lo cual permitiría comparaciones válidas y conocer el grado de relación biológica entre poblaciones y su correlación con el idioma y otros fenómenos culturales. El proyecto era atractivo pero no fue apoyado ya que produjo una gran controversia y hubo numerosas protestas de grupos que se sintieron discriminados y de hecho, lo bautizaron el proyecto vampiro. El HapMap surgió en cierta forma como sustituto del HGDP, a realizar en un número mucho menor de poblaciones. Su objetivo central no es antropológico, sino la creación de una herramienta que facilite los estudios de asociación entre factores genéticos y enfermedades comunes.26 De hecho los haplotipos son bloques de DNA de unas 10 mil bases o más, que se identifican por la presencia de unos cuantos SNPs en sitios específicos. Se utilizan en forma similar a lo que señalamos para los SNPs y sus posibles asociaciones con enfermedades multifactoriales. Así, en lugar de investigar millones de SNPs en muchos enfermos y sus controles respectivos, las investigaciones se reducirán considerablemente, haciendo más sencilla la búsqueda de asociaciones. Las lecciones que dejó el tratar de hacer andar el HGDP, llevó al consorcio del HapMap a vigilar cuidadosamente los aspectos éticos del proyecto, y a involucrar a la comunidad en sus tomas de decisión. Los haplotipos tradicionales se refieren a las variaciones hereditarias en las secuencias de bases de los genes, y se identifican habitualmente con enzimas de restricción. Se ha comprobado la presencia de varios haplotipos que difieren en su frecuencia dentro y entre poblaciones y que están presentes en muchos genes. Un ejemplo muy claro es el estudio 558 del gen que codifica para las cadenas beta de la hemoglobina, que permite identificar en cualquier grupo con anemia de células falciformes, el origen geográfico de la mutación.27 Conviene aclarar que el término haplotipo se usó inicialmente para referirse a las asociaciones de antígenos codificados por varios loci de un mismo sistema, en particular los antígenos de histocompatibilidad HL-A y posteriormente del DNA mitocondrial. El proyecto HapMap se inició oficialmente en octubre de 2002 con financiamiento de Canadá, China, Estados Unidos, Inglaterra y Japón, aportando los EUA 100 millones de dólares26 para los primeros tres años. La meta es realizar un mapa completo de haplotipos de 270 personas formados por 90 africanos del grupo Yoruba de Nigeria; 90 asiáticos que incluyen a 45 japoneses y 45 Chinos del grupo Han; y 90 estadounidenses de Salt Lake City con ancestros del norte y oeste de Europa. Se tuvo un gran cuidado en respetar la privacía de los donantes y los resultados estarán disponibles de manera gratuita en internet. Habrá además una colección de líneas celulares de los 270 sujetos a disposición de los investigadores interesados. TERAPIA GÉNICA Es la manipulación del DNA de células vivas con el fin de curar o mejorar enfermedades. Se puede realizar en células somáticas o células germinales. En el primer caso, las complicaciones que puedan surgir no afectan más que al sujeto en que se realizó el procedimiento, pero en el caso de las células germinales, se podría afectar a una o más generaciones de individuos, lo cual ha conducido al consenso de que no se utilice más que en células somáticas hasta adquirir mucha más experiencia. El procedimiento consiste en introducir DNA purificado al paciente para restablecer la función de algún gen anormal. Un ejemplo es el de la hemofilia y otros son los intentos de destruir células cuyo crecimiento está fuera de control como el cáncer. El gen terapéutico se introduce a las células deseadas mediante algún vector (generalmente un virus), lo que se puede realizar in vivo o más comúnmente en lo que se llama ex vivo. En este caso se requiere extraer del paciente las células relevantes, para exponerlas al agente terapéutico, y después reintroducirlas al organismo con la esperanza de haber infectado un número suficiente de células. Este tipo de procedimiento tiene el potencial no sólo para curar enfermedades, sino de mejorar algunas características personales, lo que entra en el campo de Lisker R. Medicina genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560 la eugenesia. En este caso se suele hablar de ingeniería genética y no de terapia génica, e involucra antes que nada la necesidad de realizar juicios de calidad, altamente discriminatorios, de cuáles son las características deseables de nuestra especie. En la actualidad28 hay 907 proyectos de terapia génica aprobados a nivel mundial. Mayoritariamente son estadounidenses (613 de 907= 68%) seguidos por 248 de los países europeos (27%). Los 46 restantes (5%) están repartidos entre 10 países, incluyendo uno de México. Quiero hacer énfasis que la terapia génica es un tratamiento experimental que, a 13 años de haberse iniciado, sólo ha mostrado eficacia en niños con inmunodeficiencia severa combinada conocida más por el acrónimo SCID del inglés severe combined immunodeficency.29 La SCID es una falla poco común del desarrollo del sistema inmune y los afectados mueren en los primeros años de la vida. Hay una SCID de herencia autosómica recesiva por deficiencia de la adenosina deaminasa. La otra se hereda en forma recesiva ligada al cromosoma X, y se conoce también como deficiencia de cadenas gama.30 A la fecha se ha empleado la terapia génica en 18 enfermos de los que curaron 17 personas, restituyendo sus funciones inmunes por cuando menos cinco años y que se encuentran aún vivos.30 Lo anterior se consideró como el primer éxito real de terapia génica en el hombre,29 con corrección de la anormalidad al insertar el gen terapéutico unido a un retrovirus atenuado que funcionó como vector. El procedimiento se hizo ex vivo infectando células troncales de médula ósea de los propios pacientes. Lamentablemente, dos de los pacientes más jóvenes,30 posteriormente desarrollaron cuadros muy parecidos a la leucemia aguda, lo cual produjo una reacción negativa contra la terapia génica. Sin embargo, estoy de acuerdo con quienes piensan que la terapia génica debe considerarse como un tratamiento en fase experimental, y que debe conocerse más de ella por ser un procedimiento capaz de salvar vidas si logramos aprender a evitar sus complicaciones. INFARTO DEL MIOCARDIO El riesgo de infarto del miocardio (IM) aumenta de manera aditiva, en función de los factores de riesgo que tenga una persona, entre ellos hipertensión arterial, diabetes e hipercolesterolemia. Cada uno de estos factores tiene un origen parcialmente genético, pero una historia familiar positiva de infarto es un predictor independiente que sugiere la existencia de genes de susceptibilidad adicionales. Esto tal vez ex- plique que algunos enfermos con IM no tienen los factores de riesgo convencionales ya citados. A continuación y a manera de ejemplo, les describo un estudio realizado con el objeto de averiguar si existe alguna asociación del IM con polimorfismos de DNA.31 Es un estudio japonés de 3,309 varones y 1,752 mujeres. De ellos, 2003 hombres y 816 mujeres tuvieron un IM bien comprobado y el resto (1,306 varones y 956 mujeres) se usaron como controles, pese a que tenían cuando menos un factor de riesgo para la enfermedad. En una fase preliminar analizaron 112 polimorfismos de 71 genes potencialmente asociados a IM. De allí seleccionaron 19 polimorfismos en varones y 18 en mujeres que analizaron en toda su muestra. En hombres no hubo diferencias significativas de casos vs. controles en edad, índice de masa corporal, tabaquismo, hipertensión, diabetes, hipercolesterolemia e hiperuricemia, pero en mujeres hubo más tabaquismo y diabetes en los casos. En hombres se asoció el IM con un polimorfismo en el gen de la conexina 37 y en mujeres con dos polimorfismos: uno en el activador-inhibidor del plasminógeno tipo I, y otro en el gen de la estromolisina-1. Estas asociaciones fueron claras y significativas con una p de 0.001. Los autores concluyen que el estudio de estos polimorfismos puede ser confiable para predecir el riesgo del infarto del miocardio y, por tanto, contribuir a su prevención. ASPECTOS ÉTICOS, LEGALES Y SOCIALES La preocupación principal de la sociedad ante el progreso de la genética, es que se use de manera negativa y dañe a la gente. Por ejemplo, hay temor de que pudiera utilizarse para acciones como: negarles acceso a seguros de gastos médicos o de vida, o bien interferir en la adjudicación de empleos o préstamos bancarios. Sería una nueva forma de discriminación sobre bases genéticas. Por fortuna, estos temores han estimulado la discusión sobre diversos aspectos éticos relacionados con la privacidad de los enfermos, la confidencialidad de la información y las decisiones reproductivas. Referimos al lector interesado a dos de estas publicaciones (ver referencias 9 y 32) que peden servir como introducción al tema ético-genómico, de suyo muy complejo. ACKNOWLEDGEMENT The author thanks Alvar Loria for his suggestions to improve the manuscript. The errors are the authors responsibility. Lisker R. Medicina genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560 559 REFERENCIAS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. Mckusick V, Ruddle F. A new discipline, a new name, a new journal. Genomics 1987; 1: 1-2. Guttmacher A, Collins F. Welcome to the genomic era. N Engl J Med 2003; 349: 996-8. Watson J, Crick F. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 1953; April 25: 737-8. Guttmacher A, Collins F. Genomic medicinea primer. N Engl J Med 2002; 347: 1512-20. Lynch H, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003, 348: 919-32. Nussbaum R, Ellis Ch. Alzheimers disease and Parkinsons disease. N Engl J Med 2003; 348: 1356-64. Beaudet A. ASHG Presidential address. Making genomic medicine a reality. Am J Hum Genet 1999, 64: 1-13. Burke W. Genetic testing. N Engl J Med 2002; 347: 1867-75. Lisker R. Aspectos éticos del proyecto genoma humano. En: Gascón P (ed.) La revolución genómica. México: UAM; 2003, p 65-78. Hartmann L, Schaid D, Woods J, et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 1999; 340: 72-84. Dennis C, Gallagher R. An owners guide to the genome. In: Dennis C, Gallagher R (eds.). The human genome. London: Nature Publ Group; 2001, p. 9-22. Garrod AE. Inborn factors in disease. London: Oxford University Press; 1931. Winn-Deen E. SNPs: will human genetic variation lead to new medical practices? Lab Medica International May-June 2003; 15-6. Lisker R, Armendares S. Introducción a la genética humana México. Manual Moderno; 2001, p. 195. Edwards C, Kushner J. Screening for hemochromatosis. N Engl J Med 1993; 328: 1616-20. Feder J, Gnirke A, Thomas W, et al. A novel MHC class 1- like gene is mutated in patients with hereditary hemochromatosis. Nat Genet 1996; 13: 399-408. Burke W, Thomson E, Khoury M, et al. Hereditary hemochromatosis. Gene discovery and its implications for population based screening. JAMA 1998; 280: 172-8. Selighson U, Lubetsky A. Genetic susceptibility to venous thrombosis. N Engl J Med 2001; 344: 1222-31. Roses A. Pharmacogenetics and the practice of medicine. Nature 2000; 405: 857-65. 560 20. Abbott A. With your genes? Take one of these, three times a day. Nature 2003; 425: 760-2. 21. Kalow W. Pharmacogenetics: heredity and the response to drugs. Philadelphia; WB Saunders; 1962. 22. Weinshilboum R. Inheritance and drug response. N Engl J Med 2003; 348: 529-37. 2 3 . Jimenez-Sánchez G, Valdés-Olmedo C. Soberón G. En el umbral de la medicina genómica. Este País, 2003 Septiembre: 2130. 24. Evans W, Relling M. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487-91. 25. Wilson J, Weale M, Smith A. Population genetic structure of variable drug response. Nature Genet 2001; 29: 265-9. 26. Dennis C. The rough guide to the genome. Nature 2003; 425: 758-9. 27. Peñaloza R, García-Carranca A, Coras T, et al. Frequency of haplotypes in the beta-globin gene-cluster in a select sample of the Mexican population. Am J Hum Biol 1995; 7: 45-9. 28. Cavazzana-Calvo M, Thrasher A, Mauilio F. The future of gene therapy. Nature 2004; 427: 779-81. 29. Cavazzana-Calvo M, Hacein-Bay S, Saint Baslle G, et al. Gene therapy of human severe combined immunodeficiency (SCID XI) disease. Science 2000; 228: 669-72. 30. Hacein-Bay S, Von Kalle C, Schmidt M, et al. LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-XI. Science 2003; 302: 415-9. 31. Yamada Y, Izawa H, Ichichara S, et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002; 347: 1916-22. 32. Wright-Clayton E. (2003) Ethical, legal and social implications of genomic medicine. N Eng J Med 349: 562-69. Reimpresos: Rubén Lisker Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, México D.F. Tel.: 5655-7404, Fax: 5573-6213 Correo electrónico: [email protected] Recibido el 13 de julio de 2004. Aceptado el 12 de agosto de 2004. Lisker R. Medicina genómica. Mitos y realidades. Rev Invest Clin 2004; 56 (4): 554-560